1
|
Izaz A, Pan T, Wang L, Zhang H, Duan S, Li E, Yan P, Wu X. Molecular cloning, characterization, and gene expression behavior of glucocorticoid and mineralocorticoid receptors from the Chinese alligator (Alligator sinensis). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:50-72. [PMID: 33306860 DOI: 10.1002/jez.b.23015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
The Chinese alligator is an endemic crocodilian species in China. We isolated and obtained the glucocorticoid and mineralocorticoid receptor genes coding from the kidney of Alligator sinensis by nested polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE). The glucocorticoid receptor (GR) gene has 2343 base pairs encoding 780 amino acids, while the mineralocorticoid receptor (MR) gene is 2958 bp in length encoding 985 amino acids. Quantitative real-time PCR was used to detect the distribution of messenger RNA (mRNA) levels. The maximum mRNA expressions were observed in the ovary and kidney, suggesting that these receptors may be involved in basic cellular functions or stress response of alligators. Besides this, RT-qPCR was performed to analyze the abundance of GR and MR mRNA transcripts in early embryonic development of the Chinese alligator in the kidney, liver, and heart. The mRNA levels of GR and MR at earlier stages in kidney, liver, and heart indicates that they might involve in the transcriptional regulation of early embryos and activate many precise developmental effects in fetal tissues. We also measured the protein expression in the liver embryonic developmental stages and found that the GR and MR proteins were restricted to both the nuclei and cytoplasm. The protein expression levels in the liver at different embryonic developmental stages have extremely prominent differences. Taken together, our results showed the full coding regions of GR and MR, their characteristics, and embryonic developmental mRNA and protein expressions of both genes in A. sinensis. This study could provide the necessary information for further investigating the diverse functions of GR and MR in A. sinensis.
Collapse
Affiliation(s)
- Ali Izaz
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Pan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lin Wang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Huabin Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shulong Duan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - En Li
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Peng Yan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaobing Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
2
|
Sala S, Ampe C. An emerging link between LIM domain proteins and nuclear receptors. Cell Mol Life Sci 2018; 75:1959-1971. [PMID: 29428964 PMCID: PMC11105726 DOI: 10.1007/s00018-018-2774-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors that partake in several biological processes including development, reproduction and metabolism. Over the last decade, evidence has accumulated that group 2, 3 and 4 LIM domain proteins, primarily known for their roles in actin cytoskeleton organization, also partake in gene transcription regulation. They shuttle between the cytoplasm and the nucleus, amongst other as a consequence of triggering cells with ligands of nuclear receptors. LIM domain proteins act as important coregulators of nuclear receptor-mediated gene transcription, in which they can either function as coactivators or corepressors. In establishing interactions with nuclear receptors, the LIM domains are important, yet pleiotropy of LIM domain proteins and nuclear receptors frequently occurs. LIM domain protein-nuclear receptor complexes function in diverse physiological processes. Their association is, however, often linked to diseases including cancer.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Kemler D, Dahley O, Roßwag S, Litfin M, Kassel O. The LIM domain protein nTRIP6 acts as a co-repressor for the transcription factor MEF2C in myoblasts. Sci Rep 2016; 6:27746. [PMID: 27292777 PMCID: PMC4904203 DOI: 10.1038/srep27746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
The transcription factor Myocyte enhancer factor 2C (MEF2C) plays a key role in the late differentiation of skeletal muscle progenitor cells, the so-called myoblasts. During myoblast differentiation, both MEF2C expression and transcriptional activity are regulated. We have reported that nTRIP6, the nuclear isoform of the focal adhesion LIM domain protein TRIP6, acts as an adaptor transcriptional co-activator for several transcription factors. It interacts with the promoter-bound transcription factors and consequently mediates the recruitment of other co-activators. Based on a described interaction between MEF2C and TRIP6 in a yeast-two-hybrid screen, we hypothesised a co-regulatory function of nTRIP6 for MEF2C. In proliferating myoblasts, nTRIP6 interacted with MEF2C and was recruited together with MEF2C to the MEF2-binding regions of the MEF2C target genes Myom2, Mb, Tnni2 and Des. Silencing nTRIP6 or preventing its interaction with MEF2C increased MEF2C transcriptional activity and increased the expression of these MEF2C target genes. Thus, nTRIP6 acts as a co-repressor for MEF2C. Mechanistically, nTRIP6 mediated the recruitment of the class IIa histone deacetylase HDAC5 to the MEF2C-bound promoters. In conclusion, our results unravel a transcriptional co-repressor function for nTRIP6. This adaptor co-regulator can thus exert either co-activator or co-repressor functions, depending on the transcription factor it interacts with.
