1
|
Alibrahem W, Helu NK, Oláh C, Prokisch J. Potential of Carbon Nanodots (CNDs) in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:560. [PMID: 40214605 PMCID: PMC11990490 DOI: 10.3390/nano15070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Carbon Nanodots (CNDs) are characterized by their nanoscale size (<10 nm), biocompatibility, stability, fluorescence, and photoluminescence, making them a promising candidate for cancer therapy. The difference in the methods of synthesis of CNDs, whether top-down or bottom-up, affects the formation, visual, and surface characteristics of CNDs, which are crucial for their biomedical and pharmaceutical applications. The urgent need for innovative therapeutic strategies from CNDs is due to the limitations and barriers posed by conventional therapies including drug resistance and cytotoxicity. Nano-loaded chemotherapy treatments are highly effective and can enhance the solubility and targeted delivery of chemotherapeutic agents, generate reactive oxygen species (ROS) to induce cancer cell cytotoxicity, and regulate intracellular signaling pathways. Their ability to be designed for cellular uptake and exact intracellular localization further improves their therapeutic potential. In addition to working on drug delivery, CNDs are highlighted for their dual functionality in imaging and therapy, which allows real-time observing of treatment efficacy. Despite the development of these treatments and the promising results for the future, challenges still exist in cancer treatment.
Collapse
Affiliation(s)
- Walaa Alibrahem
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Nihad Kharrat Helu
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Csaba Oláh
- Mathias Institute, University of Tokaj, Eötvös Str. 7, 3950 Sárospatak, Hungary;
- Neurosurgery Department, Borsod County University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary
| | - József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| |
Collapse
|
2
|
Jia X, Wang S. A Multifunctional γ-Polyglutamic Acid Hydrogel for Combined Tumor Photothermal and Chemotherapy. Gels 2025; 11:217. [PMID: 40136922 PMCID: PMC11942037 DOI: 10.3390/gels11030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Efficient and precise cancer therapy remains a challenge due to limitations in current treatment modalities. In this study, we developed a multifunctional hydrogel system that integrates photothermal therapy (PTT) and chemotherapy to achieve combined tumor treatment. The hydrogel, composed of γ-polyglutamic acid (γ-PGA), fifth-generation polyamide-amine dendrimers (G5), and polydopamine (PDA) nanoparticles, exhibits high photothermal conversion efficiency and temperature-responsive drug release properties. The hydrogel exhibited a high photothermal conversion efficiency of 45.6% under 808 nm near-infrared (NIR) irradiation. Drug release studies demonstrated a cumulative hydrophilic anticancer drug doxorubicin DOX release of 79.27% within 72 h under mild hyperthermia conditions (50 °C). In vivo experiments revealed a significant tumor inhibition rate of 82.3% with minimal systemic toxicity. Comprehensive in vitro and in vivo evaluations reveal that the hydrogel demonstrates excellent biocompatibility, photothermal stability, and biodegradability. Unlike conventional hydrogel systems, our γ-PGA-based hydrogel uniquely integrates a biocompatible and biodegradable polymer with polydopamine (PDA) nanoparticles, providing a smart and responsive platform for precise cancer therapy. This multifunctional hydrogel system represents a promising platform that combines PTT precision and chemotherapy efficacy, providing a robust strategy for advanced and safer cancer treatment.
Collapse
Affiliation(s)
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China;
| |
Collapse
|
3
|
Song CH, Lin CW, Han KH. Cell cycle-based antibody selection for suppressing cancer cell growth. FASEB J 2025; 39:e70402. [PMID: 39953793 DOI: 10.1096/fj.202401586rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Cell cycle arrest and programmed cell death are crucial biological processes in cancer development. Regulating cell fate decisions is essential due to their potential to induce cell cycle arrest and cell death. Inducing cell cycle regulatory proteins in tumor cells is considered a key objective in cancer therapy. Here, we present a novel method that selects antibodies from an antibody library to inhibit cancer growth using fluorescence-activated cell sorting (FACS) assays and cell cycle analysis. This approach seeks antibodies that induce cancer cells to enter the G0 or G1 phase, a quiescent state where cells cease to proliferate and trigger programmed cell death. We found that the T1 antibody effectively suppresses the proliferation of cancer cells. Mechanistically, serine protease 3 (PRSS3) is a target antigen of the T1 antibody. We demonstrated that PRSS3 controls tumor cell proliferation and apoptosis through interaction with the T1 antibody. This research suggests that PRSS3 holds great potential as a target for solid cancer treatment. This cycle-based approach to antibody screening shows potential because it can be broadly applied to cancer and other challenging diseases.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Korea
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Korea
| |
Collapse
|
4
|
Luo ZY, Fan LQ, Guo WL, Yang JP, Li ZY, Huang YX, Jiang H, Zhang XH. Effect of tandem autologous stem cell transplantation on survival in pediatric patients with high-risk solid tumors in South China. World J Stem Cells 2025; 17:100621. [DOI: 10.4252/wjsc.v17.i2.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Despite advances in treatment, the prognosis for patients with high-risk pediatric solid tumors remains dismal. Tandem autologous stem cell transplantation (ASCT) offers promise for improving outcomes in these patients. This study aimed to examine the efficacy and prognostic factors of tandem ASCT in pediatric patients with high-risk solid tumors.
AIM To determine the survival outcomes and prognostic factors in pediatric patients with high-risk solid tumors undergoing tandem ASCT.
METHODS A total of 40 pediatric patients with high-risk solid tumors treated from March 2015 to August 2022 were included in this retrospective study. The diagnoses of the patients included neuroblastoma, germ cell tumors, atypical teratoid/rhabdoid tumor, medulloblastoma, and pineoblastoma. After induction chemotherapy, all patients received tandem ASCT and were allocated into two groups (group A and group B) based on high-dose chemotherapy regimens. Prognostic relevance was evaluated by examining patient characteristics, such as sex, age, lactate dehydrogenase levels, primary site, the number of metastatic sites, and bone marrow involvement.
RESULTS The median follow-up duration since the first ASCT was 24 months (range: 1-91 months), with 5-year overall survival (OS) and event-free survival (EFS) rates of 73% and 70%, respectively, for the entire cohort. The 3-year OS rates were 67% for group A and 87% for group B (P = 0.29), with corresponding 3-year EFS rates of 67% and 79% (P = 0.57). Among neuroblastoma patients, the 5-year OS and EFS were 69% and 63% (P = 0.23). Univariable analysis revealed a notable association of age ≥ 36 months and elevated lactate dehydrogenase level at diagnosis with poorer OS. Despite acute adverse effects, all patients demonstrated good tolerance to the treatment, with no occurrences of transplant-related mortality.
CONCLUSION Tandem ASCT demonstrates promising survival outcomes for patients with high-risk solid tumors, particularly neuroblastoma, with manageable toxicity and no transplant-related mortality.
Collapse
Affiliation(s)
- Zi-Yan Luo
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Li-Qun Fan
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Wen-Ling Guo
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Jian-Ping Yang
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Zhuo-Yan Li
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Yong-Xian Huang
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Hua Jiang
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Hong Zhang
- Department of Pediatric Hematology Oncology, Guangdong Women and Children Hospital, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
5
|
Alrhmoun S, Fisher M, Lopatnikova J, Perik-Zavodskaia O, Volynets M, Perik-Zavodskii R, Shevchenko J, Nazarov K, Philippova J, Alsalloum A, Kurilin V, Silkov A, Sennikov S. Targeting Precision in Cancer Immunotherapy: Naturally-Occurring Antigen-Specific TCR Discovery with Single-Cell Sequencing. Cancers (Basel) 2024; 16:4020. [PMID: 39682207 DOI: 10.3390/cancers16234020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Adoptive cell therapy is the most promising approach for battling cancer, with T cell receptor-engineered T (TCR-T) cell therapy emerging as the most viable option for treating solid tumors. Current techniques for preparing TCR-T cell therapy provide a limited number of candidates TCRs, missing the comprehensive view of the repertoire, which may hinder the identification of the most effective TCRs. Methods: Dendritic cells were primed with immunogenic peptides of the antigen of interest to expand antigen-specific CD8 T lymphocytes from peripheral blood. Following that, the entire repertoire of naturally occurring antigen-specific TCRs was analyzed using single-cell RNA sequencing, alongside the assessment of the dominancy, transcriptome, and binding specificity of the obtained clonotypes, utilizing the TCRscape tool and ERGO-II neural network to identify the most effective candidate for TCR-T cell therapy development. Finally, TCR-T cells with the candidate TCR were obtained, followed by assessing their functionality and selectivity. Results: The developed protocol achieved a remarkable increase in the percentage of antigen-specific T cells by more than 200-fold, with more than 100 antigen-specific TCR clonotypes identified. The resulting TCR-T cells demonstrated high cytotoxicity and selectivity for the targeted antigen, indicating their potential to preferentially target tumor cells. Conclusions: This study offers a comprehensive approach for the discovery and analysis of not only few, but the entire repertoire of naturally occurring antigen-specific TCRs for TCR-T cell therapy development. Additionally, the proposed approach can be tailored to accommodate different types of antigens and MHC variants, making it a highly versatile tool for both research and clinical applications.
