1
|
Thatikonda S, Rasoju SP, Pooladanda V, Chilvery S, Khemchandani R, Samanthula G, Godugu C. Niosomal gel improves dermal delivery of nimbolide: a promising approach for treatment of psoriasis. Nanomedicine (Lond) 2024; 19:2521-2536. [PMID: 39530550 DOI: 10.1080/17435889.2024.2405455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Psoriasis is a chronic inflammatory skin disorder characterized by the excessive proliferation of keratinocytes, forming thickened skin plaques due to immune-mediated cytokine responses. Delivering drugs through this barrier to target inflamed tissues remains challenging. Nimbolide (NIM), known for its anti-inflammatory and anticancer properties, shows promise in managing psoriasis. However, its efficacy is limited by its inability to penetrate the thickened horny layer of the skin. To overcome this obstacle, we have developed Nim-loaded niosomal (Nio) formulations (NIM Nio) aimed at improving dermal delivery and achieving localized sustained release at psoriasis-affected sites.Methods: The formulation characteristics were assessed using Zeta sizer, Transmission Electron Microscopy (TEM), and High-performance liquid chromatography (HPLC). The optimized formulation was evaluated for anti-psoriatic potential compared to Nim alone by using molecular techniques such as Confocal Microscopy, Flow cytometry, enzyme-linked immunosorbent assay (ELISA), and Western blotting.Results: NIM Nio showed effective penetration into psoriatic skin, resulting in reductions in keratinocyte hyperproliferation, oxidative stress, splenomegaly, inflammatory cytokines, Psoriasis Area and Severity Index (PASI), and rete ridges compared to NIM alone.Conclusion: Our findings underscore the significant anti-proliferative, antioxidant, and anti-inflammatory properties of NIM Nio in psoriasis, demonstrating its potential as a promising therapeutic option for this challenging condition.
Collapse
Affiliation(s)
- Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
- Department of Head & Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612,USA
| | - Sai Prabha Rasoju
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
- Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| |
Collapse
|
2
|
Zhang D, Zhou G, Thongda W, Li C, Ye Z, Zhao H, Beck BH, Mohammed H, Peatman E. Early divergent responses to virulent and attenuated vaccine isolates of Flavobacterium covae sp. nov. In channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109248. [PMID: 38030028 DOI: 10.1016/j.fsi.2023.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Columnaris disease continues to inflict substantial losses among freshwater cultured species since its first description one hundred years ago. The experimental and anecdotal evidence suggests an expanded range and rising virulence of columnaris worldwide due to the warming global climate. The channel catfish (Ictalurus punctatus) are particularly vulnerable to columnaris. A recently developed live attenuated vaccine (17-23) for Flavobacterium columnare (now Flavobacterium covae sp. nov.) demonstrated superior protection for vaccinated catfish against genetically diverse columnaris isolates. In this study, we aimed to elucidate the molecular mechanisms and patterns of immune evasion and host manipulation linked to virulence by comparing gene expression changes in the host after the challenge with a virulent (BGSF-27) or live attenuated F. covae sp. nov. vaccine (17-23). Thirty-day-old fry were accordingly challenged with either virulent or vaccine isolates. Gill tissues were collected at 0 h (control), 1 h, and 2 h post-infection, which are two critical time points in early host-pathogen interactions. Transcriptome profiling of the gill tissues revealed a larger number (518) of differentially expressed genes (DEGs) in vaccine-exposed fish than those exposed to the virulent pathogen (321). Pathway analyses suggested potent suppression of early host immune responses by the virulent isolate through a higher expression of nuclear receptor corepressors (NCoR) responsible for antagonizing macrophage and T-cell signaling. Conversely, in vaccinated fry, we observed induction of Ca2+/calmodulin-dependent protein kinase II (CAMKII), responsible for clearing NCoR, and commensurate up-regulation of transcription factor AP-1 subunits, c-Fos, and c-Jun. As in mammalian systems, AP-1 expression was connected with a broad immune activation in vaccinated fry, including induction of CC chemokines, proteinases, iNOS, and IL-12b. Relatedly, divergent expression patterns of Src tyrosine kinase Lck, CD44, and CD28 indicated a delay or suppression of T-cell adhesion and activation in fry exposed to the virulent isolate. Broader implications of these findings will be discussed. The transcriptomic differences between virulent and attenuated bacteria may offer insights into how the host responds to the vaccination or infection and provide valuable knowledge to understand the early immune mechanisms of columnaris disease in aquaculture.
Collapse
Affiliation(s)
- Dongdong Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Bilology and Fisheries, Hainan University, Haikou, 570228, PR China; School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, PR China
| | - Gengfu Zhou
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Bilology and Fisheries, Hainan University, Haikou, 570228, PR China
| | - Wilawan Thongda
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chao Li
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, 36832, USA
| | - Haitham Mohammed
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
3
|
Wrublewsky S, Wilden C, Bickelmann C, Menger MD, Laschke MW, Ampofo E. Absent in Melanoma (AIM)2 Promotes the Outcome of Islet Transplantation by Repressing Ischemia-Induced Interferon (IFN) Signaling. Cells 2023; 13:16. [PMID: 38201220 PMCID: PMC10778091 DOI: 10.3390/cells13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Clinical islet transplantation is limited by ischemia-induced islet cell death. Recently, it has been reported that the absent in melanoma (AIM)2 inflammasome is upregulated by ischemic cell death due to recognition of aberrant cytoplasmic self-dsDNA. However, it is unknown whether AIM2 determines the outcome of islet transplantation. To investigate this, isolated wild type (WT) and AIM2-deficient (AIM2-/-) islets were exposed to oxygen-glucose deprivation to mimic ischemia, and their viability, endocrine function, and interferon (IFN) signaling were assessed. Moreover, the revascularization and endocrine function of grafted WT and AIM2-/- islets were analyzed in the mouse dorsal skinfold chamber model and the diabetic kidney capsule model. Ischemic WT and AIM2-/- islets did not differ in their viability. However, AIM2-/- islets exhibited a higher protein level of p202, a transcriptional regulator of IFN-β and IFN-γ gene expression. Accordingly, these cytokines were upregulated in AIM2-/- islets, resulting in a suppressed gene expression and secretion of insulin. Moreover, the revascularization of AIM2-/- islet grafts was deteriorated when compared to WT controls. Furthermore, transplantation of AIM2-/- islets in diabetic mice failed to restore physiological blood glucose levels. These findings indicate that AIM2 crucially determines the engraftment and endocrine function of transplanted islets by repressing IFN signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (S.W.)
| |
Collapse
|
4
|
Qu HQ, Kao C, Garifallou J, Wang F, Snyder J, Slater DJ, Hou C, March M, Connolly JJ, Glessner JT, Hakonarson H. Single Cell Transcriptome Analysis of Peripheral Blood Mononuclear Cells in Freshly Isolated versus Stored Blood Samples. Genes (Basel) 2023; 14:142. [PMID: 36672883 PMCID: PMC9859202 DOI: 10.3390/genes14010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Peripheral blood mononuclear cells (PBMCs) are widely used as a model in the study of different human diseases. There is often a time delay from blood collection to PBMC isolation during the sampling process, which can result in an experimental bias, particularly when performing single cell RNA-seq (scRNAseq) studies. METHODS This study examined the impact of different time periods from blood draw to PBMC isolation on the subsequent transcriptome profiling of different cell types in PBMCs by scRNAseq using the 10X Chromium Single Cell Gene Expression assay. RESULTS Examining the five major cell types constituting the PBMC cell population, i.e., CD4+ T cells, CD8+ T cells, NK cells, monocytes, and B cells, both common changes and cell-type-specific changes were observed in the single cell transcriptome profiling over time. In particular, the upregulation of genes regulated by NF-kB in response to TNF was observed in all five cell types. Significant changes in key genes involved in AP-1 signaling were also observed. RBC contamination was a major issue in stored blood, whereas RBC adherence had no direct impact on the cell transcriptome. CONCLUSIONS Significant transcriptome changes were observed across different PBMC cell types as a factor of time from blood draw to PBMC isolation and as a consequence of blood storage. This should be kept in mind when interpreting experimental results.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Garifallou
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Fengxiang Wang
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Snyder
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diana J. Slater
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cuiping Hou
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael March
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John J. Connolly
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joseph T. Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
5
|
Glucose Homeostasis and Pancreatic Islet Size Are Regulated by the Transcription Factors Elk-1 and Egr-1 and the Protein Phosphatase Calcineurin. Int J Mol Sci 2023; 24:ijms24010815. [PMID: 36614256 PMCID: PMC9821712 DOI: 10.3390/ijms24010815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatic β-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of β-cells results in decreased biosynthesis of insulin. Increasing the number of β-cells should restore adequate insulin biosynthesis leading to adequate insulin secretion. Therefore, identifying proteins that regulate the number of β-cells is a high priority in diabetes research. In this review article, we summerize the results of three sophisticated transgenic mouse models showing that the transcription factors Elk-1 and Egr-1 and the Ca2+/calmodulin-regulated protein phosphatase calcineurin control the formation of sufficiently large pancreatic islets. Impairment of the biological activity of Egr-1 and Elk-1 in pancreatic β-cells leads to glucose intolerance and dysregulation of glucose homeostasis, the process that maintains glucose concentration in the blood within a narrow range. Transgenic mice expressing an activated calcineurin mutant also had smaller islets and showed hyperglycemia. Calcineurin induces dephosphorylation of Elk-1 which subsequently impairs Egr-1 biosynthesis and the biological functions of Elk-1 and Egr-1 to regulate islet size and glucose homeostasis.