Collapse
Affiliation(s)
- Denise Kemler
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Oliver Dahley
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Sven Roßwag
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Margarethe Litfin
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Olivier Kassel
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| |
Collapse
|
4
|
Hornigold N, Mooney A. Extracellular matrix-induced Hic-5 expression in glomerular mesangial cells leads to a prosclerotic phenotype independent of TGF-β. FASEB J 2015; 29:4956-67. [PMID: 26405299 DOI: 10.1096/fj.14-269894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Chronic fibroproliferative diseases account for approximately 45% of all deaths in the developed world. In the kidney, glomerulosclerosis is the underlying pathology in approximately half of patients with renal failure receiving dialysis. Mesangial cell expression of the LIM protein hydrogen peroxide-induced clone-5 (Hic-5) is important in its pathogenesis. Hic-5 expression increases following mesangial cell attachment to collagen I, associated with increased collagen I expression and increased susceptibility to apoptosis both in vitro and in experimental glomerulosclerosis. TGF-β has an established role in many fibrotic diseases, including glomerulosclerosis, where it increases collagen I deposition in vivo and promotes mesangial cell apoptosis in vitro. In other cell types, TGF-β induces Hic-5 expression. We investigated whether Hic-5-induced changes in mesangial cell phenotype were TGF-β-dependent. Adding exogenous TGF-β to mesangial cell cultures failed to increase Hic-5 expression; blocking TGF-β signaling did not reduce Hic-5 expression. However, inducing Hic-5 expression in mesangial cells by adhesion to collagen I led to TGF-β expression, which was abolished by small interfering RNA (siRNA) Hic-5 knockdown. Mesangial cells expressing Hic-5 showed altered latent TGF-β-binding protein expression and Smad signaling, with enhanced susceptibility to TGF-β-induced apoptosis. Mesangial cell attachment to collagen I led to increased Hic-5 expression within 2-4 h and increased procollagen I transcription within 12 h, whereas adding TGF-β to siRNA Hic-5 knockdown mesangial cells increased procollagen I transcription to a lesser degree after 48 h. Mesangial cell Hic-5 expression was associated with increased α-smooth muscle actin and plasminogen activator inhibitor-1 expression. Taken together, these data indicate that there is a prosclerotic feedback loop in mesangial cells dependent on matrix-derived signals in which Hic-5 is a pivotal signaling protein. This feedback loop is TGF-β-independent. The role of TGF-β-dependent and -independent sclerotic pathways merit further investigation.
Collapse
Affiliation(s)
- Nick Hornigold
- *Cancer Research UK Clinical Centre and Renal Unit, St. James's University Hospital, Leeds, United Kingdom
| | - Andrew Mooney
- *Cancer Research UK Clinical Centre and Renal Unit, St. James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
5
|
How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs. Biochem J 2014; 460:317-29. [PMID: 24870021 DOI: 10.1042/bj20140298] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LD motifs (leucine-aspartic acid motifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs.