Collapse
Affiliation(s)
- Saleh Alrhmoun
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina Fisher
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Julia Lopatnikova
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Olga Perik-Zavodskaia
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Marina Volynets
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Roman Perik-Zavodskii
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Kirill Nazarov
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Julia Philippova
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Alaa Alsalloum
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Vasily Kurilin
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Alexander Silkov
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Institute of Medicine and Medical Technologies, Department of Immunology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Umair Amin M, Ali S, Engelhardt KH, Nasrullah U, Preis E, Schaefer J, Pfeilschifter J, Bakowsky U. Enhanced photodynamic therapy of curcumin using biodegradable PLGA coated mesoporous silica nanoparticles. Eur J Pharm Biopharm 2024; 204:114503. [PMID: 39303950 DOI: 10.1016/j.ejpb.2024.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Since the available treatments are not highly effective to combat cancer, therefore, the alternative strategies are unavoidable. Photodynamic therapy (PDT) is one of the emerging approaches which is target specific and minimally invasive. This study explores the successful development of Poly (D,L-lactide-co-glycolide) (PLGA) coated mesoporous silica nanoparticles (MSNs) and their augmented effects achieved by integrating curcumin (Cur) and cetyltrimethylammonium bromide (CTAB) in the polymeric layer and silica's pores, respectively. The synthesized nanocarriers (Cur-PLGA-cMSNs) have shown preferential targeting to the cellular organelles facilitated by CTAB's and Cur's affinity to mitochondria. CTAB and Cur-based PDT induced oxidative stress and generation of reactive oxygen species (ROS), resulting in dysfunctional mitochondria and triggered apoptotic pathways. PLGA coating has produced multifunctional effects, including; gatekeeping effects at pore openings, providing an extra loading site, enhancing the hemocompatibility of MSNs, and masking the free cur-related prolonged coagulation time. Cur-PLGA-cMSNs, as a multifaceted and combative approach with synergistic effects demonstrate promising potential to enhance outcomes in cancer treatment.
Collapse
Affiliation(s)
- Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany.
| | - Sajid Ali
- Department of Chemistry, Ångstr¨ om Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Konrad H Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany
| | - Jens Schaefer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany
| |
Collapse
|
7
|
Deo AS, Shrijana, S U S, Karun S, Bisaria K, Sarkar K. Participation of T cells in generating immune protection against cancers. Pathol Res Pract 2024; 262:155534. [PMID: 39180801 DOI: 10.1016/j.prp.2024.155534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
T cells are essential to the immune system's reaction. The major job of the immune system is to identify and get rid of any abnormal or malignant cells in the body. White blood cells called T cells coordinate and carry out immunological responses, including identifying and eliminating cancer cells. It mostly consists of two types called helper T-cells and cytotoxic T-cells. Together, they create an efficient reaction against cancer. Both the primary T cell subtype - CD4+ and CD8+ Tcells have specific role to play in our immune system.CD4+ T cells are limited to MHC-II molecules and acts as helper cell by activating and enhancing other immune cells. On the other side CD8+ T cells are called the killer cells as they eradicate the abnormal and contaminated cells and are limited to MHC-I molecules. The malignant cells are destroyed when cytotoxic T cells come into direct contact with them. This happens via number of processes, including TCR recognition, the release of cytotoxic chemicals, and finally the activation of the immune system. T cell receptors on the surface of cytotoxic T cells allow them to identify tumour cells and these T cells release harmful chemicals like perforins and granzymes when they connect to malignant cells. T-cells that have been stimulated release cytokines such as gamma interferon. T-cells can also acquire memory responses that improve their capacity for recognition and response. Helper T-cells contribute to the development of an immune response. It entails coordination and activation as well as the enlistment of additional immune cells, including macrophages and natural killer cells, to assist in the eradication of cancer cells. Despite the fact that the cancer frequently creates defence systems to circumvent their immune response. Together, these activities support the immune surveillance and T-cell-mediated regulation of cancer cells. Treatments like chemotherapy, radiation, and surgery are main ways to treat cancer but immunotherapy has been emerging since last few decades. These immune specific treatments have shown huge positive result. CAR T cell therapy is a promising weapon to fight again blood cancer and it works by focusing on our immune system to fight and eliminate cancer.
Collapse
Affiliation(s)
- Anisha Singha Deo
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shrijana
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sruthika S U
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shreya Karun
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kashish Bisaria
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
8
|
Kim JH, Lee EJ, Han KH. An Antagonist Antibody That Inhibits Cancer Cell Growth In Vitro through RACK1. Pharmaceuticals (Basel) 2024; 17:1303. [PMID: 39458945 PMCID: PMC11510629 DOI: 10.3390/ph17101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Our research introduces a novel screening method to identify antibodies that can suppress cell proliferation and induce apoptosis. METHODS By using an autocrine signaling system with lentivirus, we developed an antibody screening method based on FACS sorting assays and cell cycle analysis to inhibit tumor growth in vitro. This approach is particularly well suited for studying tumor suppressors. Inducing the G0 phase in tumor cells with specific antibodies may arrest their growth permanently or trigger apoptosis. The cell cycle is composed of tightly regulated phases for cell growth and division, with tumorigenesis or apoptosis occurring when these regulatory mechanisms fail. RESULTS In our study, we identified RACK1 as a key regulator of cancer cell growth. The H9 antibody against RACK1 selected from a human antibody library effectively suppressed cell proliferation by inhibiting RACK1 function. CONCLUSIONS These findings suggest that RACK1 plays a crucial role in tumor cell cycling and could represent a novel therapeutic target for cancer treatment. Although RACK1 is recognized as a significant target protein in various tumors, no commercial therapeutic agents currently exist. Our results suggest that the H9 antibody could be a promising candidate for the development of novel cancer therapies.
Collapse
Affiliation(s)
| | | | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|
9
|
Armstrong A, Isalan M. Engineering bacterial theranostics: from logic gates to in vivo applications. Front Bioeng Biotechnol 2024; 12:1437301. [PMID: 39359265 PMCID: PMC11444965 DOI: 10.3389/fbioe.2024.1437301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Over the past 2 decades, rapid advances in synthetic biology have enabled the design of increasingly intricate and biologically relevant systems with broad applications in healthcare. A growing area of interest is in designing bacteria that sense and respond to endogenous disease-associated signals, creating engineered theranostics that function as disease surveyors for human health. In particular, engineered cells hold potential in facilitating greatly enhanced temporal and spatial control over the release of a range of therapeutics. Such systems are particularly useful for targeting challenging, under-drugged disease targets in a more nuanced manner than is currently possible. This review provides an overview of the recent advances in the design, delivery, and dynamics of bacterial theranostics to enable safe, robust, and genetically tractable therapies to treat disease. It outlines the primary challenges in theranostic clinical translation, proposes strategies to overcome these issues, and explores promising future avenues for the field.
Collapse
Affiliation(s)
- Angus Armstrong
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Akhtar S, Ahmad F, Alam M, Ansari AW, Uddin S, Steinhoff M, Buddenkotte J, Ahmad A, Datsi A. Interleukin-31: The Inflammatory Cytokine Connecting Pruritus and Cancer. FRONT BIOSCI-LANDMRK 2024; 29:312. [PMID: 39344323 DOI: 10.31083/j.fbl2909312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Interleukin 31 (IL-31) is a proinflammatory cytokine, mainly secreted by Type II helper T cells. It signals through a heterodimeric receptor complex composed of IL-31 receptor α and oncostatin-M receptor β chain. The hallmark feature of IL-31, in its pathological role, is its ability to induce pruritus in mammals. Pruritus is a common symptom and major reason of morbidity in cancer patients, compromising their quality of life. Although, IL-31 is differentially expressed in different tumor types and could promote or inhibit cancer progression, high expression of IL-31 is a contributing factor to advanced stage tumor and severity of pruritus. The simultaneous existence of pruritus and cancer could either result from the aberrations in common proteins that co-exist in both cancer and pruritus or the therapeutic treatment of cancer could indirectly induce pruritus. Although the biology of IL-31 has predominantly been described in skin diseases such as atopic dermatitis and other inflammatory diseases, the precise role of IL-31 in the tumor biology of different cancer types remains elusive. Herein, we summarize the current understanding on the role of this cytokine in the pathogenesis of different cancers.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Angeliki Datsi
- Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
11
|
Kirthiga Devi SS, Singh S, Joga R, Patil SY, Meghana Devi V, Chetan Dushantrao S, Dwivedi F, Kumar G, Kumar Jindal D, Singh C, Dhamija I, Grover P, Kumar S. Enhancing cancer immunotherapy: Exploring strategies to target the PD-1/PD-L1 axis and analyzing the associated patent, regulatory, and clinical trial landscape. Eur J Pharm Biopharm 2024; 200:114323. [PMID: 38754524 DOI: 10.1016/j.ejpb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cancer treatment modalities and their progression is guided by the specifics of cancer, including its type and site of localization. Surgery, radiation, and chemotherapy are the most often used conventional treatments. Conversely, emerging treatment techniques include immunotherapy, hormone therapy, anti-angiogenic therapy, dendritic cell-based immunotherapy, and stem cell therapy. Immune checkpoint inhibitors' anticancer properties have drawn considerable attention in recent studies in the cancer research domain. Programmed Cell Death Protein-1 (PD-1) and its ligand (PD-L1) checkpoint pathway are key regulators of the interactions between activated T-cells and cancer cells, protecting the latter from immune destruction. When the ligand PD-L1 attaches to the receptor PD-1, T-cells are prevented from destroying cells that contain PD-L1, including cancer cells. The PD-1/PD-L1 checkpoint inhibitors block them, boosting the immune response and strengthening the body's defenses against tumors. Recent years have seen incredible progress and tremendous advancement in developing anticancer therapies using PD-1/PD-L1 targeting antibodies. While immune-related adverse effects and low response rates significantly limit these therapies, there is a need for research on methods that raise their efficacy and lower their toxicity. This review discusses various recent innovative nanomedicine strategies such as PLGA nanoparticles, carbon nanotubes and drug loaded liposomes to treat cancer targeting PD-1/PD-L1 axis. The biological implications of PD-1/PD-L1 in cancer treatment and the fundamentals of nanotechnology, focusing on the novel strategies used in nanomedicine, are widely discussed along with the corresponding guidelines, clinical trial status, and the patent landscape of such formulations.