Collapse
|
6
|
Wen T, Wang W, Chen X. Recent advances in esophageal squamous cell precancerous conditions: A review. Medicine (Baltimore) 2022; 101:e32192. [PMID: 36550838 PMCID: PMC9771210 DOI: 10.1097/md.0000000000032192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common cancer in many developing countries in Asia and Africa, with a 5-year survival rate of approximately 20%. Most cases are diagnosed at an advanced age when there is no effective treatment strategy. Esophageal precancerous conditions have a much better prognosis, with a 5-year survival rate of over 90% by endoscopic diagnosis and treatment. Nevertheless, limitations, contraindications, and lymph node metastasis incompetency of endoscopy. Thus, the diagnosis and treatment of esophageal precancerous lesions remain a significant challenge. Biomarker investigations provide opportunities for target detection and therapy. Additionally, drug development is ongoing. Changes in lifestyle habits, such as diet balance, smoking and alcohol cessation, are beneficial for the prognosis of esophageal precancerous lesions. Collectively, multiple and sequential diagnoses and treatments are essential for curing esophageal precancerous lesions and reducing the incidence and mortality of ESCC.
Collapse
Affiliation(s)
- Tianjiao Wen
- Pharmacy Department, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Wei Wang
- Department of clinical laboratory, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Xinran Chen
- Pharmacy Department, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- * Correspondence: Xinran Chen, Pharmacy Department, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China (e-mail: )
| |
Collapse
|
7
|
Wrublewsky S, Glas J, Carlein C, Nalbach L, Hoffmann MDA, Pack M, Vilas-Boas EA, Ribot N, Kappl R, Menger MD, Laschke MW, Ampofo E, Roma LP. The loss of pancreatic islet NADPH oxidase (NOX)2 improves islet transplantation. Redox Biol 2022; 55:102419. [PMID: 35933903 PMCID: PMC9357848 DOI: 10.1016/j.redox.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022] Open
Abstract
Islet transplantation is a promising treatment strategy for type 1 diabetes mellitus (T1DM) patients. However, oxidative stress-induced graft failure due to an insufficient revascularization is a major problem of this therapeutic approach. NADPH oxidase (NOX)2 is an important producer of reactive oxygen species (ROS) and several studies have already reported that this enzyme plays a crucial role in the endocrine function and viability of β-cells. Therefore, we hypothesized that targeting islet NOX2 improves the outcome of islet transplantation. To test this, we analyzed the cellular composition and viability of isolated wild-type (WT) and Nox2-/- islets by immunohistochemistry as well as different viability assays. Ex vivo, the effect of Nox2 deficiency on superoxide production, endocrine function and anti-oxidant protein expression was studied under hypoxic conditions. In vivo, we transplanted WT and Nox2-/- islets into mouse dorsal skinfold chambers and under the kidney capsule of diabetic mice to assess their revascularization and endocrine function, respectively. We found that the loss of NOX2 does not affect the cellular composition and viability of isolated islets. However, decreased superoxide production, higher glucose-stimulated insulin secretion as well as expression of nuclear factor erythroid 2-related factor (Nrf)2, heme oxygenase (HO)-1 and superoxide dismutase 1 (SOD1) was detected in hypoxic Nox2-/- islets when compared to WT islets. Moreover, we detected an early revascularization, a higher take rate and restoration of normoglycemia in diabetic mice transplanted with Nox2-/- islets. These findings indicate that the suppression of NOX2 activity represents a promising therapeutic strategy to improve engraftment and function of isolated islets.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia Glas
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | | | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Eloisa Aparecida Vilas-Boas
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany; Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, 05508-900, Brazil
| | - Nathan Ribot
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
8
|
Wrublewsky S, Speer T, Nalbach L, Boewe AS, Pack M, Alansary D, Roma LP, Hoffmann MDA, Schmitt BM, Weinzierl A, Menger MD, Laschke MW, Ampofo E. Targeting Pancreatic Islet NLRP3 Improves Islet Graft Revascularization. Diabetes 2022; 71:1706-1720. [PMID: 35622000 DOI: 10.2337/db21-0851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Hypoxia-induced islet cell death, caused by an insufficient revascularization of the grafts, is a major obstacle for successful pancreatic islet transplantation. Recently, it has been reported that the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is expressed in pancreatic islets and that its loss protects against hypoxia-induced cell death. Therefore, we hypothesized that the inhibition of NLRP3 in islets improves the survival and endocrine function of the grafts. The transplantation of Nlrp3-/- islets or wild-type (WT) islets exposed to the NLRP3 inhibitor CY-09 into mouse dorsal skinfold chambers resulted in an improved revascularization compared with controls. An increased insulin release after NLRP3 inhibition caused the enhanced angiogenic response. Moreover, the inhibition of NLRP3 in hypoxic β-cells triggered insulin gene expression by inducing the shuttling of MafA and pancreatic and duodenal homeobox-1 into the nucleus. This was mediated by a reduced interaction of NLRP3 with the thioredoxin-interacting protein (TXNIP). Transplantation of Nlrp3-/- islets or WT islets exposed to CY-09 under the kidney capsule of diabetic mice markedly improved the restoration of normoglycemia. These findings indicate that the inhibition of NLRP3 in isolated islets represents a promising therapeutic strategy to improve engraftment and function of the islets.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Thimoteus Speer
- Department of Internal Medicine IV (Nephrology and Hypertension) and Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Anne S Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Dalia Alansary
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Markus D A Hoffmann
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Beate M Schmitt
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
9
|
Insulin-Responsive Transcription Factors. Biomolecules 2021; 11:biom11121886. [PMID: 34944530 PMCID: PMC8699568 DOI: 10.3390/biom11121886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The hormone insulin executes its function via binding and activating of the insulin receptor, a receptor tyrosine kinase that is mainly expressed in skeletal muscle, adipocytes, liver, pancreatic β-cells, and in some areas of the central nervous system. Stimulation of the insulin receptor activates intracellular signaling cascades involving the enzymes extracellular signal-regulated protein kinase-1/2 (ERK1/2), phosphatidylinositol 3-kinase, protein kinase B/Akt, and phospholipase Cγ as signal transducers. Insulin receptor stimulation is correlated with multiple physiological and biochemical functions, including glucose transport, glucose homeostasis, food intake, proliferation, glycolysis, and lipogenesis. This review article focuses on the activation of gene transcription as a result of insulin receptor stimulation. Signal transducers such as protein kinases or the GLUT4-induced influx of glucose connect insulin receptor stimulation with transcription. We discuss insulin-responsive transcription factors that respond to insulin receptor activation and generate a transcriptional network executing the metabolic functions of insulin. Importantly, insulin receptor stimulation induces transcription of genes encoding essential enzymes of glycolysis and lipogenesis and inhibits genes encoding essential enzymes of gluconeogenesis. Overall, the activation or inhibition of insulin-responsive transcription factors is an essential aspect of orchestrating a wide range of insulin-induced changes in the biochemistry and physiology of insulin-responsive tissues.