Collapse
|
6
|
Leach DA, Need EF, Trotta AP, Grubisha MJ, DeFranco DB, Buchanan G. Hic-5 influences genomic and non-genomic actions of the androgen receptor in prostate myofibroblasts. Mol Cell Endocrinol 2014; 384:185-99. [PMID: 24440747 DOI: 10.1016/j.mce.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 01/31/2023]
Abstract
There is extensive knowledge of androgen receptor (AR) signaling in cancer cells, but less regarding androgen action in stromal cells of the tumor microenvironment. We report here the genome-wide effects of a stromal cell specific molecular adapter and AR coregulator, hydrogen peroxide-inducible gene 5 (Hic-5/TGFB1I1), on AR function in prostate myofibroblasts. Following androgen stimulation, Hic-5 rapidly translocates to the nucleus, coincident with increased phosphorylation of focal adhesion kinase. As a coregulator, Hic-5 acted to amplify or inhibit regulation of approximately 50% of AR target genes, affected androgen regulation of growth, cell adhesion, motility and invasion. These data suggest Hic-5 as a transferable adaptor between focal adhesions and the nucleus of prostate myofibroblasts, where it acts a key mediator of the specificity and sensitivity of AR signaling. We propose a model in which Hic-5 coordinates AR signaling with adhesion and extracellular matrix contacts to regulate cell behavior in the tumor microenvironment.
Collapse
Affiliation(s)
- Damien A Leach
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Eleanor F Need
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Andrew P Trotta
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Melanie J Grubisha
- School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Donald B DeFranco
- School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Grant Buchanan
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia.
| |
Collapse
|
7
|
Abstract
Paxillin is a well-characterized cytoplasmic adaptor protein that is known to play important roles in cytoskeletal rearrangement, cell adhesion, and cell motility. In addition to its structural functions, paxillin has more recently been shown to function as a regulator of cell division-mediating steroid-triggered meiosis in oocytes as well as steroid- and growth factor-induced proliferation in prostate and breast cancer. Paxillin mediates these processes through a conserved pathway that involves both extranuclear (nongenomic) and nuclear (genomic) steroid signaling, as well as both cytoplasmic and nuclear kinase signaling. In fact, paxillin appears to serve as a critical liaison between extranuclear and nuclear signaling in response to multiple stimuli, making it a fascinating molecule to study when trying to determine how growth signals from the membrane lead to important proliferative changes in the nucleus. This chapter outlines recent advances in understanding how paxillin regulates both steroid and growth factor signaling, focusing on the conserved nature of its actions from a frog germ cell to a human cancer cell.
Collapse
Affiliation(s)
- Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., 693, Rochester, NY, 14642, USA,
| | | | | |
Collapse
|
8
|
Galigniana MD, Echeverría PC, Erlejman AG, Piwien-Pilipuk G. Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus 2012; 1:299-308. [PMID: 21113270 DOI: 10.4161/nucl.1.4.11743] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR) -domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor "transformation") is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin β and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore.
Collapse
Affiliation(s)
- Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
9
|
Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2012; 99:489-502. [PMID: 17696879 DOI: 10.1042/bc20060126] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.
Collapse
Affiliation(s)
- Quanhui Zheng
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
10
|
Xie S, Ni J, Lee YF, Liu S, Li G, Shyr CR, Chang C. Increased acetylation in the DNA-binding domain of TR4 nuclear receptor by the coregulator ARA55 leads to suppression of TR4 transactivation. J Biol Chem 2011; 286:21129-36. [PMID: 21515881 DOI: 10.1074/jbc.m110.208181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The nuclear receptor TR4 is a key regulator for many physiological processes, including growth, development, and metabolism. However, how the transcriptional activity of TR4 is regulated in the absence of ligand(s) remains largely unknown. Here we found that an androgen receptor (AR) coactivator, ARA55, might function as a corepressor to suppress TR4 transactivation. Molecular mechanistic dissection with mutation analysis found that ARA55 could enhance TR4 acetylation at the conserved acetylation sites of lysine 175 and lysine 176 in the DNA-binding domain via recruiting proteins with histone acetyl transferase activity, which might then reduce significantly the TR4 DNA binding activity that resulted in the suppression of TR4 transactivation. These results are in contrast to the classic ARA55 coactivator function to enhance AR transactivation partially via increased AR acetylation in the hinge/ligand-binding domain. Together, these results not only provide a novel functional mechanism showing that acetylation of different nuclear receptors at different domains by coregulator may lead to differential receptor transactivation activity but also provide a new way for small molecules to control TR4 transactivation via altering TR4 acetylation levels, and such small molecules may have potential therapeutic applications in the future.