Collapse
Affiliation(s)
- S S Kirthiga Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sidhartha Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sharvari Y Patil
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Vakalapudi Meghana Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sabnis Chetan Dushantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Falguni Dwivedi
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Gautam Kumar
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan 333031, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand 246174, India
| | - Isha Dhamija
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
12
|
Kciuk M, Garg N, Dhankhar S, Saini M, Mujwar S, Devi S, Chauhan S, Singh TG, Singh R, Marciniak B, Gielecińska A, Kontek R. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals (Basel) 2024; 17:701. [PMID: 38931368 PMCID: PMC11206995 DOI: 10.3390/ph17060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala 133207, Haryana, India;
- Swami Vivekanand College of Pharmacy, Ramnagar, Banur 140601, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, Punjab, India;
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| |
Collapse
|
13
|
Lee W, Shin MJ, Kim S, Lee CE, Choi J, Koo HJ, Choi MJ, Kim JH, Kim K. Injectable composite hydrogels embedded with gallium-based liquid metal particles for solid breast cancer treatment via chemo-photothermal combination. Acta Biomater 2024; 180:140-153. [PMID: 38604467 DOI: 10.1016/j.actbio.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Photothermal therapy (PTT) holds great promise as a cancer treatment modality by generating localized heat at the tumor site. Among various photothermal agents, gallium-based liquid metal (LM) has been widely used as a new photothermal-inducible metallic compound due to its structural transformability. To overcome limitations of random aggregation and dissipation of administrated LM particles into a human body, we developed LM-containing injectable composite hydrogel platforms capable of achieving spatiotemporal PTT and chemotherapy. Eutectic gallium-indium LM particles were first stabilized with 1,2-Distearoyl-sn‑glycero-3-phosphoethanolamine (DSPE) lipids. They were then incorporated into an interpenetrating hydrogel network composed of thiolated gelatin conjugated with 6-mercaptopurine (MP) chemodrug and poly(ethylene glycol)-diacrylate. The resulted composite hydrogel exhibited sufficient capability to induce MDA-MB-231 breast cancer cell death through a multi-step mechanism: (1) hyperthermic cancer cell death due to temperature elevation by near-infrared laser irradiation via LM particles, (2) leakage of glutathione (GSH) and cleavage of disulfide bonds due to destruction of cancer cells. As a consequence, additional chemotherapy was facilitated by GSH, leading to accelerated release of MP within the tumor microenvironment. The effectiveness of our composite hydrogel system was evaluated both in vitro and in vivo, demonstrating significant tumor suppression and killing. These results demonstrate the potential of this injectable composite hydrogel for spatiotemporal cancer treatment. In conclusion, integration of PTT and chemotherapy within our hydrogel platform offers enhanced therapeutic efficacy, suggesting promising prospects for future clinical applications. STATEMENT OF SIGNIFICANCE: Our research pioneers a breakthrough in cancer treatments by developing an injectable hydrogel platform incorporating liquid metal (LM) particle-mediated photothermal therapy and 6-mercaptopurine (MP)-based chemotherapy. The combination of gallium-based LM and MP achieves synergistic anticancer effects, and our injectable composite hydrogel acts as a localized reservoir for specific delivery of both therapeutic agents. This platform induces a multi-step anticancer mechanism, combining NIR-mediated hyperthermic tumor death and drug release triggered by released glutathione from damaged cancer populations. The synergistic efficacy validated in vitro and in vivo studies highlights significant tumor suppression. This injectable composite hydrogel with synergistic therapeutic efficacy holds immense promise for biomaterial-mediated spatiotemporal treatment of solid tumors, offering a potent targeted therapy for triple negative breast cancers.
Collapse
Affiliation(s)
- Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Min-Jae Choi
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
14
|
Qu R, Du W, Li S, Li W, Wei G, Chen Z, Gao H, Shi S, Zou L, Li H. Destruction of vascular endothelial glycocalyx during formation of pre-metastatic niches. Heliyon 2024; 10:e29101. [PMID: 38601565 PMCID: PMC11004892 DOI: 10.1016/j.heliyon.2024.e29101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
A special microenvironment called the "pre-metastatic niche" is thought to help primary tumor cells migrate to new tissues and invade them, in part because the normal barrier function of the vascular endothelium is compromised. While the primary tumor itself can promote the creation of such niches by secreting pro-metastatic factors, the underlying molecular mechanisms are still poorly understood. Here, we show that the injection of primary tumor-secreted pro-metastatic factors from B16F10 melanoma or 4T1 breast cancer cells into healthy mice can induce the destruction of the vascular endothelial glycocalyx, which is a polysaccharide coating on the vascular endothelial lumen that normally inhibits tumor cell passage into and out of the circulation. However, when human umbilical vein endothelial cultures were treated in vitro with these secreted pro-metastatic factors, no significant destruction of the glycocalyx was observed, implying that this destruction requires a complex in vivo microenvironment. The tissue section analysis revealed that secreted pro-metastatic factors could clearly upregulate macrophage-related molecules such as CD11b and tumor necrosis factor-α (TNF-α) in the heart, liver, spleen, lung, and kidney, which is associated with the upregulation and activation of heparanase. In addition, macrophage depletion significantly attenuated the degradation of the vascular endothelial glycocalyx induced by secreted pro-metastatic factors. This indicates that the secreted pro-metastatic factors that destroy the vascular endothelial glycocalyx rely primarily on macrophages. Our findings suggest that the formation of pre-metastatic niches involves degradation of the vascular endothelial glycocalyx, which may hence be a useful target for developing therapies to inhibit cancer metastasis.
Collapse
Affiliation(s)
- Rui Qu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wenxuan Du
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Shuyao Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangfei Wei
- Clinical Medical Research Center, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212004, China
| | - Zhoujiang Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research, Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sanjun Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
15
|
Zhao C, Sun X, Chen J, Geng BD. NAT10-mediated mRNA N4-acetylcytidine modification of MDR1 and BCRP promotes breast cancer progression. Thorac Cancer 2024; 15:820-829. [PMID: 38409918 PMCID: PMC10995701 DOI: 10.1111/1759-7714.15262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10) serves as a critical enzyme in mediating the N4-acetylcytidine (ac4C) that ensures RNA stability and effective translation processes. The role of NAT10 in driving the advancement of breast cancer remains uninvestigated. METHODS We observed an increase in NAT10 expression, both at mRNA level through the analysis of the Cancer Genome Atlas (TCGA) database and at the protein level of tumor tissues from breast cancer patients. We determined that a heightened expression of NAT10 served as a predictor of an unfavorable clinical outcome. By screening the Cancer Cell Line Encyclopedia (CCLE) cell bank, this expression pattern of NAT10 was consistency found across almost all the classic breast cancer cell lines. RESULTS Functionally, interference of NAT10 expression exerts an inhibitory effect on proliferation and invasion of breast cancer cells. By using ac4C RNA immunoprecipitation (ac4c-RIP) and acRIP-qPCR assays, we identified a reduction of ac4C enrichment within the ATP binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), consequent to NAT10 suppression. Expressions of MDR1 and BCRP exhibited a positive correlation with NAT10 expression in tumor tissues, and the inhibition of NAT10 in breast cancer cells resulted in a decrease of MDR1 and BCRP expression. Therefore, the overexpressing of MDR1 and BCRP could partially rescue the adverse consequences of NAT10 depletion. In addition, we found that, remodelin, a NAT10 inhibitor, reinstated the susceptibility of capecitabine-resistant breast cancer cells to the chemotherapy, both in vitro and in vivo. CONCLUSION The results of our study demonstrated the essential role of NAT10-mediated ac4c-modification in breast cancer progression and provide a novel strategy for overcoming chemoresistance challenges.