Collapse
|
10
|
Thiel G, Wagner L, Ulrich M, Rössler OG. Immediate-early transcriptional response to insulin receptor stimulation. Biochem Pharmacol 2021; 192:114696. [PMID: 34302794 DOI: 10.1016/j.bcp.2021.114696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023]
Abstract
Insulin binding to the insulin receptor triggers intracellular signaling cascades involving the activation of protein and lipid kinases. As a result, multiple biological functions of the cells are changed. Here, we analyzed the regulation and signaling cascades leading to insulin-induced activation of the stimulus-responsive transcription factors. For the analyses, we used chromatin-embedded reporter genes having a cellular nucleosomal organisation, and fibroblasts expressing human insulin receptors (HIRcB cells). The results show that stimulation of the insulin receptor induced the expression of the transcription factor Egr-1. Attenuation of Egr-1 promoter activation was observed following expression of a dominant-negative mutant of the ternary complex factor Elk-1. These data were corroborated by experiments showing that insulin receptor stimulation increased the transcriptional activation potential of Elk-1. In addition, the transcriptional activity of AP-1 was significantly elevated in insulin-stimulated HIRcB cells. Expression of the dominant-negative mutant of Elk-1 reduced insulin-induced activation of AP-1, indicating that Elk-1 controls both serum response element and AP-1-regulated transcription. Moreover, we show that stimulation of the insulin receptor activates cyclic AMP response element (CRE)-controlled transcription, involving the transcription factor CREB. Insulin-induced transcription of Elk-1 and CREB-controlled reporter genes was attenuated by overexpression of MAP kinase phosphatase-1 or a constitutively active mutant of calcineurin A, indicating that both phosphatases are part of a negative feedback loop for reducing insulin-mediated gene transcription. Finally, we show that expression of the adenoviral protein E1A selectively reduced CRE-mediated transcription following stimulation of the insulin receptor. These data indicate that insulin-regulated transcription of CRE-containing genes is under epigenetic control.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Lara Wagner
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Myriam Ulrich
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
11
|
Lopes J, Ferreira-Gonçalves T, Figueiredo IV, Rodrigues CMP, Ferreira H, Ferreira D, Viana AS, Faísca P, Gaspar MM, Coelho JMP, Silva CO, Reis CP. Proof-of-Concept Study of Multifunctional Hybrid Nanoparticle System Combined with NIR Laser Irradiation for the Treatment of Melanoma. Biomolecules 2021; 11:511. [PMID: 33808293 PMCID: PMC8103244 DOI: 10.3390/biom11040511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
The global impact of cancer emphasizes the importance of developing innovative, effective and minimally invasive therapies. In the context of superficial cancers, the development of a multifunctional nanoparticle-based system and its in vitro and in vivo safety and efficacy characterization are, herein, proposed as a proof-of-concept. This multifunctional system consists of gold nanoparticles coated with hyaluronic and oleic acids, and functionalized with epidermal growth factor for greater specificity towards cutaneous melanoma cells. This nanoparticle system is activated by a near-infrared laser. The characterization of this nanoparticle system included several phases, with in vitro assays being firstly performed to assess the safety of gold nanoparticles without laser irradiation. Then, hairless immunocompromised mice were selected for a xenograft model upon inoculation of A375 human melanoma cells. Treatment with near-infrared laser irradiation for five minutes combined with in situ administration of the nanoparticles showed a tumor volume reduction of approximately 80% and, in some cases, led to the formation of several necrotic foci, observed histologically. No significant skin erythema at the irradiation zone was verified, nor other harmful effects on the excised organs. In conclusion, these assays suggest that this system is safe and shows promising results for the treatment of superficial melanoma.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Isabel V. Figueiredo
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Hugo Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| | - David Ferreira
- MED-Mediterranean Institute for Agriculture, Environment and Development, Department of Veterinary Medicine, University of Évora, Pólo da Mitra, 7002-554 Évora, Portugal;
| | - Ana S. Viana
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Pedro Faísca
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| | - Catarina Oliveira Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
- Department of Biomedical Sciences, Faculty of Pharmacy, Campus Universitario, University of Alcalá, Ctra. A2 km 33,600, 28871 Alcalá de Henares, Spain
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| |
Collapse
|
12
|
Pharmacological and genetic inhibition of TRPC6-induced gene transcription. Eur J Pharmacol 2020; 886:173357. [PMID: 32758574 DOI: 10.1016/j.ejphar.2020.173357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022]
Abstract
Transient receptor potential canonical-6 (TRPC6) channels are non-selective cation channels that can be activated by hyperforin, a constituent of Hypericum perforatum. TRPC6 activation has been linked to a variety of biological functions and pathologies, including focal segmental glomerulosclerosis and the development of various tumor entities. Thus, TRPC6 is an interesting drug target, and a specific pharmacological inhibitor would be very valuable for both basic research and therapy of TRPC6-mediated human pathologies. Here, we assessed the biological activity of various TRP channel inhibitors on hyperforin-stimulated TRPC6 channel signaling. Hyperforin stimulates the activity of the transcription factor AP-1 via TRPC6. Expression experiments involving a TRPC6-specific small hairpin RNA confirmed that hyperforin-induced gene transcription requires TRPC6. Cellular AP-1 activity was measured to assess which compound interrupted the TRPC6-induced intracellular signaling cascade. The results show that the compounds 2-APB, clotrimazole, BCTC, TC-I 2014, SAR 7334, and larixyl acetate blocked TRPC6-mediated activation of AP-1. In contrast, the TRPM8-specific inhibitor RQ-00203078 did not inhibit TRPC6-mediated signaling. 2-APB, clotrimazole, BCTC, and TC-I 2014 are broad-spectrum Ca2+ channel inhibitors, while SAR 7334 and larixyl acetate have been proposed to function as rather TRPC6-specific inhibitors. In this study it is shown that both compounds, in addition to inhibiting TRPC6-induced signaling, completely abolished pregnenolone sulfate-mediated signaling via TRPM3 channels. Thus, SAR 7334 and larixyl acetate are not TRPC6-specific inhibitors.
Collapse
|
13
|
Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid Redox Signal 2020; 33:145-165. [PMID: 31856585 DOI: 10.1089/ars.2019.7975] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Pablo Martí-Andrés
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Ulrich M, Wissenbach U, Thiel G. The super-cooling compound icilin stimulates c-Fos and Egr-1 expression and activity involving TRPM8 channel activation, Ca2+ ion influx and activation of the ternary complex factor Elk-1. Biochem Pharmacol 2020; 177:113936. [DOI: 10.1016/j.bcp.2020.113936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|
15
|
Thiel G, Backes TM, Welck J, Steinhausen S, Fischer AL, Langfermann DS, Ulrich M, Wissenbach U, Rössler OG. Pharmacological inhibition of TRPM8-induced gene transcription. Biochem Pharmacol 2019; 170:113678. [PMID: 31654626 DOI: 10.1016/j.bcp.2019.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential melastatin-8 (TRPM8) channels are activated by cold temperature, menthol and icilin, leading to cold sensation. TRPM8 activation is connected with various diseases, indicating that a specific pharmacological antagonist, allowing nongenetic channel suppression, would be a valuable tool for therapy and basic research. Here, we assessed the biological activity and specificity of various TRPM8 inhibitors following stimulation of TRPM8 channels with either icilin or menthol. Recently, we showed that icilin strikingly upregulates the transcriptional activity of AP-1. By measuring AP-1 activity, we assessed which compound interrupted the TRPM8-induced intracellular signaling cascade from the plasma membrane to the nucleus. We tested the specificity of various TRPM8 inhibitors by analyzing AP-1 activation following stimulation of TRPM3 and TRPV1 channels, L-type voltage-gated Ca2+ channels, and Gαq-coupled receptors, either in the presence or absence of a particular TRPM8 inhibitor. The results show that the TRPM8 inhibitors BCTC, RQ-00203078, TC-1 2014, 2-APB, and clotrimazole blocked TRPM8-mediated activation of AP-1. However, only the compound RQ-00203078 showed TRPM8-specificity, while the other compounds function as broad-spectrum Ca2+ channel inhibitors. In addition, we show that progesterone interfered with TRPM8-induced activation of AP-1, as previously shown for TRPM3 and TRPC6 channels. TRPM8-induced transcriptional activation of AP-1 was additionally blocked by the compound PD98059, indicating that extracellular signal-regulated protein kinase-1/2 is essential to couple TRPM8 stimulation with transcriptional activation of AP-1. Moreover, an influx of Ca2+-ions is essential to induce the intracellular signaling cascade leading to the activation of AP-1.
Collapse
Key Words
- 2-APB, PubChem CID: 1598
- BCTC, PubChem CID: 9929425
- Capsaicin, PubChem CID: 1548943
- Clotrimazole, PubChem CID: 2812
- Clozapine N-oxide, PubChem CID: 135445691
- Designer receptor
- ERK1/2
- FPL 64176, PubChem CID: 3423
- Icilin, PubChem CID: 161930
- KCl, PubChem CID: 4873
- Menthol, PubChem CID: 1254
- PD98059, PubChem CID: 4713
- Pregnenolone sulfate, PubChem CID: 105074
- Progesterone, PubChem CID: 5994
- RQ-00203078, PubChem CID: 49783953
- TC-1 2014, PubChem CID: 10040286
- TRPM3
- TRPM8
- TRPV1
- Voltage-gated calcium channel
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany.
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Jennifer Welck
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | | | - Anna-Lena Fischer
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Daniel S Langfermann
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Myriam Ulrich
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| |
Collapse
|
16
|
Calcineurin controls gene transcription following stimulation of a Gαq-coupled designer receptor. Exp Cell Res 2019; 383:111553. [DOI: 10.1016/j.yexcr.2019.111553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/07/2023]
|
17
|
Dihydrotestosterone activates AP-1 in LNCaP prostate cancer cells. Int J Biochem Cell Biol 2019; 110:9-20. [DOI: 10.1016/j.biocel.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
|
18
|
Ampofo E, Berg JJ, Menger MD, Laschke MW. Maslinic acid alleviates ischemia/reperfusion-induced inflammation by downregulation of NFκB-mediated adhesion molecule expression. Sci Rep 2019; 9:6119. [PMID: 30992483 PMCID: PMC6467883 DOI: 10.1038/s41598-019-42465-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced inflammation is associated with enhanced leukocyte rolling, adhesion and transmigration within the microcirculation. These steps are mediated by hypoxia-triggered signaling pathways, which upregulate adhesion molecule expression on endothelial cells and pericytes. We analyzed whether these cellular events are affected by maslinic acid (MA). Mitochondrial activity and viability of MA-exposed endothelial cells and pericytes were assessed by water-soluble tetrazolium (WST)-1 and lactate dehydrogenase (LDH) assays as well as Annexin V/propidium iodide (PI) stainings. Effects of MA on hypoxia and reoxygenation-induced expression of E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 were determined by flow cytometry. The subcellular localization of the NFκB subunit p65 was analyzed by immunofluorescence and Western blot. I/R-induced leukocytic inflammation was studied in MA- and vehicle-treated mouse dorsal skinfold chambers by intravital fluorescence microscopy and immunohistochemistry. MA did not affect viability, but suppressed the mitochondrial activity of endothelial cells. Furthermore, MA reduced adhesion molecule expression on endothelial cells and pericytes due to an inhibitory action on NFκB signaling. Numbers of adherent and transmigrated leukocytes were lower in post-ischemic tissue of MA-treated mice when compared to vehicle-treated controls. In addition, MA affected reactive oxygen species (ROS) formation, resulting in a diminished oxidative DNA damage. Hence, MA represents an attractive compound for the establishment of novel therapeutic approaches against I/R-induced inflammation.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| | - Julian J Berg
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| |
Collapse
|
19
|
Yang J, Sun L, Han J, Zheng W, Peng W. DUSP1/MKP-1 regulates proliferation and apoptosis in keratinocytes through the ERK/Elk-1/Egr-1 signaling pathway. Life Sci 2019; 223:47-53. [PMID: 30858120 DOI: 10.1016/j.lfs.2019.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 01/17/2023]
Abstract
Psoriasis is an inflammatory skin disease with preference for the skin and joints that occurs due to hyper-proliferation and abnormal apoptosis of keratinocytes. DUSP1 expression in dermal mesenchymal stem cells (MSCs) is obviously lower in psoriasis patients than that in healthy individuals. The present study aimed to explore the roles of DUSP1 in the proliferation and apoptosis of HaCaT cells treated with a cocktail of M5. We showed that DUSP1 was markedly reduced in psoriasis patients and M5-treated HaCaT cells compared with the control subjects. MTT and BrdU assays revealed that overexpression of DUSP1 significantly suppressed the proliferation of HaCaT cells. Furthermore, DUSP1 decreased M5-induced the upregulation of cyclin D1 and Rb. In addition, we demonstrated that forced overexpression of DUSP1 caused an augment of cell apoptosis rate, c-caspase 3 protein level and the Bax/Bcl-2 ratio. Finally, we determined that enhancing DUSP1 expression resulted in the reduction of p-ERK, p-Elk-1 and Egr-1 protein levels using western blot, and the Chromatin immunoprecipitation (ChIP) assay displayed that p-Elk-1 binds to the promoter of Egr-1 in HaCaT cells. The roles of DUSP1 in cell proliferation and apoptosis were abolished by overexpression of Egr-1. In summary, gain function of DUSP1 regulates proliferation and apoptosis of HaCaT cells through the ERK/Elk-1/Egr-1 signaling pathway.