Collapse
Affiliation(s)
- Shaozhen Xie
- George Whipple Lab for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Li X, Martinez-Ferrer M, Botta V, Uwamariya C, Banerjee J, Bhowmick NA. Epithelial Hic-5/ARA55 expression contributes to prostate tumorigenesis and castrate responsiveness. Oncogene 2010; 30:167-77. [PMID: 20818421 PMCID: PMC3021901 DOI: 10.1038/onc.2010.400] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stromal–epithelial interactions dictate prostate tumorigenesis and response to castration. Hydrogen peroxide-inducible clone 5 (Hic-5/ARA55) is a transforming growth factor-beta (TGF-β)-induced coactivator of androgen receptor (AR) expressed in the prostate stroma. Interestingly, following castration, we identified epithelial expression of Hic-5/ARA55 in mouse and human prostate tissues. To determine the role of epithelial Hic-5 in prostate cancer progression and castration responsiveness, we compared LNCaP cells having Hic-5 stably expressed with the parental LNCaP cells following tissue recombination xenografts with mouse prostate stromal cells. We previously identified knocking out prostate stromal TGF-β signaling potentiated castrate-resistant prostate tumors, in a Wnt-dependent manner. The LNCaP chimeric tumors containing prostate fibroblasts conditionally knocked out for the TGF-β type II receptor (Tgfbr2-KO) resulted in larger, more invasive, and castration-resistant tumors compared those with floxed (control) stromal cells. However, the LNCaP-Hic5 associated with Tgfbr2-KO fibroblasts generated chimeric tumors with reduced tumor volume, lack of invasion and restored castration dependence. Neutralization of canonical Wnt signaling is shown to reduce prostate tumor size and restore regression following castration. Thus, we hypothesized that epithelial Hic-5/ARA55 expression negatively regulated Wnt signaling. The mechanism of the Hic-5/ARA55 effects on castration was determined by analysis of the c-myc promoter. C-myc luciferase reporter activity suggested Hic-5/ARA55 expression inhibited c-myc activity by β-catenin. Sequential ChIP analysis indicated β-catenin and T-cell-specific 4 (TCF4) bound the endogenous c-myc promoter in the absence of Hic-5 expression. However, the formation of a TCF4/Hic-5 repressor complex inhibited c-myc promoter activity, by excluding β-catenin binding with TCF4 on the promoter. The data indicate Hic-5/ARA55 expression in response to castration-enabled epithelial regression through the repression of c-myc gene at the chromatin level.
Collapse
Affiliation(s)
- X Li
- The Vanderbilt-Ingram Cancer Center and Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
12
|
Diefenbacher ME, Litfin M, Herrlich P, Kassel O. The nuclear isoform of the LIM domain protein Trip6 integrates activating and repressing signals at the promoter-bound glucocorticoid receptor. Mol Cell Endocrinol 2010; 320:58-66. [PMID: 20153803 DOI: 10.1016/j.mce.2010.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/28/2010] [Accepted: 02/07/2010] [Indexed: 01/08/2023]
Abstract
Trip6 belongs to a family of cytosolic LIM domain proteins involved in cell adhesion and migration. Recent findings show that these proteins also regulate transcription. We have previously reported that nTrip6, a nuclear isoform of Trip6, acts as a co-activator for AP-1 and NF-kappaB transcription factors. Here we report that nTrip6 is an essential regulator of glucocorticoid receptor (GR) transcriptional activity. nTrip6 is recruited to GR-bound promoters through an interaction with GR, and increases GR-mediated transcription. nTrip6 is also essential for the transrepression of GR by NF-kappaB and AP-1. The interaction of nTrip6 with NF-kappaB and AP-1 at a GR-bound promoter is required for the repression. Thus, nTrip6 serves as the molecular mediator of the crosstalk between nuclear receptors and other transcription factors in that it assembles these factors at promoters. Our results reveal an essential role for LIM domain proteins in the integration of positive and negative signals at target promoters.