Collapse
Affiliation(s)
- Cui‐Cui Zhao
- Department of VIP Ward, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & HospitalTianjinChina
| | - Xuan Sun
- The First Department of Breast Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & HospitalTianjinChina
| | - Jing Chen
- Department of Pancreatic Oncology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & HospitalTianjinChina
| | | |
Collapse
|
16
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int J Mol Sci 2024; 25:3313. [PMID: 38542288 PMCID: PMC10970012 DOI: 10.3390/ijms25063313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 01/02/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Ji Ung Oh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Kyu Cheol Noh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| |
Collapse
|
18
|
Ensaf PK, Goodarzi MT, Tabrizi MH, Neamati A, Hosseinyzadeh SS. Novel formulation of parthenolide-loaded liposome coated with chitosan and evaluation of its potential anticancer effects in vitro. Mol Biol Rep 2024; 51:369. [PMID: 38411765 DOI: 10.1007/s11033-024-09325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND In this study the formulation of parthenolide (PN), an anticancer agent extracted from a natural product, into a liposome (PN-liposome), was examined. The surface of the PN-liposome was modified using chitosan (PN-chitosome). By using real-time quantitative PCR and flow cytometry, we examined the release of PN-chitosomes, cytotoxicity, and ability to induce apoptosis in vitro. METHODS AND RESULTS According to the present study, PN-chitosomes had a size of 251 nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. PN-chitosomes were confirmed to be spherical in shape and size through FESEM analysis. In terms of encapsulation efficiency, 94.5% was achieved. PN-chitosome possessed a zeta potential of 34.72 mV, which was suitable for its stability. According to the FTIR spectra of PN and PN-chitosome, PN was chemically stable due to the intermolecular interaction between the liposome and the drug. After 48 h, only 10% of the PN was released from the PN-chitosome in PBS (pH 7.4), and less than 20% was released after 144 h. CONCLUSION In a dose-dependent manner, PN-chitosome exhibited anticancer properties that were more cytotoxic against cancer cells than normal cells. Moreover, the formulation activated both the apoptosis pathway and cytotoxic genes in real-time qPCR experiments. According to the cytotoxicity and activating apoptosis of the prepared modified particle, PN-chitosome may be helpful in the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
19
|
Ragheb MA, Abdelrashid HE, Elzayat EM, Abdelhamid IA, Soliman MH. Novel cyanochalcones as potential anticancer agents: apoptosis, cell cycle arrest, DNA binding, and molecular docking studies. J Biomol Struct Dyn 2024:1-19. [PMID: 38373066 DOI: 10.1080/07391102.2024.2316764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
In the light of anticancer drug discovery and development, a new series of cyanochalcones incorporating indole moiety (5a-g) were efficiently synthesized and characterized by different spectral analysis. MTT assay was used to evaluate the antiproliferative activity of the synthesized compounds towards different cancer cells (Hela, MDA-MB-231, A375, and A549) in parallel with normal cells (HSF). Trimethoxy and diethoxy-containing derivatives (5d and 5e) displayed the most selective cytotoxic activities against cervical Hela cells with IC50 values of 8.29 and 11.82 µM, respectively, with great safety pattern toward normal HSF cells (Selectivity index: 21.3 and 13.9, respectively). Therefore, 5d and 5e were chosen to study their effects on apoptosis, cell cycle arrest, and migration of Hela cells using flow cytometric analysis and wound healing assay. They induced apoptosis and cell cycle arrest at the S phase and impaired migration of HeLa cells. Regarding their effects on the expression profile of crucial genes related to the potential anticancer activities, 5d and 5e remarkably upregulated caspase 3 and Beclin1 and downregulated cyclin A1, CDK2, CDH2, MMP9, and HIF1A using qRT-PCR and ELISA techniques. UV-Vis spectral measurement demonstrated the ability of 5d and 5e to bind CT-DNA efficiently with Kb values of 3.7 × 105 and 1 × 105 M-1, respectively. Moreover, in silico molecular docking was performed to assess the binding affinities of the compounds toward the active sites of Bcl2, CDK2, and DNA. Therefore, cyanochalcones 5d and 5e might be promising anticancer agents and could offer a scientific basis for intensive research into cancer chemotherapy.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Hanan E Abdelrashid
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Emad M Elzayat
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Erdemir Sayan S, Sreekumar R, Bhome R, Mirnezami A, Yagci T, Sayan AE. ERCC1 abundance is an indicator of DNA repair-apoptosis decision upon DNA damage. Cell Death Discov 2024; 10:47. [PMID: 38272916 PMCID: PMC10810800 DOI: 10.1038/s41420-024-01817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
DNA repair is essential for successful propagation of genetic material and fidelity of transcription. Nucleotide excision repair (NER) is one of the earliest DNA repair mechanisms, functionally conserved from bacteria to human. The fact that number of NER genes vary significantly between prokaryotes and metazoans gives the insight that NER proteins have evolved to acquire additional functions to combat challenges associated with a diploid genome, including being involved in the decision between DNA repair and apoptosis. However, no direct association between apoptosis and NER proteins has been shown to date. In this study, we induced apoptosis with a variety of agents, including oxaliplatin, doxorubicin and TRAIL, and observed changes in the abundance and molecular weight of NER complex proteins. Our results showed that XPA, XPC and ERCC1 protein levels change during DNA damage-induced apoptosis. Among these, ERCC1 decrease was observed as a pre-mitochondria depolarisation event which marks the "point of no return" in apoptosis signalling. ERCC1 decrease was due to proteasomal degradation upon lethal doses of oxaliplatin exposure. When ERCC1 protein was stabilised using proteasome inhibitors, the pro-apoptotic activity of oxaliplatin was attenuated. These results explain why clinical trials using proteasome inhibitors and platinum derivatives showed limited efficacy in carcinoma treatment and also the importance of how deep understanding of DNA repair mechanisms can improve cancer therapy.
Collapse
Affiliation(s)
- Sule Erdemir Sayan
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Rahul Sreekumar
- Cancer Sciences Unit, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Southampton, SO16 6YD, UK
| | - Rahul Bhome
- Cancer Sciences Unit, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Southampton, SO16 6YD, UK
| | - Alex Mirnezami
- Cancer Sciences Unit, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Southampton, SO16 6YD, UK
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, 41400, Turkey
| | - A Emre Sayan
- Cancer Sciences Unit, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Southampton, SO16 6YD, UK.
| |
Collapse
|
21
|
Najafi S, Majidpoor J, Mortezaee K. Liquid biopsy in colorectal cancer. Clin Chim Acta 2024; 553:117674. [PMID: 38007059 DOI: 10.1016/j.cca.2023.117674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Liquid biopsy refers to a set of pathological samples retrieved from non-solid sources, such as blood, cerebrospinal fluid, urine, and saliva through non-invasive or minimally invasive approaches. In the recent decades, an increasing number of studies have focused on clinical applications and improving technological investigation of liquid biopsy biosources for diagnostic goals particularly in cancer. Materials extracted from these sources and used for medical evaluations include cells like circulating tumor cells (CTCs), tumor-educated platelets (TEPs), cell-free nucleic acids released by cells, such as circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and exosomes. Playing significant roles in the pathogenesis of human malignancies, analysis of these sources can provide easier access to genetic and transcriptomic information of the cancer tissue even better than the conventional tissue biopsy. Notably, they can represent the inter- and intra-tumoral heterogeneity and accordingly, liquid biopsies demonstrate strengths for improving diagnosis in early detection and screening, monitoring and follow-up after therapies, and personalization of therapeutical strategies in various types of human malignancies. In this review, we aim to discuss the roles, functions, and analysis approaches of liquid biopsy sources and their clinical implications in human malignancies with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
22
|
Heng C, Zheng X, Hui J, Ma X, Fan D. Neodymium and manganese ions co-doped whitlockite for temperature monitoring, photothermal therapy, and bone tissue repair in osteosarcoma. J Colloid Interface Sci 2024; 653:1488-1503. [PMID: 37804617 DOI: 10.1016/j.jcis.2023.09.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Osteosarcoma is one of the most dangerous forms of tumors, leading to death in >90% of patients. The surgical treatment of osteosarcoma results in significant bone defects and risks of tumor recurrence. Using neodymium (Nd) and manganese (Mn) ions co-doped with whitlockite nanoparticle (Nd10%Mn10%WH NPs) and sodium alginate (SA), we designed and synthesized an organic-inorganic composite hydrogel (Nd10%Mn10%WH-SA) that displayed the excellent fluorescence and photothermal properties. Furthermore, the maximum fluorescence emission intensity of Nd10%Mn10%WH-SA at 1062 nm was linear with temperature. The optimal temperature for the treatment of tumors was determined by considering the changes in fluorescence intensity that led to a reduction in tissue damage around the tumors. Nd10%Mn10%WH NPs demonstrated a significant function in promoting human bone marrow mesenchymal stem cells (hBMSCs) proliferation. Furthermore, Nd10%Mn10%WH-SA could almost kill tumors when the photothermal temperature was raised to 50 °C, with a minimal leftover scar after photothermal therapy (PTT). Nd10%Mn10%WH-SA had a better promotion effect on the growth of the new bone. These results suggested that Nd10%Mn10%WH-SA offers a new PTT method for the "integrated treatment and repair" of osteosarcoma.