Collapse
Affiliation(s)
- Jiaxing Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Jun Han
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Wei Zheng
- Intensive Care Unit, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, PR China
| | - Weihai Peng
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China.
| |
Collapse
|
20
|
Bi JG, Zheng JF, Li Q, Bao SY, Yu XF, Xu P, Liao CX. MicroRNA-181a-5p suppresses cell proliferation by targeting Egr1 and inhibiting Egr1/TGF-β/Smad pathway in hepatocellular carcinoma. Int J Biochem Cell Biol 2018; 106:107-116. [PMID: 30503931 DOI: 10.1016/j.biocel.2018.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer mortality worldwide. Early growth response factor 1 (Egr1) plays a crucial role in cancer progression. However, its precise role in HCC has not been clear. Here, we identified the aggravating role of Egr1 in cell proliferation of HCC firstly. The expression of Egr1 was significantly increased in HCC tissues. Functionally, overexpression of Egr1 enhanced, whereas silenced Egr1 expression attenuated HCC cells proliferation in vitro. Mechanistically, up-regulated Egr1 induced cell proliferation through activating Transforming growth factor (TGF)-β1/Smad signaling pathway concomitantly with upregulation of p-Smad2 and p-Smad3. Secondly, miR-181a-5p was down-regulated in clinical HCC specimens and its expression was inversely correlated with Egr1 expression. Functionally, overexpression of miR-181a-5p inhibited, whereas decreased expression of miR-181a-5p promoted HCC cells proliferation in vitro. Furthermore, we demonstrated that miR-181a-5p overexpression directly suppressed Egr1, resulting in a down-regulated TGF-β1/Smad pathway. Besides, the silenced Egr1 expression could rescue the enhanced cell proliferation induced by miR-181a-5p inhibitor. Thus, we concluded that miR-181a-5p is a negative regulator of Egr1 that can suppress tumor proliferation in HCC through targeting Egr1/TGF-β1/Smad pathway, which may be a potential therapeutic approach of HCC.
Collapse
Affiliation(s)
- Jian-Gang Bi
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China.
| | - Jin-Feng Zheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Qi Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Shi-Yun Bao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Xiao-Fang Yu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Ping Xu
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Cai-Xian Liao
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Langfermann DS, Rössler OG, Thiel G. Stimulation of B-Raf increases c-Jun and c-Fos expression and upregulates AP-1-regulated gene transcription in insulinoma cells. Mol Cell Endocrinol 2018; 472:126-139. [PMID: 29225069 DOI: 10.1016/j.mce.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/15/2023]
Abstract
Stimulation of pancreatic β-cells with glucose activates the protein kinases B-Raf and extracellular signal-regulated protein kinase that participate in glucose sensing. Inhibition of both kinases results in impairment of glucose-regulated gene transcription. To analyze the signaling pathway controlled by B-Raf, we expressed a conditionally active form of B-Raf in INS-1 insulinoma cells. Here, we show that stimulation of B-Raf strongly activated the transcription factor AP-1 which is accompanied by increased c-Jun and c-Fos promoter activities, an upregulation of c-Jun and c-Fos biosynthesis, and elevated transcriptional activation potentials of c-Jun and c-Fos. Mutational analysis identified the AP-1 sites within the c-Jun promoter and the serum response element (SRE) within the c-Fos promoter as the essential genetic elements connecting B-Raf stimulation with AP-1 activation. In line with this, the transcriptional activation potential of the SRE-binding protein Elk-1 was increased following B-Raf activation. The signal pathway from B-Raf to AP-1 required the activation of c-Jun. We identified the cyclin D1 gene as a delayed response gene for AP-1 following stimulation of B-Raf in insulinoma cells. Moreover, MAP kinase phosphatase-1 and the Ca2+/calmodulin-dependent protein phosphatase calcineurin were identified to function as shut-off-devices for the signaling cascade connecting B-Raf stimulation with the activation of AP-1. The fact that stimulation with glucose, activation of L-type voltage-gated Ca2+ channels, and stimulation of B-Raf all trigger an activation of AP-1 indicates that AP-1 is a point of convergence of signaling pathways in β-cell.
Collapse
Affiliation(s)
- Daniel S Langfermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| |
Collapse
|
22
|
Thiel G, Ulrich M, Mukaida N, Rössler OG. Resveratrol stimulation induces interleukin-8 gene transcription via NF-κB. Pharmacol Res 2018; 134:238-245. [PMID: 30018026 DOI: 10.1016/j.phrs.2018.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
The polyphenol resveratrol activates stimulus-regulated transcription factors, including activator protein-1 (AP-1). As part of a search for resveratrol-regulated target genes we analyzed the gene encoding the chemokine interleukin-8 (IL-8) which is regulated by AP-1. Here, we show that treatment of HEK293 cells with resveratrol induced the expression of IL-8 and activated transcription of a chromatin-embedded IL-8 promoter-controlled reporter gene. Mutational analysis of the IL-8 promoter revealed that it was not the AP-1 binding site, but rather the NF-κB site that was essential to connect resveratrol stimulation with the transcriptional activation of the IL-8 gene. Thus, the NF-κB site of the IL-8 gene functions as resveratrol-responsive element. The analysis of an NF-κB-responsive reporter gene, controlled by the HIV-1 long terminal repeat (LTR), showed that resveratrol stimulation increased the transcriptional activity of NF-κB. These data were corroborated by an experiment showing that incubation of the cells with the NF-κB inhibitor JSH-23 attenuated resveratrol-induced activation of the IL-8 promoter and reduced the cellular NF-κB activity following stimulation of the cells with resveratrol. The protein kinase extracellular signal-regulated protein kinase ERK1/2 was identified to function as signal transducer connecting resveratrol stimulation with the activation of NF-κB and IL-8 promoter-controlled transcription. We conclude that resveratrol, proposed to exhibit anti-inflammatory activity, stimulates expression of the pro-inflammatory chemokine IL-8 via NF-κB, which is known as an important mediator of inflammatory processes.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Myriam Ulrich
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
23
|
Backes TM, Rössler OG, Hui X, Grötzinger C, Lipp P, Thiel G. Stimulation of TRPV1 channels activates the AP-1 transcription factor. Biochem Pharmacol 2018; 150:160-169. [PMID: 29452097 DOI: 10.1016/j.bcp.2018.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/08/2018] [Indexed: 02/09/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels were originally described as the receptors of capsaicin, the main constituent of hot chili pepper. The biological functions of TRPV1 channels include pain sensation and inflammatory thermal hyperalgesia. Here, we show that stimulation of HEK293 cells expressing TRPV1 channels (H2C1 cells) with capsaicin or the TRPV1 ligand resiniferatoxin activated transcription mediated by the transcription factor AP-1. No cell death was occurring under these experimental conditions. The AP-1 activity was not altered in capsaicin or resiniferatoxin-stimulated HEK293 cells lacking TRPV1. We identified the AP-1 DNA binding site as the capsaicin/resiniferatoxin-responsive element. Stimulation with the TRPV1 ligand N-arachidonoyldopamine increased AP-1 activity in a TRPV1-dependent and TRPV1-independent manner. Stimulation of TRPV1 channels induced an influx of Ca2+ into the cells and this rise in intracellular Ca2+ was essential for activating AP-1 in capsaicin or resiniferatoxin-stimulated cells. N-arachidonoyldopamine stimulation induced a rise in intracellular Ca2+ in a TRPV-1 dependent and independent manner. AP-1 is a dimeric transcription factor, composed of proteins of the c-Jun, c-Fos and ATF families. Stimulation of TRPV1 channels with capsaicin increased c-Jun and c-Fos biosynthesis in H2C1 cells. The signal transduction of capsaicin, leading to enhanced AP-1-mediated transcription, required extracellular signal-regulated protein kinase ERK1/2 as a signal transducer and the activation of the transcription factors c-Jun and ternary complex factor. Together, these data suggest that the intracellular functions of TRPV1 stimulation may rely on the activation of a stimulus-regulated protein kinase and stimulus-responsive transcription factors.