Collapse
Affiliation(s)
- Markus E Diefenbacher
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | | | | | |
Collapse
|
13
|
Caltagarone J, Hamilton RL, Murdoch G, Jing Z, DeFranco DB, Bowser R. Paxillin and hydrogen peroxide-inducible clone 5 expression and distribution in control and Alzheimer disease hippocampi. J Neuropathol Exp Neurol 2010; 69:356-71. [PMID: 20448481 PMCID: PMC2869219 DOI: 10.1097/nen.0b013e3181d53d98] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hydrogen peroxide-inducible clone 5 (Hic-5) and paxillin are members of the Group III LIM domain protein family that localize to both cell nuclei and focal adhesions and link integrin-mediated signaling to the actin cytoskeleton. Prior in vitro studies have implicated paxillin in beta-amyloid-induced cell death, but little is known about the expression and function of Hic-5 and paxillin in the brain. We performed a blinded retrospective cross-sectional study of Hic-5 and paxillin expression in the hippocampi of Alzheimer disease (AD) and control subjects using immunohistochemistry and laser scanning confocal microscopy. The analysis included assessment of the expression of phosphorylated isoforms of paxillin that reflect activation of distinct signaling pathways. We found changes in the subcellular distribution of Hic-5, paxillin, and specific phosphorylated isoforms of paxillin in the AD brains. The Hic-5 and phosphorylated isoforms of paxillin colocalized with neurofibrillary tangles. Paxillin was predominantly found in reactive astrocytes in the AD hippocampi, and activated paxillin was also detected in granulovacuolar degeneration bodies in AD. These data indicate that these important scaffolding proteins that link various intracellular signaling pathways to the extracellular matrix are modified and have altered subcellular distribution in AD.
Collapse
Affiliation(s)
- John Caltagarone
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
14
|
Wendt MK, Allington TM, Schiemann WP. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 2010; 5:1145-68. [PMID: 19852727 DOI: 10.2217/fon.09.90] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation of epithelial cell barriers results from the defined spatiotemporal differentiation of stem cells into a specialized and polarized epithelium, a process termed mesenchymal-epithelial transition. The reverse process, epithelial-mesenchymal transition (EMT), is a metastable process that enables polarized epithelial cells to acquire a motile fibroblastoid phenotype. Physiological EMT also plays an essential role in promoting tissue healing, remodeling or repair in response to a variety of pathological insults. On the other hand, pathophysiological EMT is a critical step in mediating the acquisition of metastatic phenotypes by localized carcinomas. Although metastasis clearly is the most lethal aspect of cancer, our knowledge of the molecular events that govern its development, including those underlying EMT, remain relatively undefined. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation and homeostasis, as well as suppresses their uncontrolled proliferation and transformation. Quite dichotomously, tumorigenesis subverts the tumor suppressing function of TGF-beta, and in doing so, converts TGF-beta to a tumor promoter that stimulates pathophysiological EMT and metastasis. It therefore stands to reason that determining how TGF-beta induces EMT in developing neoplasms will enable science and medicine to produce novel pharmacological agents capable of preventing its ability to do so, thereby improving the clinical course of cancer patients. Here we review the cellular, molecular and microenvironmental mechanisms used by TGF-beta to mediate its stimulation of EMT in normal and malignant cells.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