Collapse
Affiliation(s)
- Chunning Heng
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Xiaoyan Zheng
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
| | - Junfeng Hui
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
23
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
24
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
25
|
Aragón-Serrano L, Carrillo-Serradell L, Planells-Romeo V, Isamat M, Velasco-de Andrés M, Lozano F. CD6 and Its Interacting Partners: Newcomers to the Block of Cancer Immunotherapies. Int J Mol Sci 2023; 24:17510. [PMID: 38139340 PMCID: PMC10743954 DOI: 10.3390/ijms242417510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer management still requires more potent and safer treatments, of which immunomodulatory receptors on the lymphocyte surface have started to show promise in new cancer immunotherapies (e.g., CTLA-4 and PD-1). CD6 is a signal-transducing transmembrane receptor, mainly expressed by all T cells and some B and NK cell subsets, whose endogenous ligands (CD166/ALCAM, CD318/CDCP-1, Galectins 1 and 3) are overexpressed by malignant cells of different lineages. This places CD6 as a potential target for novel therapies against haematological and non-haematological malignancies. Recent experimental evidence for the role of CD6 in cancer immunotherapies is summarised in this review, dealing with diverse and innovative strategies from the classical use of monoclonal antibodies to soluble recombinant decoys or the adoptive transfer of immune cells engineered with chimeric antigen receptors.
Collapse
Affiliation(s)
- Lucía Aragón-Serrano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Laura Carrillo-Serradell
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Violeta Planells-Romeo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Marcos Isamat
- Sepsia Therapeutics S.L., 08908 L’Hospitalet de Llobregat, Spain;
| | - María Velasco-de Andrés
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Francisco Lozano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
26
|
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110:1288-1300. [PMID: 37813754 DOI: 10.1016/j.bulcan.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors. Remarkably abundant on both the vasculature and tumor cell surfaces, these peptides show promising potential for improving tumor treatment outcomes. As a result, iRGD penetrated deep into the tumor tissues with biological products, contrast agents (imaging agents), antitumor drugs, and immune modulators after co-injecting them with peptides or chemically linked to peptides. The synthesis of iRGD peptides is a relatively straightforward process compared to the synthesis of other traditional peptides, and they significantly improved tumor tissue penetration inhibiting tumor metastasis effectively. Recent studies demonstrate the effectiveness of iRGD-driven dual-targeting chemotherapeutics on cancer cells, and the nanocarriers were modified with iRGD, serving as a favorable delivery strategy of payloads for deeper tumor regions. This review aims to provide an overview to emphasize the recent advancements and advantages of iRGD in treating and imaging various cancers.
Collapse
Affiliation(s)
- Anbazhagan Thirumalai
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pragya Pallavi
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Karthick Harini
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pemula Gowtham
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India.
| |
Collapse
|
27
|
Saadh MJ, Almoyad MAA, Arellano MTC, Maaliw RR, Castillo-Acobo RY, Jalal SS, Gandla K, Obaid M, Abdulwahed AJ, Ibrahem AA, Sârbu I, Juyal A, Lakshmaiya N, Akhavan-Sigari R. Long non-coding RNAs: controversial roles in drug resistance of solid tumors mediated by autophagy. Cancer Chemother Pharmacol 2023; 92:439-453. [PMID: 37768333 DOI: 10.1007/s00280-023-04582-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023]
Abstract
Current genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents. Autophagy can be a double-edged sword and play either a protective or a damaging role in cells depending on its activation status and other cellular situations, and its dysregulation is related to tumorigenesis in various solid tumors. Autophagy induced by various therapies has been shown as a unique mechanism of resistance to anti-cancer drugs. Growing evidence is showing the important role of lncRNAs in modulating drug resistance via the regulation of autophagy in a variety of cancers. The role of lncRNAs in drug resistance of cancers is controversial; they may promote or suppress drug resistance via either activation or inhibition of autophagy. Mechanisms by which lncRNAs regulate autophagy to affect drug resistance are different, mainly mediated by the negative regulation of micro RNAs. In this review, we summarize recent studies that investigated the role of lncRNAs/autophagy axis in drug resistance of different types of solid tumors.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11831, Jordan
| | | | | | - Renato R Maaliw
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines
| | | | - Sarah Salah Jalal
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, University of Chaitanya, Hanamkonda, India
| | | | | | - Azher A Ibrahem
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115, Iași, Romania.
| | - Ashima Juyal
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Ebadi Sharafabad B, Abdoli A, Panahi M, Abdolmohammadi Khiav L, Jamur P, Abedi Jafari F, Dilmaghani A. Anti-tumor Effects of Cisplatin Synergist in Combined Treatment with Clostridium novyi-NT Spores Against Hypoxic Microenvironments in a Mouse Model of Cervical Cancer Caused by TC-1 Cell Line. Adv Pharm Bull 2023; 13:817-826. [PMID: 38022809 PMCID: PMC10676560 DOI: 10.34172/apb.2023.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Despite the development of anti-human papillomavirus (HPV) vaccines, cervical cancer is still a common disease in women, especially in developing countries. The presence of a hypoxic microenvironment causes traditional treatments to fail. In this study, we presented a combined treatment method based on the chemotherapeutic agent cisplatin and Clostridium novyi-NT spores to treat normoxic and hypoxic areas of the tumor. Methods TC-1 Cell line capable of expressing HPV-16 E6/7 oncoproteins was subcutaneously transplanted into female 6-8 week old C57/BL6 mice. The tumor-bearing mice were randomly divided into four groups and treated with different methods after selecting a control group. Group 1: Control without treatment (0.1 mL sterile PBS intratumorally), Group: C. novyi-NT (107 C. novyi-NT). Group 3: Receives cisplatin intraperitoneally (10 mg/kg). Fourth group: Intratumoral administration of C. novyi-NT spores + intraperitoneal cisplatin. Western blot analysis was used to examine the effects of anti-hypoxia treatment and expression of hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins. Results The results clearly showed that combined treatment based on C. novyi-NT and cisplatin significantly reduced the expression of HIF-1 alpha and VEGF proteins compared to cisplatin alone. At the same time, the amount of necrosis of tumor cells in the combined treatment increased significantly compared to the single treatment and the control. At the same time, the mitotic count decreased significantly. Conclusion Our research showed that developing a combined treatment method based on C. novyi-NT and cisplatin against HPV-positive cervical cancer could overcome the treatment limitations caused by the existence of hypoxic areas of the tumor.
Collapse
Affiliation(s)
- Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Mohammad Panahi
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Lida Abdolmohammadi Khiav
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Jamur
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Fatemeh Abedi Jafari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Azita Dilmaghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Chen L, Rangel JDG, Cil T, Li X, Cicin I, Shen Y, Liu Z, Ozyilkan O, Igor B, Chen J, Oleksandr K, Chen Z, Zhang H, Fu Z, Dong Q, Song S, Yu J, Zhang L. Efficacy and safety of the proposed bevacizumab biosimilar BAT1706 compared with reference bevacizumab in patients with advanced nonsquamous non-small cell lung cancer: A randomized, double-blind, phase III study. Cancer Med 2023; 12:20847-20863. [PMID: 37935428 PMCID: PMC10709732 DOI: 10.1002/cam4.6664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND BAT1706 is a proposed biosimilar of bevacizumab (Avastin®). We aimed to compare the efficacy and safety of BAT1706 with that of EU-sourced reference bevacizumab (EU-bevacizumab) in patients with advanced nonsquamous non-small cell lung cancer (NSCLC). METHODS Patients were randomized 1:1 to BAT1706 plus paclitaxel and carboplatin (BAT1706 arm) or EU-bevacizumab plus paclitaxel and carboplatin (EU-bevacizumab arm) given every 3 weeks for six cycles, followed by maintenance therapy with BAT1706 or EU-bevacizumab. The primary endpoint was overall response rate at week 18 (ORR18 ). Clinical equivalence was demonstrated if the 90% confidence interval (CI) of the BAT1706:EU-bevacizumab ORR18 risk ratio was contained within the predefined equivalence margins of 0.75-1.33 (China National Medical Products Administration requirements), or 0.73-1.36 (US Food and Drug Administration), or if the 95% CI of the ORR18 risk difference between treatments was contained within the predefined equivalence margin of -0.12 to 0.15 (EMA requirements). RESULTS In total, 649 randomized patients (BAT1706, n = 325; EU-bevacizumab, n = 324) received at least one cycle of combination treatment. The ORR18 was comparable between the BAT1706 and EU-bevacizumab arms (48.0% and 44.5%, respectively). The ORR18 risk ratio of 1.08 (90% CI: 0.94-1.24) and the ORR18 risk difference of 0.03 (95% CI: -0.04 to 0.11) were within the predefined equivalence margins, demonstrating the biosimilarity of BAT1706 and EU-bevacizumab. The safety profile of BAT1706 was consistent with that of EU-bevacizumab and no new safety signals were observed. CONCLUSION In patients with advanced nonsquamous NSCLC, BAT1706 demonstrated clinical equivalence to EU-bevacizumab in terms of efficacy, safety, pharmacokinetics, and immunogenicity.