Collapse
Affiliation(s)
- Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Xin Hui
- Anatomy and Cell Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Carsten Grötzinger
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité, D-13353 Berlin, Germany
| | - Peter Lipp
- Anatomy and Cell Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| |
Collapse
|
24
|
Chen DG, Zhu B, Lv SQ, Zhu H, Tang J, Huang C, Li Q, Zhou P, Wang DL, Li GH. Inhibition of EGR1 inhibits glioma proliferation by targeting CCND1 promoter. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:186. [PMID: 29246166 PMCID: PMC5732438 DOI: 10.1186/s13046-017-0656-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 11/10/2022]
Abstract
Background Gliomas are the most common primary tumors in central nervous system. The prognosis of the patients with glioma is poor regardless of the development of therapeutic strategies. Its aggressive behavior mainly depends on the potent ability of proliferation. The transcription factor EGR1 (early growth response 1) is a member of a zinc finger transcription factor family which plays an essential role in cell growth and proliferation. Methods EGR1 expression levels in 39 glioma tissues and 10 normal brain tissues were tested by RT-qPCR and Western-blotting. The effects of EGR1 on U251 cells, U251 stem-like cells (GSCs), and U87 cells proliferation were assessed using in vitro and in vivo cell proliferation assays. The specific binding between EGR1 and CCND1 promoter was confirmed by CHIP assay. EGF was used to improve EGR1 expression in this assay. Results EGR1 expression levels in human gliomas are decreased compared with normal brain tissues, however, the patients with low EGR1 expression level showed significantly enhanced patient survival in all glioma patients. EGR1 silencing inhibited proliferation and induced G1 phase arrest in glioma cells. EGR1 contributed to proliferation by directly raising CCND1. Meanwhile, EGR1 overexpression induced by EGF was able to promote the proliferation of glioma cells. Conclusions Our results show that stable knockdown EGR1 would inhibit glioma proliferation. The results suggest EGR1 showing lower expression in cancer tissues compared with normal tissues maybe still play an important role in tumor proliferation. Electronic supplementary material The online version of this article (10.1186/s13046-017-0656-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dian-Gang Chen
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Bo Zhu
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hongfan Zhu
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jinliang Tang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Changlin Huang
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qingrui Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Pu Zhou
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Dong-Lin Wang
- Department of Oncology, Cancer Hospital of Chongqing City, Chongqing, 400037, China
| | - Guang-Hui Li
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
25
|
Gu Y, Ampofo E, Menger MD, Laschke MW. miR‐191 suppresses angiogenesis by activation of NF‐kB signaling. FASEB J 2017; 31:3321-3333. [DOI: 10.1096/fj.201601263r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yuan Gu
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| |
Collapse
|
26
|
Lesch A, Rössler OG, Thiel G. Extracellular Signal-Regulated Protein Kinase, c-Jun N-Terminal Protein Kinase, and Calcineurin Regulate Transient Receptor Potential M3 (TRPM3) Induced Activation of AP-1. J Cell Biochem 2017; 118:2409-2419. [PMID: 28112420 DOI: 10.1002/jcb.25904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
Abstract
Stimulation of transient receptor potential M3 (TRPM3) cation channels with pregnenolone sulfate induces an influx of Ca2+ ions into the cells and a rise in the intracellular Ca2+ concentration, leading to the activation of the activator protein-1 (AP-1) transcription factor. Here, we show that expression of a constitutively active mutant of the Ca2+ /calmodulin-dependent protein phosphatase calcineurin attenuated pregnenolone sulfate-induced AP-1 activation in TRPM3-expressing cells. Likewise, expression of the regulatory B subunit of calcineurin reduced AP-1 activity in the cells following stimulation of TRPM3 channels. MAP kinase phosphatase-1 has been shown to attenuate TRPM3-mediated AP-1 activation. Here, we show that pregnenolone sulfate-induced stimulation of TRPM3 triggers the phosphorylation and activation of the MAP kinase extracellular signal-regulated protein kinase (ERK1/2). Pharmacological and genetic experiments revealed that stimulation of ERK1/2 is essential for the activation of AP-1 in cells expressing stimulated TRPM3 channels. ERK1/2 is required for the activation of the transcription factor c-Jun, a key component of the AP-1 transcription factor, and regulates c-Fos promoter activity. In addition, we identified c-Jun N-terminal protein kinase (JNK1/2) as a second signal transducer of activated TRPM3 channels. Together, the data show that calcineurin and the protein kinases ERK1/2 and JNK1/2 are important regulators within the signaling cascade connecting TRPM3 channel stimulation with increased AP-1-regulated transcription. J. Cell. Biochem. 118: 2409-2419, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Lesch
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Gerald Thiel
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| |
Collapse
|
27
|
Hyperforin activates gene transcription involving transient receptor potential C6 channels. Biochem Pharmacol 2017; 129:96-107. [DOI: 10.1016/j.bcp.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/26/2022]
|
28
|
Combining fibroblast isolation with lentiviral gene transfer to validate transgene expression in mice following pronucleus injection. Transgenic Res 2016; 25:839-846. [DOI: 10.1007/s11248-016-9973-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
|
29
|
Rössler OG, Thiel G. Specificity of Stress-Responsive Transcription Factors Nrf2, ATF4, and AP-1. J Cell Biochem 2016; 118:127-140. [PMID: 27278863 DOI: 10.1002/jcb.25619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/07/2016] [Indexed: 01/15/2023]
Abstract
Cellular stress leads to an upregulation of gene transcription. We asked if there is a specificity in the activation of the stress-responsive transcription factors Nrf2, ATF4, and AP-1/c-Jun, or if activation of these proteins is a redundant cellular answer toward extracellular stressors. Here, we show that oxidative stress, induced by stimulation of the cells with the oxidant arsenite, strongly activated gene transcription via the stress-responsive element (StRE), while phorbol ester or tunicamycin, activators of AP-1/c-Jun or ATF4, respectively, activated AP-1 or nutrient-sensing response element-mediated transcription. Preincubation of the cells with N-acetyl-cysteine or overexpression of thioredoxin selectively attenuated arsenite-induced upregulation of StRE-regulated transcription. Expression of either dominant-negative or constitutively active mutants of Nrf2, ATF4, or c-Jun confirmed that distinct transcription units are regulated by these transcription factors. Physiological stimuli involving the activation of either Gαq-coupled designer receptors or the protein kinases c-Jun N-terminal protein kinase or p38 strongly stimulated transcription via AP-1/c-Jun, with minimal effects on Nrf2 or ATF4-responsive promoters. Thus, activation of transcription by extracellular signaling molecules shows specificity at the level of the chemical nature of the signaling molecule, at the level of the intracellular transduction process, and at the level of signal-responsive transcription factors. J. Cell. Biochem. 118: 127-140, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, Building 44, D-66421, Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, Building 44, D-66421, Homburg, Germany
| |
Collapse
|
30
|
Zhou JM, Xu ZL, Li N, Zhao YW, Wang ZZ, Xiao W. Identification of cardioprotective agents from traditional Chinese medicine against oxidative damage. Mol Med Rep 2016; 14:77-88. [PMID: 27176126 PMCID: PMC4918535 DOI: 10.3892/mmr.2016.5243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
Reactive oxygen species are damaging to cardiomyocytes. H9c2 cardiomyocytes are commonly used to study the cellular mechanisms and signal transduction in cardiomyocytes, and to evaluate the cardioprotective effects of drugs following oxidative damage. The present study developed a robust, automated high throughput screening (HTS) assay to identify cardioprotective agents from a traditional Chinese medicine (TCM) library using a H2O2-induced oxidative damage model in H9c2 cells. Using this HTS format, several hits were identified as cardioprotective by detecting changes to cell viability using the cell counting kit (CCK)-8 assay. Two TCM extracts, KY-0520 and KY-0538, were further investigated. The results of the present study demonstrated that treatment of oxidatively damaged cells with KY-0520 or KY-0538 markedly increased the cell viability and superoxide dismutase activity, decreased lactate dehydrogenase activity and malondialdehyde levels, and inhibited early growth response-1 (Egr-1) protein expression. The present study also demonstrated that KY-0520 or KY-0538 treatment protected H9c2 cells from H2O2-induced apoptosis by altering the Bcl-2/Bax protein expression ratio, and decreasing the levels of cleaved caspase-3. In addition, KY-0520 and KY-0538 reduced the phosphorylation of ERK1/2 and p38-MAPK proteins, and inhibited the translocation of Egr-1 from the cytoplasm to nucleus in H2O2-treated H9c2 cells. These findings suggested that oxidatively damaged H9c2 cells can be used for the identification of cardioprotective agents that reduce oxidative stress by measuring cell viabilities using CCK-8 in an HTS format. The underlying mechanism of the cardioprotective activities of KY-0520 and KY-0538 may be attributed to their antioxidative activity, regulation of Egr-1 and apoptosis-associated proteins, and the inhibition of ERK1/2, p38-MAPK and Egr-1 signaling pathways.