15
|
Upregulation of Hic-5 in glomerulosclerosis and its regulation of mesangial cell apoptosis. Kidney Int 2009; 77:329-38. [PMID: 20010548 DOI: 10.1038/ki.2009.417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glomerulosclerosis is characterized by the loss of glomerular cells by apoptosis and deposition of collagen type I into the normal collagen IV-containing mesangial matrix. We sought to determine the alterations that might contribute to these changes by performing proteomic analysis of rat mesangial cell lysates comparing cells cultured on normal collagen type IV to those grown on abnormal collagen type I surfaces. Subculture on collagen type I was associated with changed expression of several proteins, including a significant upregulation of the paxillin-like LIM protein, hydrogen-peroxide-induced clone 5 (Hic-5), and increased the susceptibility of the cells to apoptosis in response to physiological triggers. When we knocked down Hic-5 (using siRNA), we found mesangial cells grown on collagen type I were protected from apoptosis to the same degree as untreated cells grown on collagen type IV. Further we found that the level of Hic-5 in vivo was almost undetectable in control rats but increased dramatically in the glomerular mesangium of remnant kidneys 90 and 120 days after subtotal nephrectomy. This induction of Hic-5 paralleled the upregulation of mesangial collagen type I expression and glomerular cell apoptosis. Our results suggest that Hic-5 is pivotal in mediating the response of mesangial cells to attachment on abnormal extracellular matrix during glomerular scarring.
Collapse
|
16
|
Mori K, Hirao E, Toya Y, Oshima Y, Ishikawa F, Nose K, Shibanuma M. Competitive nuclear export of cyclin D1 and Hic-5 regulates anchorage dependence of cell growth and survival. Mol Biol Cell 2008; 20:218-32. [PMID: 18946086 DOI: 10.1091/mbc.e08-04-0428] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Anchorage dependence of cell growth and survival is a critical trait that distinguishes nontransformed cells from transformed cells. We demonstrate that anchorage dependence is determined by anchorage-dependent nuclear retention of cyclin D1, which is regulated by the focal adhesion protein, Hic-5, whose CRM1-dependent nuclear export counteracts that of cyclin D1. An adaptor protein, PINCH, interacts with cyclin D1 and Hic-5 and potentially serves as an interface for the competition between cyclin D1 and Hic-5 for CRM1. In nonadherent cells, the nuclear export of Hic-5, which is redox-sensitive, was interrupted due to elevated production of reactive oxygen species, and cyclin D1 was exported from the nucleus. When an Hic-5 mutant that was continuously exported in a reactive oxygen species-insensitive manner was introduced into the cells, cyclin D1 was retained in the nucleus under nonadherent conditions, and a significant population of cells escaped from growth arrest or apoptosis. Interestingly, activated ras achieved predominant cyclin D1 nuclear localization and thus, growth in nonadherent cells. We report a failsafe system for anchorage dependence of cell growth and survival.
Collapse
Affiliation(s)
- Kazunori Mori
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Rodríguez-Muñoz R, Villarreal-Silva M, González-Ramírez R, García-Sierra F, Mondragón M, Mondragón R, Cerna J, Cisneros B. Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix. Biochem Biophys Res Commun 2008; 375:303-7. [PMID: 18687308 DOI: 10.1016/j.bbrc.2008.07.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in the center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.