Collapse
Affiliation(s)
- Likun Chen
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangdongGuangzhouChina
| | | | - Timucin Cil
- Health and Science University, Adana City Education and Research HospitalAdanaTurkey
| | - Xingya Li
- The First Affiliated Hospital of Zhengzhou UniversityHenanZhengzhouChina
| | - Irfan Cicin
- Trakya University Medical FacultyEdirneTurkey
| | - Yihong Shen
- The First Affiliated Hospital of Zhejiang University School of MedicineZhejiangHangzhouChina
| | - Zhihua Liu
- Jiangxi Cancer HospitalJiangxiNanchangChina
| | - Ozgur Ozyilkan
- Baskent University Adana Application and Research CenterAdanaTurkey
| | | | - Jun Chen
- Tianjin Medical University General HospitalTianjinChina
| | | | - Zhendong Chen
- The Second Hospital of Anhui Medical UniversityAnhuiHefeiChina
| | - Helong Zhang
- Tangdu Hospital, Fourth Military Medical UniversityShanxiXi'anChina
| | - Ziyi Fu
- Bio‐Thera Solutions, Ltd.GuangdongGuangzhouChina
| | | | | | - Jin‐Chen Yu
- Bio‐Thera Solutions, Ltd.GuangdongGuangzhouChina
| | - Li Zhang
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangdongGuangzhouChina
| |
Collapse
|
30
|
Das A, Sarangi M, Jangid K, Kumar V, Kumar A, Singh PP, Kaur K, Kumar V, Chakraborty S, Jaitak V. Identification of 1,3,4-oxadiazoles as tubulin-targeted anticancer agents: a combined field-based 3D-QSAR, pharmacophore model-based virtual screening, molecular docking, molecular dynamics simulation, and density functional theory calculation approach. J Biomol Struct Dyn 2023; 42:10323-10341. [PMID: 37695635 DOI: 10.1080/07391102.2023.2256876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Cancer is one of the most prominent causes of death worldwide and tubulin is a crucial protein of cytoskeleton that maintains essential cellular functions including cell division as well as cell signalling, that makes an attractive drug target for cancer drug development. 1,3,4-oxadiazoles disrupt microtubule causing G2-M phase cell cycle arrest and provide anti-proliferative effect. In this study, field-based 3D-QSAR models were developed using 62 bioactive anti-tubulin 1,3,4-oxadiazoles. The best model characterized by PLS factor 7 was rigorously validated using various statistical parameters. Generated 3D-QSAR model having high degree of confidence showed favourable and unfavourable contours around 1,3,4-oxadiazole core that assisted in defining proper spatial positioning of desired functional groups for better bioactivity. A five featured pharmacophore model (AAHHR_1) was developed using same ligand library and validated through enrichment analysis (BEDROC160.9 value = 0.59, Average EF 1% = 27.05, and AUC = 0.74). Total 30,212 derivatives of 1,3,4-oxadiazole obtained from PubChem database was prefiltered through validated pharmacophore model and docked in XP mode on binding cavity of tubulin protein (PDB code: 1SA0) which led into the identification of 11 HITs having docking scores between -7.530 and -9.719 kcal/mol while the reference compound Colchicine exerted docking score of -7.046 kcal/mol. Following the analysis of MM-GBSA and ADME studies, HIT1 and HIT4 emerged as the two promising hits. To verify their thermodynamic stability at the target site, molecular dynamic simulations were carried out. Both HITs were further subjected to DFT analysis to determine their HOMO-LUMO energy gap for ensuring their biological feasibility. Finally, molecular docking based structural exploration for 1,3,4-oxadiazoles to set up a lead of Formula I for further advancements of tubulin polymerization inhibitors as anti-cancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Agnidipta Das
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Manaswini Sarangi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Vijay Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Praval Pratap Singh
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
31
|
Karami Z, Mortezaee K, Majidpoor J. Dual anti-PD-(L)1/TGF-β inhibitors in cancer immunotherapy - Updated. Int Immunopharmacol 2023; 122:110648. [PMID: 37459782 DOI: 10.1016/j.intimp.2023.110648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy suffers from tumor resistance and relapse in majority of patients due to the suppressive tumor immune microenvironment (TIME). Advances in the field have brought about development of fusion proteins able to target two signaling simultaneously and to exert maximal anti-cancer immunity. Bispecific inhibitors of transforming growth factor (TGF)-β signaling and programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1) are developed to reduce the rate of relapse and to achieve durable anti-cancer therapy. TGF-β is well-known for its immunosuppressive activity, and it takes critical roles in promotion of all tumor hallmarks. Bispecific anti-PD-(L)1/TGF-β inhibitors reinvigorate effector activity of CD8+ T and natural killer (NK) cells, hamper regulatory T cell (Treg) expansion, and increase the density of anti-tumor type 1 macrophages (M1). Responses to the bispecific approach are higher compared with solo anti-PD-(L)1 or TGF-β targeted therapy, and are seemingly more pronounced in human papillomavirus (HPV)+ patients. High expression of PD-L1 or immune-excluded phenotype in a tumor can also be markers of better response to the bispecific strategy. Besides, anti-PD-(L)1/TGF-β inhibitor therapy can be used safely with other therapeutic modalities including vaccination, radiation and chemotherapy.
Collapse
Affiliation(s)
- Zana Karami
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
32
|
Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed Pharmacother 2023; 164:114954. [PMID: 37257227 DOI: 10.1016/j.biopha.2023.114954] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
Traditionally, vaccines have helped eradication of several infectious diseases and also saved millions of lives in the human history. Those prophylactic vaccines have acted through inducing immune responses against a live attenuated, killed organism or antigenic subunits to protect the recipient against a real infection caused by the pathogenic microorganism. Nevertheless, development of anticancer vaccines as valuable targets in human health has faced challenges and requires further optimizations. Dendritic cells (DCs) are the most potent antigen presenting cells (APCs) that play essential roles in tumor immunotherapies through induction of CD8+ T cell immunity. Accordingly, various strategies have been tested to employ DCs as therapeutic vaccines for exploiting their activity against tumor cells. Application of whole tumor cells or purified/recombinant antigen peptides are the most common approaches for pulsing DCs, which then are injected back into the patients. Although some hopeful results are reported for a number of DC vaccines tested in animal and clinical trials of cancer patients, such approaches are still inefficient and require optimization. Failure of DC vaccination is postulated due to immunosuppressive tumor microenvironment (TME), overexpression of checkpoint proteins, suboptimal avidity of tumor-associated antigen (TAA)-specific T lymphocytes, and lack of appropriate adjuvants. In this review, we have an overview of the current experiments and trials evaluated the anticancer efficacy of DC vaccination as well as focusing on strategies to improve their potential including combination therapy with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
33
|
Chaurasia M, Singh R, Sur S, Flora SJS. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol 2023; 14:1184472. [PMID: 37576816 PMCID: PMC10416257 DOI: 10.3389/fphar.2023.1184472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed solid cancers globally. Extensive research has been going on for decades to meet the challenges of treating solid tumors with selective compounds. This article aims to summarize the therapeutic agents which are either being used or are currently under approval for use in the treatment or mitigation of breast cancer by the US FDA, to date. A structured search of bibliographic databases for previously published peer-reviewed research papers on registered molecules was explored and data was sorted in terms of various categories of drugs used in first line/adjuvant therapy for different stages of breast cancer. We included more than 300 peer-reviewed papers, including both research and reviews articles, in order to provide readers an useful comprehensive information. A list of 39 drugs are discussed along with their current status, dose protocols, mechanism of action, pharmacokinetics, possible side effects, and marketed formulations. Another interesting aspect of the article included focusing on novel formulations of these drugs which are currently in clinical trials or in the process of approval. This exhaustive review thus shall be a one-stop solution for researchers who are working in the areas of formulation development for these drugs.
Collapse
Affiliation(s)
| | | | | | - S. J. S. Flora
- Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
34
|
Mortezaee K, Majidpoor J, Kharazinejad E. The impact of hypoxia on tumor-mediated bypassing anti-PD-(L)1 therapy. Biomed Pharmacother 2023; 162:114646. [PMID: 37011483 DOI: 10.1016/j.biopha.2023.114646] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Extending the durability of response is the current focus in cancer immunotherapy with immune checkpoint inhibitors (ICIs). However, factors like non-immunogenic tumor microenvironment (TME) along with aberrant angiogenesis and dysregulated metabolic systems are negative contributors. Hypoxia is a key TME condition and a critical promoter of tumor hallmarks. It acts on immune and non-immune cells within TME in order for promoting immune evasion and therapy resistance. Extreme hypoxia is a major promoter of resistance to the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor therapy. Hypoxia inducible factor-1 (HIF-1) acts as a key mediator of hypoxia and a critical promoter of resistance to the anti-PD-(L)1. Targeting hypoxia or HIF-1 can thus be an effective strategy for reinvigoration of cellular immunity against cancer. Among various strategies presented so far, the key focus is over vascular normalization, which is an approach highly effective for reducing the rate of hypoxia, increasing drug delivery into the tumor area, and boosting the efficacy of anti-PD-(L)1.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Islamic Republic of Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Islamic Republic of Iran
| | - Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Islamic Republic of Iran.