Collapse
Affiliation(s)
- Jian-Ming Zhou
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhi-Liang Xu
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Na Li
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Yi-Wu Zhao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhen-Zhong Wang
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Wei Xiao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| |
Collapse
|
31
|
Karyopherin Alpha 2 Promotes the Inflammatory Response in Rat Pancreatic Acinar Cells Via Facilitating NF-κB Activation. Dig Dis Sci 2016; 61:747-57. [PMID: 26526450 DOI: 10.1007/s10620-015-3948-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 10/24/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Activation of the transcription factor NF-κB and expression of pro-inflammatory mediators have been considered as major events of acute pancreatitis (AP). Karyopherin alpha 2 (KPNA2), a member of the importin α family, reportedly modulates p65 subcellular localization. AIM This study aimed to investigate the expression and possible functions of KPNA2 in the AP cell and animal model, focusing on its association with NF-κB activation. METHODS An AP cell model was established with the cerulein-stimulated AR42J and isolated rat pancreatic acinar cells. The AP rat model was induced by the intraperitoneal injection of cerulein. The secretion of TNF-α, IL-6, and LDH was detected by ELISA kits and the production of NO using nitric oxide kit. Expression of KPNA2 was measured by RT-PCR and Western blot. Expression levels of IKKα, phosphorylation of p65, and total p65 were detected by Western blot. Co-localization of KPNA2 with p65 was observed by immunofluorescence assay. To determine the biological functions of KPNA2 in cerulein-induced inflammatory response, RNA interference was employed to knockdown KPNA2 expression in AR42J and isolated pancreatic acini cells. RESULTS Cerulein stimulated KPNA2 expression and IL-6, TNF-α, NO, and LDH production in rat pancreatic acinar cells. Cerulein triggered the phosphorylation and nuclear translocation of NF-κB p65 subunit, indicating the NF-κB activation. The co-localization and nuclear accumulation of KPNA2 and p65 were detected in cerulein-treated cells. Knocking down KPNA2 hindered cerulein-induced nuclear transportation of p65 and alleviated the subsequent inflammatory response in rat pancreatic acinar cells. Additionally, KPNA2 expression was significantly up-regulated in cerulein-induced AP rat model. CONCLUSIONS KPNA2-facilitated p65 nuclear translocation promotes NF-κB activation and inflammation in acute pancreatitis.
Collapse
|
32
|
Rubil S, Rössler OG, Thiel G. CREB, AP-1, ternary complex factors and MAP kinases connect transient receptor potential melastatin-3 (TRPM3) channel stimulation with increased c-Fos expression. Br J Pharmacol 2015; 173:305-18. [PMID: 26493679 DOI: 10.1111/bph.13372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The rise in intracellular Ca(2+) stimulates the expression of the transcription factor c-Fos. Depending on the mode of entry of Ca(2+) into the cytosol, distinct signal transducers and transcription factors are required. Here, we have analysed the signalling pathway connecting a Ca(2+) influx via activation of transient receptor potential melastatin-3 (TRPM3) channels with enhanced c-Fos expression. EXPERIMENTAL APPROACH Transcription of c-Fos promoter/reporter genes that were integrated into the chromatin via lentiviral gene transfer was analysed in HEK293 cells overexpressing TRPM3. The transcriptional activation potential of c-Fos was measured using a GAL4-c-Fos fusion protein. KEY RESULTS The signalling pathway connecting TRPM3 stimulation with enhanced c-Fos expression requires the activation of MAP kinases. On the transcriptional level, three Ca(2+) -responsive elements, the cAMP-response element and the binding sites for the serum response factor (SRF) and AP-1, are essential for the TRPM3-mediated stimulation of the c-Fos promoter. Ternary complex factors are additionally involved in connecting TRPM3 stimulation with the up-regulation of c-Fos expression. Stimulation of TRPM3 channels also increases the transcriptional activation potential of c-Fos. CONCLUSIONS AND IMPLICATIONS Signalling molecules involved in connecting TRPM3 with the c-Fos gene are MAP kinases and the transcription factors CREB, SRF, AP-1 and ternary complex factors. As c-Fos constitutes, together with other basic region leucine zipper transcription factors, the AP-1 transcription factor complex, the results of this study explain TRPM3-induced activation of AP-1 and connects TRPM3 with the biological functions regulated by AP-1.
Collapse
Affiliation(s)
- Sandra Rubil
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
33
|
Rauhala L, Hämäläinen L, Dunlop TW, Pehkonen P, Bart G, Kokkonen M, Tammi M, Tammi R, Pasonen-Seppänen S. The organic osmolyte betaine induces keratin 2 expression in rat epidermal keratinocytes — A genome-wide study in UVB irradiated organotypic 3D cultures. Toxicol In Vitro 2015; 30:462-75. [DOI: 10.1016/j.tiv.2015.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
|
34
|
Wang J, Li Y, Liu Y, Li Y, Gong S, Fang F, Wang Z. Overexpression of truncated AIF regulated by Egr1 promoter radiation-induced apoptosis on MCF-7 cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:413-421. [PMID: 26514806 DOI: 10.1007/s00411-015-0619-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
It has been demonstrated that gene-radiotherapy can improve the radiotherapy by selectively increasing cells' response to ionizing radiation. Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein, and its C-terminal domain is responsible for the proapoptotic activity. In the present study, we overexpressed truncated AIF on MCF-7 cells by transfection of pcDNA3.1-tAIF (pc-tAIF) and pcDNA3.1-Egr1-tAIF (pc-Egr1-tAIF) plasmids. After MCF-7-tAIF cells were exposed to X-rays, the AIF and tAIF expressions, cell proliferation, apoptosis, cell cycle invasion, cytochrome c (Cyt c) release and activation of caspase-9 were measured by using Western blot, MTT assay, flow cytometry and Matrigel transwell assay, respectively. Our results showed that tAIF expression increased on time- and dose-dependent manners. Both tAIF and radiation can synergistically enhance the apoptosis, cell proliferation inhibition, cell cycle arrest and cell-invasive inhibition. In addition, tAIF overexpression and irradiation increased Cyt c release. However, only irradiation increased caspase-9 activation. Our studies indicated that tAIF overexpression might enhance apoptosis induced by radiation in MCF-7 cells.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, People's Republic of China
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yana Li
- Department of Ophthalmology and Otolaryngology, The Children's Hospital of Changchun, Changchun, Jilin Province, People's Republic of China
| | - Yang Liu
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yanbo Li
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin Province, People's Republic of China
- School of Public Health and Family Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Shouliang Gong
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Fang Fang
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin Province, People's Republic of China.
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Zhicheng Wang
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
35
|
Ampofo E, Rudzitis-Auth J, Dahmke IN, Rössler OG, Thiel G, Montenarh M, Menger MD, Laschke MW. Inhibition of protein kinase CK2 suppresses tumor necrosis factor (TNF)-α-induced leukocyte–endothelial cell interaction. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2123-36. [DOI: 10.1016/j.bbadis.2015.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022]
|
36
|
Zhang Y, Liao H, Zhong S, Gao F, Chen Y, Huang Z, Lu S, Sun T, Wang B, Li W, Xu H, Zheng F, Shi G. Effect of N-n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation. Sci Rep 2015; 5:11809. [PMID: 26134032 PMCID: PMC4488875 DOI: 10.1038/srep11809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS)-induced oxidative stress in cells is an important pathophysiological process during myocardial ischemia/reperfusion (I/R) injury, and the transcription factor Egr-1 is a master switch for various damage pathways during reperfusion injury. An in vitro model of myocardial I/R injury and H9c2 cardiomyoblast cells hypoxia/reoxygenation (H/R) was used to assess whether there is abnormal intracellular ROS/JNK/Egr-1 signaling. We also assessed whether N-n-butyl haloperidol (F2), which exerts protective effects during myocardial I/R injury, can modulate this pathway. H/R induced ROS generation, JNK activation, and increased the expression of Egr-1 protein in H9c2 cells. The ROS scavengers edaravone (EDA) and N-acetyl-L-cysteine (NAC) reduced ROS level, downregulated JNK activation, and Egr-1 expression in H9c2 cells after H/R. The JNK inhibitor SP600125 inhibited Egr-1 overexpression in H9c2 cells caused by H/R. F2 could downregulate H/R-induced ROS level, JNK activation, and Egr-1 expression in H9c2 cells in a dose-dependent manner. The ROS donor hypoxanthine-xanthine oxidase (XO/HX) and the JNK activator ANISO antagonized the effects of F2. Therefore, H/R activates ROS/Egr-1 signaling pathway in H9c2 cells, and JNK activation plays an important role in this pathway. F2 regulates H/R-induced ROS/JNK/Egr-1 signaling, which might be an important mechanism by which it antagonizes myocardial I/R injury.