Collapse
Affiliation(s)
- Rafael Rodríguez-Muñoz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Apartado Postal 14-740, C.P. 07360, México D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mori K, Asakawa M, Hayashi M, Imura M, Ohki T, Hirao E, Kim-Kaneyama JR, Nose K, Shibanuma M. Oligomerizing potential of a focal adhesion LIM protein Hic-5 organizing a nuclear-cytoplasmic shuttling complex. J Biol Chem 2006; 281:22048-22061. [PMID: 16737959 DOI: 10.1074/jbc.m513111200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hic-5 is a focal adhesion LIM protein serving as a scaffold in integrin signaling. The protein comprises four LD domains in its N-terminal half and four LIM domains in its C-terminal half with a nuclear export signal in LD3 and is shuttled between the cytoplasmic and nuclear compartments. In this study, immunoprecipitation and in vitro cross-linking experiments showed that Hic-5 homo-oligomerized through its most C-terminal LIM domain, LIM4. Strikingly, paxillin, the protein most homologous to Hic-5, did not show this capability. Gel filtration analysis also revealed that Hic-5 differs from paxillin in that it has multiple forms in the cellular environment, and Hic-5 but not paxillin was capable of hetero-oligomerization with a LIM-only protein, PINCH, another molecular scaffold at focal adhesions. The fourth LIM domain of Hic-5 and the fifth LIM domain region of PINCH constituted the interface for the interaction. The complex included integrin-linked kinase, a binding partner of PINCH, which also interacted with Hic-5 through the region encompassing the pleckstrin homology-like domain and LIM domains of Hic-5. Of note, Hic-5 marginally affected the subcellular distribution of PINCH but directed its shuttling between the cytoplasmic and nuclear compartments in the presence of integrin-linked kinase. Uncoupling of the two signaling platforms of Hic-5 and PINCH through interference with the hetero-oligomerization resulted in impairment of cellular growth. Hic-5 is, thus, a molecular scaffold with the potential to dock with another scaffold through the LIM domain, organizing a mobile supramolecular unit and coordinating the adhesion signal with cellular activities in the two compartments.
Collapse
Affiliation(s)
- Kazunori Mori
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan
| | - Masayuki Asakawa
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan
| | - Miki Hayashi
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan
| | - Miwako Imura
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan
| | - Takahiro Ohki
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan
| | - Etsuko Hirao
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan
| | - Joo-Ri Kim-Kaneyama
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan
| | - Kiyoshi Nose
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan
| | - Motoko Shibanuma
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo 142-8555, Japan.
| |
Collapse
|
19
|
Saelzler MP, Spackman CC, Liu Y, Martinez LC, Harris JP, Abe MK. ERK8 down-regulates transactivation of the glucocorticoid receptor through Hic-5. J Biol Chem 2006; 281:16821-32. [PMID: 16624805 DOI: 10.1074/jbc.m512418200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinase 8 (ERK8) is the most recently identified member of the ERK subfamily of MAPKs. Although other members of the ERK subfamily are established regulators of signaling pathways involved in cell growth and/or differentiation, less is known about ERK8. To understand the cellular function of ERK8, a yeast two-hybrid screen of a human lung library was performed to identify binding partners. One binding partner identified was Hic-5 (also known as ARA55), a multiple LIM domain containing protein implicated in focal adhesion signaling and the regulation of specific nuclear receptors, including the androgen receptor and the glucocorticoid receptor (GR). Co-immunoprecipitation experiments in mammalian cells confirmed the interaction between Hic-5 and both ERK8 and its rodent ortholog ERK7. The C-terminal region of ERK8 was not required for the interaction. Although the LIM3 and LIM4 domains of Hic-5 were sufficient and required for this interaction, the specific zinc finger motifs in these domains were not. Transcriptional activation reporter assays revealed that ERK8 can negatively regulate transcriptional co-activation of androgen receptor and GRalpha by Hic-5 in a kinase-independent manner. Knockdown of endogenous ERK8 in human airway epithelial cells enhanced dexamethasone-stimulated transcriptional activity of endogenous GR. Transcriptional regulation of GRalpha and interaction with its ligand binding domain by ERK8 were dependent on the presence of Hic-5. These results provide the first physiological function for human ERK8 as a negative regulator of human GRalpha, acting through Hic-5, and suggest a broader role for ERK8 in the regulation of nuclear receptors beyond estrogen receptor alpha.