| |
Collapse
|
35
|
Mortezaee K. B7-H3 immunoregulatory roles in cancer. Biomed Pharmacother 2023; 163:114890. [PMID: 37196544 DOI: 10.1016/j.biopha.2023.114890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
B7 homolog 3 (B7-H3, also called CD276) is a checkpoint of B7 family that is aberrantly and consistently expressed in several human cancers, and its overexpression correlates with weak prognosis. B7-H3 is expressed on a number of cells, and it acts as a driver of immune evasion. This is mediated through hampering T cell infiltration and promoting exhaustion of CD8+ T cells. Increased B7-H3 activity also promotes macrophage polarity toward pro-tumor type 2 (M2) phenotype. In addition, high B7-H3 activity induces aberrant angiogenesis to promote hypoxia, a result of which is resistance to common immune checkpoint inhibitor (ICI) therapy. This is mediated through the impact of hypoxia on dampening CD8+ T cell recruitment into tumor area. The immunosuppressive property of B7-H3 offers insights into targeting this checkpoint as a desired approach in cancer immunotherapy. B7-H3 can be a target in blocking monoclonal antibodies (mAbs), combination therapies, chimeric antigen receptor-modified T (CAR-T) cells and bispecific antibodies.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
36
|
Lee W, Lee CE, Kim HJ, Kim K. Current Progress in Gallium-based Liquid Metals for Combinatory Phototherapeutic Anticancer Applications. Colloids Surf B Biointerfaces 2023; 226:113294. [PMID: 37043951 DOI: 10.1016/j.colsurfb.2023.113294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
A variety of therapeutic approaches using liquid metal (LM) have been intensively investigated, due to its unique physico-chemical properties that include high surface tension, fluidity, shape deformability, thermal conductivity, and electrical conductivity. Among a series of LMs, the relatively lower toxicity and minimal volatility of gallium (Ga)-based LMs (GaLMs) enables their usage in a series of potential biomedical applications, especially implantable platforms, to treat multiple diseases. In addition, the highly efficient conversion of light energy into thermal or chemical energy via GaLMs has led to recent developments in photothermal and photodynamic applications for anticancer treatments. As attractive photothermal agents or photosensitizers, a systematic interpretation of the structural characteristics and photo-responsive behaviors of GaLMs is necessary to develop effective anticancer engineering applications. Therefore, the aim of this review is to provide a comprehensive summary of currently suggested GaLM-mediated photo-therapeutic cancer treatments. In particular, the review summarizes (1) surface coating techniques to form stable and multifunctional GaLM particulates, (2) currently investigated GaLM-mediated photothermal and photodynamic anticancer therapies, (3) synergistic efficacies with the aid of additional interventions, and (4) 3D composite gels embedded with GaLMs particles, to convey the potential technological advances of LM in this field.
Collapse
|
37
|
Charehjoo A, Majidpoor J, Mortezaee K. Indoleamine 2,3-dioxygenase 1 in circumventing checkpoint inhibitor responses: Updated. Int Immunopharmacol 2023; 118:110032. [PMID: 36933494 DOI: 10.1016/j.intimp.2023.110032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
Metabolic alterations occur commonly in tumor cells as a way to adapt available energetic sources for their proliferation, survival and resistance. Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular enzyme catalyzing tryptophan degradation into kynurenine. IDO1 expression shows a rise in the stroma of many types of human cancers, and it provides a negative feedback mechanism for cancer evasion from immunosurveillance. Upregulation of IDO1 correlates with cancer aggression, poor prognosis and shortened patient survival. The increased activity of this endogenous checkpoint impairs effector T cell function, increases regulatory T cell (Treg) population and induces immune tolerance, so its inhibition potentiates anti-tumor immune responses and reshapes immunogenic state of tumor microenvironment (TME) presumably through normalizing effector T cell activity. A point is that the expression of this immunoregulatory marker is upregulated after immune checkpoint inhibitor (ICI) therapy, and that it has inducible effect on expression of other checkpoints. These are indicative of the importance of IDO1 as an attractive immunotherapeutic target and rationalizing combination of IDO1 inhibitors with ICI drugs in patients with advanced solid cancers. In this review, we aimed to discuss about the impact of IDO1 on tumor immune ecosystem, and the IDO1-mediated bypass of ICI therapy. The efficacy of IDO1 inhibitor therapy in combination with ICIs in advanced/metastatic solid tumors is also a focus of this paper.
Collapse
Affiliation(s)
- Arian Charehjoo
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
38
|
Bhatia A, Upadhyay AK, Sharma S. miRNAs are now starring in "No Time to Die: Overcoming the chemoresistance in cancer". IUBMB Life 2023; 75:238-256. [PMID: 35678612 DOI: 10.1002/iub.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of death globally, with about 19.3 million new cases reported each year. Current therapies for cancer management include-chemotherapy, radiotherapy, and surgery. However, they are loaded with side effects and tend to cause toxicity in the patient's body posttreatment, ultimately hindering the response towards the treatment building up resistance. This is where noncoding RNAs such as miRNAs help provide us with a helping hand for taming the chemoresistance and providing potential holistic cancer management. MicroRNAs are promising targets for anticancer therapy as they perform critical regulatory roles in various signaling cascades related to cell proliferation, apoptosis, migration, and invasion. Combining miRNAs and anticancer drugs and devising a combination therapy has managed cancer well in various independent studies. This review aims to provide insights into how miRNAs play a mechanistic role in cancer development and progression and regulate drug resistance in various types of cancers. Furthermore, next-generation novel therapies using miRNAs in combination with anticancer treatments in multiple cancers have been put forth and how they improve the efficacy of the treatments. Exemplary studies currently in the preclinical and clinical models have been summarized. Ultimately, we briefly talk through the challenges that come forward with it and minimize them.
Collapse
Affiliation(s)
- Anmol Bhatia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
39
|
Wang X, Fang A, Peng Y, Yu J, Yu C, Xie J, Zheng Y, Song L, Li P, Li J, Kang X, Lin Y, Li W. PHF6 promotes the progression of endometrial carcinoma by increasing cancer cells growth and decreasing T-cell infiltration. J Cell Mol Med 2023; 27:609-621. [PMID: 36756714 PMCID: PMC9983320 DOI: 10.1111/jcmm.17638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is the most common cancer of the female reproductive tract. The overall survival of advanced and recurrent UCEC patients is still unfavourable nowadays. It is urgent to find a predictive biomarker and block tumorgenesis at an early stage. Plant homeodomain finger protein 6 (PHF6) is a key player in epigenetic regulation, and its alterations lead to various diseases, including tumours. Here, we found that PHF6 expression was upregulated in UCEC tissues compared with normal tissues. The UCEC patients with high PHF6 expression had poor survival than UCEC patients with low PHF6 expression. PHF6 mutation occurred in 12% of UCEC patients, and PHF6 mutation predicted favourable clinical outcome in UCEC patients. Depletion of PHF6 effectively inhibited HEC-1-A and KLE cell proliferation in vitro and decreased HEC-1-A cell growth in vivo. Furthermore, high PHF6 level indicated a subtype of UCECs characterized by low immune infiltration, such as CD3+ T-cell infiltration. While knockdown of PHF6 in endometrial carcinoma cells increased T-cell migration by promoting IL32 production and secretion. Taken together, our findings suggested that PHF6 might play an oncogenic role in UCEC patients. Thus, PHF6 could be a potential biomarker in predicting the prognosis of UCEC patients. Depletion of PHF6 may be a novel therapeutic strategy for UCEC patients.