Collapse
Affiliation(s)
- Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Liao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhanqin Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shishi Lu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ting Sun
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Weiqiu Li
- Analytical Cytology Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fuchun Zheng
- Department of Pharmacy, the First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Cardiovascular Diseases, the First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
37
|
Wang C, Husain K, Zhang A, Centeno BA, Chen DT, Tong Z, Sebti SM, Malafa MP. EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutr Biochem 2015; 26:797-807. [PMID: 25997867 DOI: 10.1016/j.jnutbio.2015.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/13/2022]
Abstract
The anticancer activity of δ-tocotrienol, a bioactive vitamin E present in whole grain cereals, annatto beans and palm fruit, is strongly dependent on its effect on the induction of apoptosis. δ-Tocotrienol-induced apoptosis is associated with consistent induction in the expression of the proapoptotic protein Bcl-2-associated X protein (Bax). The molecular mechanism by which δ-tocotrienol regulates Bax expression is unknown. We carried out a DNA microarray study that identified δ-tocotrienol induction of the zinc finger transcription factor EGR-1 in pancreatic cancer cells. Here, we provide evidence linking δ-tocotrienol-induced apoptosis in pancreatic cancer cells to EGR-1 regulation of Bax expression. Forced expression of EGR-1 induces Bax expression and apoptosis in pancreatic cancer cells. In contrast, knockdown of δ-tocotrienol-induced EGR-1 by small interfering RNA attenuated δ-tocotrienol-induced Bax expression and reduced δ-tocotrienol-induced apoptosis. Further analyses showed that de novo protein synthesis was not required for δ-tocotrienol-induced EGR-1 expression, suggesting a direct effect of δ-tocotrienol on EGR-1 expression. Furthermore, a chromatin immunoprecipitation assay demonstrated that EGR-1 binds to the Bax gene promoter. Finally, δ-tocotrienol treatment induced Bax expression and activated EGR-1 in the pancreatic neoplastic cells of the PDX-Cre Kras genetically engineered model of pancreatic cancer. Our study provides the first evidence for EGR-1 as a direct target of vitamin E δ-tocotrienol, suggesting that EGR-1 may act as a proapoptotic factor in pancreatic cancer cells via induction of Bax.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kazim Husain
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Anying Zhang
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Barbara A Centeno
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Dung-Tsa Chen
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Säid M Sebti
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL.
| |
Collapse
|
38
|
Lesch A, Hui X, Lipp P, Thiel G. Transient receptor potential melastatin-3 (TRPM3)-induced activation of AP-1 requires Ca2+ ions and the transcription factors c-Jun, ATF2, and ternary complex factor. Mol Pharmacol 2015; 87:617-28. [PMID: 25576487 DOI: 10.1124/mol.114.095695] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The steroid pregnenolone sulfate activates the transcription factor activator protein-1 (AP-1) via stimulation of transient receptor potential melastatin-3 (TRPM3) channels. Here, we show that the signaling pathway requires an influx of Ca(2+) ions into the cells and a rise in the intracellular Ca(2+) levels. The upregulation of AP-1 was attenuated in cells that overexpressed mitogen activated protein kinase phosphatase-1, indicating that Ca(2+) ions prolong the signaling cascade via activation of mitogen activated protein kinases. On the transcriptional level, expression of a dominant-negative mutant of the basic region leucine zipper protein c-Jun, a major constituent of the AP-1 transcription factor complex, or expression of a c-Jun-specific short hairpin RNA attenuated pregnenolone sulfate-induced AP-1 activation. In addition, stimulation of TRPM3 channels increased the transcriptional activation potential of the basic region leucine zipper protein ATF2. Inhibition of ATF2 target gene expression via expression of a dominant-negative mutant of ATF2 or expression of an ATF2-specific short hairpin RNA interfered with TRPM3-mediated stimulation of AP-1. Moreover, we show that a dominant-negative mutant of the ternary complex factor (TCF) Elk-1 attenuated the upregulation of AP-1 following stimulation of TRPM3 channels. Thus, c-Jun, ATF2, and TCFs are required to connect the intracellular signaling cascade elicited by activation of TRPM3 channels with enhanced transcription of AP-1-regulated genes. We conclude that pregnenolone sulfate-induced TRPM3 channel activation changes the gene expression pattern of the cells by activating transcription of c-Jun-, ATF2-, and TCF-controlled genes.
Collapse
Affiliation(s)
- Andrea Lesch
- Department of Medical Biochemistry and Molecular Biology (A.L., G.T.) and Department of Anatomy and Cell Biology, University of Saarland Medical Faculty, Homburg, Germany (X.H., P.L.)
| | - Xin Hui
- Department of Medical Biochemistry and Molecular Biology (A.L., G.T.) and Department of Anatomy and Cell Biology, University of Saarland Medical Faculty, Homburg, Germany (X.H., P.L.)
| | - Peter Lipp
- Department of Medical Biochemistry and Molecular Biology (A.L., G.T.) and Department of Anatomy and Cell Biology, University of Saarland Medical Faculty, Homburg, Germany (X.H., P.L.)
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology (A.L., G.T.) and Department of Anatomy and Cell Biology, University of Saarland Medical Faculty, Homburg, Germany (X.H., P.L.)
| |
Collapse
|
39
|
Rössler OG, Glatzel D, Thiel G. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors. Exp Cell Res 2015; 332:116-27. [PMID: 25645941 DOI: 10.1016/j.yexcr.2015.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Abstract
Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1.
Collapse
Affiliation(s)
- Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, D-66421 Homburg, Germany
| | - Daniel Glatzel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, D-66421 Homburg, Germany.
| |
Collapse
|
40
|
Abstract
Oncogene-induced senescence (OIS) protects normal cells from transformation by Ras, whereas cells lacking p14/p19(Arf) or other tumor suppressors can be transformed. The transcription factor C/EBPβ is required for OIS in primary fibroblasts but is downregulated by H-Ras(V12) in immortalized NIH 3T3 cells through a mechanism involving p19(Arf) loss. Here, we report that members of the serum-induced early growth response (Egr) protein family are also downregulated in 3T3(Ras) cells and directly and redundantly control Cebpb gene transcription. Egr1, Egr2, and Egr3 recognize three sites in the Cebpb promoter and associate transiently with this region after serum stimulation, coincident with Cebpb induction. Codepletion of all three Egrs prevented Cebpb expression, and serum induction of Egrs was significantly blunted in 3T3(Ras) cells. Egr2 and Egr3 levels were also reduced in Ras(V12)-expressing p19(Arf) null mouse embryonic fibroblasts (MEFs), and overall Egr DNA-binding activity was suppressed in Arf-deficient but not wild-type (WT) MEFs, leading to Cebpb downregulation. Analysis of human cancers revealed a strong correlation between EGR levels and CEBPB expression, regardless of whether CEBPB was increased or decreased in tumors. Moreover, overexpression of Egrs in tumor cell lines induced CEBPB and inhibited proliferation. Thus, our findings identify the Arf-Egr-C/EBPβ axis as an important determinant of cellular responses (senescence or transformation) to oncogenic Ras signaling.
Collapse
|
41
|
Lesch A, Rubil S, Thiel G. Activation and inhibition of transient receptor potential TRPM3-induced gene transcription. Br J Pharmacol 2014; 171:2645-58. [PMID: 24895737 DOI: 10.1111/bph.12524] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential-3 (TRPM3) channels function as Ca2+ permeable cation channels. While the natural ligands for these channels are still unknown, several compounds have been described that either activate or inhibit TRPM3 channel activity. experimental approach: We assessed TRPM3-mediated gene transcription, which relies on the induction of intracellular signalling to the nucleus following activation of TRPM3 channels. Activator protein-1 (AP-1) and Egr-1-responsive reporter genes were integrated into the chromatin of the cells. This strategy enabled us to analyse gene transcription of the AP-1 and Egr-1-responsive reporter genes that were packed into an ordered chromatin structure. KEY RESULTS The neurosteroid pregnenolone sulfate strikingly up-regulated AP-1 and Egr-1 transcriptional activity, while nifedipine and D-erythro-sphingosine, also putative activators of TRPM3 channels, exhibited either no or TRPM3-independent effects on gene transcription. In addition, pregnenolone sulfate robustly enhanced the transcriptional activation potential of the ternary complex factor Elk-1. Pregnenolone sulfate-induced activation of gene transcription was blocked by treatment with mefenamic acid and, to a lesser extent, by the polyphenol naringenin. In contrast, progesterone, pregnenolone and rosiglitazone reduced AP-1 activity in the cells, but had no inhibitory effect on Egr-1 activity in pregnenolone sulfate-stimulated cells. CONCLUSION AND IMPLICATIONS Pregnenolone sulfate is a powerful activator of TRPM3-mediated gene transcription, while transcription is completely inhibited by mefenamic acid in cells expressing activated TRPM3 channels. Both compounds are valuable tools for further investigating the biological functions of TRPM3 channels.
Collapse
|
42
|
Thiel G, Müller I, Rössler OG. Expression, signaling and function of Egr transcription factors in pancreatic β-cells and insulin-responsive tissues. Mol Cell Endocrinol 2014; 388:10-9. [PMID: 24631481 DOI: 10.1016/j.mce.2014.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/26/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
Egr-1 and the related zinc finger transcription factors Egr-2, Egr-3, and Egr-4 are stimulated by many extracellular signaling molecules and represent a convergence point for intracellular signaling cascades. Egr-1 expression is induced in insulinoma cells and pancreatic β-cells following stimulation with either glucose, or pregnenolone sulfate. Moreover, stimulation of Gαq and Gαs-coupled receptors enhances EGR-1 gene transcription. Functional studies revealed that Egr transcription factors control insulin biosynthesis via regulation of Pdx-1 expression. Glucose homeostasis and pancreatic islet size are regulated by Egr transcription factors, indicating that these proteins control central physiological parameters regulated by pancreatic β-cells. In addition, Egr-1 is an integral part of the insulin receptor signaling cascade in insulin-responsive tissues and influences insulin resistance.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany.
| | - Isabelle Müller
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| |
Collapse
|
43
|
Thiel G, Rössler OG. Resveratrol stimulates AP-1-regulated gene transcription. Mol Nutr Food Res 2014; 58:1402-13. [PMID: 24753227 DOI: 10.1002/mnfr.201300913] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/27/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
SCOPE Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants, including the regulation of transcription. Here, we have analyzed the impact of resveratrol on the activity of the transcription factor activator protein-1 (AP-1). METHODS AND RESULTS Using a chromosomally embedded AP-1-responsive reporter gene, we show that the AP-1 activity was significantly elevated in resveratrol-treated 293 human embryonic kidney and HepG2 hepatoma cells. The 12-O-tetradecanoylphorbol-13-acetate-responsive element, a binding site for c-Jun and c-Fos, was identified as resveratrol-responsive element. Expression of c-Jun and c-Fos, two proteins that constitute AP-1, is upregulated in resveratrol-stimulated HEK293 cells. On the transcriptional level, c-Jun and the ternary complex factor Elk-1 are essential for the activation of AP-1 in resveratrol-treated cells. In addition, mitogen-activated protein kinases and protein kinase C are required to connect resveratrol stimulation with enhanced AP-1 controlled transcription. Finally, we show that resveratrol increased the activities of the AP-1 responsive cyclin D1 and tumor necrosis factor α promoters. CONCLUSION Resveratrol regulates gene transcription via activation of stimulus-regulated protein kinases and the stimulus-responsive AP-1 transcription factors. The fact that resveratrol regulates AP-1 activity may explain many of the pleiotropic intracellular alterations induced by resveratrol.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, Homburg, Germany
| | | |
Collapse
|
44
|
Fraguas S, Barberán S, Iglesias M, Rodríguez-Esteban G, Cebrià F. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development 2014; 141:1835-47. [PMID: 24700819 DOI: 10.1242/dev.101345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/β-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/β-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/β-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration.
Collapse
Affiliation(s)
- Susanna Fraguas
- Departament de Genètica de la Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avenida Diagonal 643, Edifici Prevosti planta 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
45
|
Parra E, Ferreira J, Gutierrez L. Decreased c-Abl activity in PC-3 and LNCaP prostate cancer cells overexpressing the early growth response-1 protein. Oncol Rep 2013; 31:422-7. [PMID: 24190424 DOI: 10.3892/or.2013.2829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/27/2013] [Indexed: 11/06/2022] Open
Abstract
Early growth response-1 (Egr-1) and the non-receptor protein tyrosine kinase (c-Abl) are 2 response genes that can act as regulators of cell growth and apoptosis in response to stress. Both Egr-1 and c-Abl regulate cell proliferation and survival in different types of cancer cells. To study the effect of overexpression of EGR-1 on the activity of c-Abl in prostate cancer cells, human PC-3 and LNCaP cells were transfected with a control vector or a vector containing the murine Egr-1 cDNA and assessed for the expression of the c-Abl gene. Cells overexpressing Egr-1 were studied with respect to apoptosis (Annexin V)/DEVDase activity, Egr-1/c-Abl activation (western blotting) and cell proliferation (MTT assay). The cells were exposed to tumor necrosis factor α (TNF-α), a known inductor of Egr-1, to c-Abl inhibitor STI-571 and to small interfering RNA (siRNA)-Egr-1, respectively. The results from our studies strongly suggest that overexpression of Egr-1 decreased c-Abl activity independent of endogenous Egr-1 inhibition by siRNA-Egr-1.
Collapse
Affiliation(s)
- Eduardo Parra
- Laboratory of Experimental Biomedicine, University of Tarapaca, Campus Esmeralda, Iquique, Chile
| | | | | |
Collapse
|
46
|
Anelli T, Cardarelli S, Ori M, Nardi I, Biagioni S, Poiana G. 5-Hydroxytryptamine 1A and 2B Serotonin Receptors in Neurite Outgrowth: Involvement of Early Growth Response Protein 1. Dev Neurosci 2013; 35:450-60. [DOI: 10.1159/000354423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022] Open
|
47
|
Chen M, Xiong F, Zhang L. Promoter methylation of Egr-1 site contributes to fetal hypoxia-mediated PKCε gene repression in the developing heart. Am J Physiol Regul Integr Comp Physiol 2013; 304:R683-9. [PMID: 23427086 PMCID: PMC3652077 DOI: 10.1152/ajpregu.00461.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/13/2013] [Indexed: 11/22/2022]
Abstract
Fetal hypoxia causes protein kinase Cε (PKCε) gene repression in the heart resulting in heightened ischemic injury in male offspring in a sex-dependent manner. The present study tested the hypothesis that heightened methylation of the early growth response factor-1 (Egr-1) binding site at PKCε gene promoter contributes to sex dimorphism of hypoxia-induced programming of PKCε gene repression in the developing heart. Pregnant rats were divided into normoxic and hypoxic (10.5% O2 from day 15 to 21 of gestation) groups. Hypoxia selectively decreased PKCε mRNA and protein abundance in the heart of male, but not female, near-term (21 days) fetuses. Methylation of the CpG site at the Egr-1 binding site of PKCε promoter was significantly increased in the male hearts by hypoxia, resulting in decreased Egr-1 binding affinity and reduced Egr-1 binding to the PKCε promoter. Nuclear Egr-1 levels were not affected by hypoxia. There was significantly higher abundance of estrogen receptor α (ERα) and β (ERβ) isoforms in female than in male fetal hearts, which were not significantly altered by hypoxia. Both ERα and ERβ bind to the Egr-1 binding site with significant greater levels in the female fetal hearts. The increased methylation with reduced Egr-1 binding and PKCε gene repression persisted in 3-mo-old adult male hearts in a sex-dependent manner. The results indicate a key role for heightened methylation of the Egr-1 binding site in hypoxia-mediated programming of PKCε gene repression in the developing heart and suggest a novel protective mechanism of ER by binding to the Egr-1 binding site in epigenetic regulation of PKCε gene expression patterns in the early developmental stage.
Collapse
Affiliation(s)
- Man Chen
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
48
|
Waitkus MS, Chandrasekharan UM, Willard B, Haque SJ, DiCorleto PE. STAT3-mediated coincidence detection regulates noncanonical immediate early gene induction. J Biol Chem 2013; 288:11988-2003. [PMID: 23504318 DOI: 10.1074/jbc.m112.428516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling pathways interact with one another to form dynamic networks in which the cellular response to one stimulus may depend on the presence, intensity, timing, or localization of other signals. In rare cases, two stimuli may be simultaneously required for cells to elicit a significant biological output. This phenomenon, generally termed "coincidence detection," requires a downstream signaling node that functions as a Boolean AND gate to restrict biological output from a network unless multiple stimuli are received within a specific window of time. Simultaneous activation of the EGF receptor (EGFR) and a thrombin receptor (protease-activated receptor-1, PAR-1) increases the expression of multiple immediate early genes (IEGs) associated with growth and angiogenesis. Using a bioinformatic comparison of IEG promoter regions, we identified STAT3 as a critical transcription factor for the detection of coincident EGFR/PAR-1 activation. EGFR activation induces classical STAT3 Tyr(705) phosphorylation but also initiates an inhibitory signal through the PI3K-AKT signaling axis that prevents STAT3 Ser(727) phosphorylation. Coincident PAR-1 signaling resolves these conflicting EGF-activated pathways by blocking AKT activation and permitting GSK-3α/β-dependent STAT3 Ser(727) phosphorylation and STAT3-dependent gene expression. Functionally, combinatorial EGFR/PAR-1 signaling suppresses EGF-induced proliferation and thrombin-induced leukocyte adhesion and triggers a STAT3-dependent increase in endothelial cell migration. This study reveals a novel signaling role for STAT3 in which the simultaneous presence of extracellular EGF and thrombin is detected at the level of STAT3 post-translational modifications. Collectively, our results describe a novel regulatory mechanism in which combinatorial EGFR/PAR-1 signaling regulates STAT3-dependent IEG induction and endothelial cell migration.
Collapse
Affiliation(s)
- Matthew S Waitkus
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
49
|
Kaufmann A, Keim A, Thiel G. Regulation of immediate-early gene transcription following activation of Gαq-coupled designer receptors. J Cell Biochem 2013; 114:681-96. [DOI: 10.1002/jcb.24410] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/24/2012] [Indexed: 01/30/2023]
|
50
|
Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol 2012; 229:286-97. [PMID: 23132749 DOI: 10.1002/path.4131] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
Fibroblasts and myofibroblasts are the key effector cells executing physiological tissue repair leading to regeneration on the one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify the multifunctional transcription factor early growth response-1(Egr-1) as an important mediator of fibroblast activation triggered by diverse stimuli. Egr-1 has potent stimulatory effects on fibrotic gene expression, and aberrant Egr-1 expression or function is associated with animal models of fibrosis and human fibrotic disorders, including emphysema, pulmonary fibrosis, pulmonary hypertension and systemic sclerosis. Pharmacological suppression or genetic targeting of Egr-1 blocks fibrotic responses in vitro and ameliorates experimental fibrosis in the skin and lung. In contrast, Egr-1 appears to act as a negative regulator of hepatic fibrosis in mouse models, suggesting a context-dependent role in fibrosis. The Egr-1-binding protein Nab2 is an endogenous inhibitor of Egr-1-mediated signalling and abrogates the stimulation of fibrotic responses induced by transforming growth factor-β (TGFβ). Moreover, mice deficient in Nab2 show excessive collagen accumulation in the skin. These observations highlight a previously unsuspected fundamental physiological function for the Egr-1-Nab2 signalling axis in regulating fibrogenesis, and suggest that Egr-1 may be a potential novel therapeutic target in human diseases complicated by fibrosis. This review summarizes recent advances in understanding the regulation and complex functional role of Egr-1 and its related proteins and inhibitors in pathological fibrosis.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|