Collapse
Affiliation(s)
- Xiaomin Wang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Aizhong Fang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department of Epidemiology and Health Statistics, School of Public HealthCapital Medical UniversityBeijingChina
| | - Yichen Peng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianyu Yu
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chunna Yu
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jinxuan Xie
- Department of Epidemiology and Health Statistics, School of Public HealthCapital Medical UniversityBeijingChina
| | - Yi Zheng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lairong Song
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Parker Li
- Clinical MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jia Li
- Department of Pathology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xun Kang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yi Lin
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
40
|
Mortezaee K, Majidpoor J, Najafi S, Tasa D. Bypassing anti-PD-(L)1 therapy: Mechanisms and management strategies. Biomed Pharmacother 2023; 158:114150. [PMID: 36577330 DOI: 10.1016/j.biopha.2022.114150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Resistance to immune checkpoint inhibitors (ICIs) is a major issue of the current era in cancer immunotherapy. Immune evasion is a multi-factorial event, which occurs generally at a base of cold immunity. Despite advances in the field, there are still unsolved challenges about how to combat checkpoint hijacked by tumor cells and what are complementary treatment strategies to render durable anti-tumor outcomes. A point is that anti-programed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) is not the solo path of immune escape, and responses in many types of solid tumors to the PD-1/PD-L1 inhibitors are not satisfactory. Thus, seeking mechanisms inter-connecting tumor with its immune ecosystem nearby unravel more about resistance mechanisms so as to develop methods for sustained reinvigoration of immune activity against cancer. In this review, we aimed to discuss about common and specific paths taken by tumor cells to evade immune surveillance, describing novel detection strategies, as well as suggesting some approaches to recover tumor sensitivity to the anti-PD-(L)1 therapy based on the current knowledge.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Tasa
- Hepatopancreatobiliary Surgery Fellowship, Organ Transplantation Group, Massih Daneshvari Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Surgery, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
41
|
Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, Borji H. Antitumor Mechanisms of Molecules Secreted by Trypanosoma cruzi in Colon and Breast Cancer: A Review. Anticancer Agents Med Chem 2023; 23:1710-1721. [PMID: 37254546 DOI: 10.2174/1871520623666230529141544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Molecules secreted by Trypanosoma cruzi (T. cruzi) have beneficial effects on the immune system and can fight against cancer by inhibiting the growth of tumor cells, preventing angiogenesis, and promoting immune activation. OBJECTIVE This study aimed to investigate the effects of molecules secreted by Trypanosoma cruzi on the growth of colon and breast cancer cells, to understand the underlying mechanisms of action. RESULTS Calreticulin from T. cruzi, a 45 kDa protein, participates in essential changes in the tumor microenvironment by triggering an adaptive immune response, exerting an antiangiogenic effect, and inhibiting cell growth. On the other hand, a 21 kDa protein (P21) secreted at all stages of the parasite's life cycle can inhibit cell invasion and migration. Mucins, such as Tn, sialyl-Tn, and TF, are present both in tumor cells and on the surface of T. cruzi and are characterized as common antigenic determinants, inducing a cross-immune response. In addition, molecules secreted by the parasite are used recombinantly in immunotherapy against cancer for their ability to generate a reliable and long-lasting immune response. CONCLUSION By elucidating the antitumor mechanisms of the molecules secreted by T. cruzi, this study provides valuable insights for developing novel therapeutic strategies to combat colon and breast cancer.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shakila Ghiassi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Narges Lotfalizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pouria Ahmadi Simab
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
42
|
Bhatiya M, Pathak S, Jothimani G, Duttaroy AK, Banerjee A. A Comprehensive Study on the Anti-cancer Effects of Quercetin and Its Epigenetic Modifications in Arresting Progression of Colon Cancer Cell Proliferation. Arch Immunol Ther Exp (Warsz) 2023; 71:6. [PMID: 36807774 PMCID: PMC9941246 DOI: 10.1007/s00005-023-00669-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/02/2022] [Indexed: 02/23/2023]
Abstract
Colon cancer etiology involves a wide spectrum of genetic and epigenetic alterations, finding it challenging to find effective therapeutic strategies. Quercetin exhibits potent anti-proliferative/apoptotic properties. In the present study, we aimed to elucidate the anti-cancer and anti-aging effect of quercetin in colon cancer cell lines. The anti-proliferative effect of quercetin was assessed in vitro by CCK-8 in normal and colon cancer cell lines. To check the anti-aging potential of quercetin, collagenase, elastase, and hyaluronidase inhibitory activity assays were performed. The epigenetic and DNA damage assays were performed using the human NAD-dependent deacetylase Sirtuin-6, proteasome 20S, Klotho, Cytochrome-C, and telomerase ELISA kits. Furthermore, the aging-associated miRNA expression profiling was performed on colon cancer cells. The treatment with quercetin inhibited cell proliferation of colon cancer cells in a dose-dependent manner. Quercetin arrested colon cancer cell growth by modulating expression of aging proteins including Sirtuin-6 and Klotho and also by inhibiting telomerase activity to restrict the telomere length which is evident from qPCR analysis. Quercetin also exhibited DNA damage protection by reducing proteasome 20S levels. The miRNA expression profiling results displayed differential expression of miRNA in colon cancer cell, and in addition, the highly upregulated miRNA was involved in the regulation of cell cycle, proliferation, and transcription. Our data suggest that quercetin treatment inhibited cell proliferation in colon cancer cells through regulating the anti-aging protein expression and provides better understanding for quercetin's potential use in colon cancer treatment.
Collapse
Affiliation(s)
- Meenu Bhatiya
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603 103 India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603 103 India
| | - Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603 103 India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu, 603 103, India.
| |
Collapse
|
43
|
Liu C, Zhang W, Zhou X, Liu L. IMPDH1, a prognostic biomarker and immunotherapy target that correlates with tumor immune microenvironment in pan-cancer and hepatocellular carcinoma. Front Immunol 2022; 13:983490. [PMID: 36618420 PMCID: PMC9813230 DOI: 10.3389/fimmu.2022.983490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Backgrounds IMPDH1, a rate-limiting enzyme in de novos synthesis of guanine nucleotides, plays an essential role in the growth and progression of certain tumors. However, there is still a lack of study on IMPDH1 evaluating its role in the tumor immune microenvironment, the potential mechanisms, and its potential as a promising tumor therapeutic target. Methods The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), TIMER2.0, KM-Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, The Human Protein Atlas (HPA), and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were used to perform the systematic analysis of IMPDH1, including mRNA expression, protein expression, prognostic value, Enrichment analysis, DNA methylation, immune cell infiltration in pan-cancer, Then, we conducted qRT-PCR and immunohistochemistry to analyze the expression level of IMPDH1 in cancer tissues and non-cancer tissues of patients with primary hepatocellular carcinoma (HCC), and performed the same verification at cellular level. Results We discovered that IMPDH1 was highly expressed in a variety of tumors and was associated with poor prognosis. IMPDH1 not only had the potential as a tumor prognostic marker and therapeutic target, but also was closely related to immune cells, immune checkpoints and immune-related genes and pathways in the tumor immune microenvironment (TIME). Meanwhile, IMPDH1 expression influenced the efficacy and prognosis of tumor patients treated with immune checkpoint inhibitors. Conclusions IMPDH1 may be as a potential combined target of immunotherapy.
Collapse
Affiliation(s)
- Chengdong Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanli Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China,*Correspondence: Li Liu,
| |
Collapse
|
44
|
Fang T, Wang D, Li R, Yu W, Tian H. Pan-cancer analysis reveals NAA50 as a cancer prognosis and immune infiltration-related biomarker. Front Genet 2022; 13:1035337. [PMID: 36568377 PMCID: PMC9782403 DOI: 10.3389/fgene.2022.1035337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background: N-Alpha-Acetyltransferase 50 (NAA50) has acetyltransferase activity and is important for chromosome segregation. However, the function and mechanism of NAA50 expression in cancer development was still unclear. Here, we systematically researched the function and mechanism of NAA50 in pan-cancer, and further verified the results of NAA50 in lung adenocarcinoma (LUAD). Methods: In this study, using the online databases TIMER2.0, SangerBox3.0, HPA, UCSC, GEPIA, cBioPortal, UALCAN, TISIDB, CancerSEA and LinkedOmics, we focused on the relevance between NAA50 and oncogenesis, progression, methylation, immune infiltration, function and prognosis. In addition, the proliferation of cells was detected by CCK-8 and Edu assay. Finally, we analyzed the relationship between the expression of NAA50 and cell cycle related proteins. Results: Pan-cancer analysis indicated that NAA50 was overexpressed in most cancers. And there was a significant correlation between NAA50 expression and the prognosis of cancer patients. In the meantime, NAA50 gene changes occur in a variety of tumors. Compared with normal tissues, the methylation level of NAA50 promoter increased in most cancer tissues. In addition, the results exhibited that in most cancers, NAA50 was significantly positively correlated with bone myeloid-derived suppressor cell (MDSC) infiltration and negatively correlated with T cell NK infiltration. Moreover, functional enrichment indicated that NAA50 regulates cell cycle and proliferation in LUAD. In vitro experiments testified that knockout of NAA50 could significantly inhibit the proliferation of LUAD. Conclusion: NAA50 may be a potential biomarker and oncogene of pan-cancer, especially LUAD, which may promote the occurrence and development of tumors through different mechanisms. Furthermore, NAA50 was bound up with to immune cell infiltration in pan-cancer, meaning NAA50 may be an important therapeutic target for human cancers.
Collapse
Affiliation(s)
| | | | | | | | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
45
|
He R, Yuan X, Chen Z, Zheng Y. Combined immunotherapy for metastatic triple-negative breast cancer based on PD-1/PD-L1 immune checkpoint blocking. Int Immunopharmacol 2022; 113:109444. [DOI: 10.1016/j.intimp.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
46
|
|
47
|
Rouzbahani E, Majidpoor J, Najafi S, Mortezaee K. Cancer stem cells in immunoregulation and bypassing anti-checkpoint therapy. Biomed Pharmacother 2022; 156:113906. [DOI: 10.1016/j.biopha.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022] Open
|
48
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
49
|
Yu H, Wu M, Chen S, Song M, Yue Y. Biomimetic nanoparticles for tumor immunotherapy. Front Bioeng Biotechnol 2022; 10:989881. [PMID: 36440446 PMCID: PMC9682960 DOI: 10.3389/fbioe.2022.989881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2023] Open
Abstract
Currently, tumor treatment research still focuses on the cancer cells themselves, but the fact that the immune system plays an important role in inhibiting tumor development cannot be ignored. The activation of the immune system depends on the difference between self and non-self. Unfortunately, cancer is characterized by genetic changes in the host cells that lead to uncontrolled cell proliferation and evade immune surveillance. Cancer immunotherapy aims to coordinate a patient's immune system to target, fight, and destroy cancer cells without destroying the normal cells. Nevertheless, antitumor immunity driven by the autoimmune system alone may be inadequate for treatment. The development of drug delivery systems (DDS) based on nanoparticles can not only promote immunotherapy but also improve the immunosuppressive tumor microenvironment (ITM), which provides promising strategies for cancer treatment. However, conventional nano drug delivery systems (NDDS) are subject to several limitations in clinical transformation, such as immunogenicity and the potential toxicity risks of the carrier materials, premature drug leakage at off-target sites during circulation and drug load content. In order to address these limitations, this paper reviews the trends and progress of biomimetic NDDS and discusses the applications of each biomimetic system in tumor immunotherapy. Furthermore, we review the various combination immunotherapies based on biomimetic NDDS and key considerations for clinical transformation.
Collapse
Affiliation(s)
- Hanqing Yu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Strategies to improve drug penetration into tumor microenvironment by nanoparticles: focus on nanozymes. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|