Collapse
Affiliation(s)
- Matthew P Saelzler
- Department of Pediatrics, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637-1470, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kishimoto M, Fujiki R, Takezawa S, Sasaki Y, Nakamura T, Yamaoka K, Kitagawa H, Kato S. Nuclear receptor mediated gene regulation through chromatin remodeling and histone modifications. Endocr J 2006; 53:157-72. [PMID: 16618973 DOI: 10.1507/endocrj.53.157] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nuclear steroid/thyroid vitamin A/D receptor genes form a gene superfamily and encode DNA-binding transcription factors that control the transcription of target genes in a ligand-dependent manner. It has become clear that chromatin remodeling and the modification of histones, the main components of chromatin, play crucial roles in gene transcription, and many distinct classes of NR-interacting co-regulators have been identified that perform significant roles in gene transcription. Since NR dysfunction can lead to the onset or progression of endocrine disease, elucidation of the mechanisms of gene regulation mediated by NRs, as well as the identification and characterization of co-regulator complexes (especially chromatin remodeling and histone-modifying complexes), is essential not only for better understanding of NR ligand function, but also for pathophysiological studies and the development of therapeutic interventions in humans.
Collapse
Affiliation(s)
- Masahiko Kishimoto
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ghogomu SM, van Venrooy S, Ritthaler M, Wedlich D, Gradl D. HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription. J Biol Chem 2005; 281:1755-64. [PMID: 16291758 DOI: 10.1074/jbc.m505869200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Wnt/beta-catenin target genes is regulated by a heterodimer of beta-catenin and the high mobility group box transcription factors of the lymphoid enhancer factor (LEF)/T-cell factor (TCF) family. In vertebrates, four LEF/TCF family members have been identified. They all contain a conserved beta-catenin-binding motif at the N terminus and a highly conserved high mobility group box for DNA binding. The core sequence between these motifs is less conserved and contributes to the specific properties of the individual family members. To identify interacting proteins that allocate specific functions to the individual LEF/TCF transcription factors, we performed a yeast two-hybrid screen using the less conserved core sequence as bait. We isolated the murine LIM protein HIC-5 (hydrogen peroxide-induced clone 5; also termed ARA-55 (androgen receptor activator of 55 kDa)) and cloned the highly conserved Xenopus homolog. In addition, we report that the LIM domain-containing C-terminal half of HIC-5 binds to a conserved alternatively spliced exon in LEF/TCF transcription factors. Our functional analyses revealed that HIC-5 acts as negative regulator of a subset of LEF/TCF family members, which have been characterized as activators in reporter gene analyses and in the Xenopus axis induction assay. In addition, we observed a repressive interference of LEF/TCF family members with HIC-5-mediated activation of glucocorticoid-driven transcription, which again could be allocated to specific LEF/TCF subtypes. With the characterization of HIC-5 as a binding partner of the alternatively spliced exon in LEF/TCF transcription factors, we identified a novel molecular mechanism in the dialog of steroid and canonical Wnt signaling that is LEF/TCF subtype-dependent.
Collapse
Affiliation(s)
- Stephen Mbigha Ghogomu
- Zoologisches Institut II, Universität Karlsruhe (Technische Hochschule), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
22
|
Seo J, Lozano MM, Dudley JP. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J Biol Chem 2005; 280:24600-9. [PMID: 15851481 DOI: 10.1074/jbc.m414076200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Special AT-rich binding protein 1 (SATB1) originally was identified as a protein that bound to the nuclear matrix attachment regions (MARs) of the immunoglobulin heavy chain intronic enhancer. Subsequently, SATB1 was shown to repress many genes expressed in the thymus, including interleukin-2 receptor alpha, c-myc, and those encoded by mouse mammary tumor virus (MMTV), a glucocorticoid-responsive retrovirus. SATB1 binds to MARs within the MMTV provirus to repress transcription. To address the role of the nuclear matrix in SATB1-mediated repression, a series of SATB1 deletion constructs was used to determine protein localization. Wild-type SATB1 localized to the soluble nuclear, chromatin, and nuclear matrix fractions. Mutants lacking amino acids 224-278 had a greatly diminished localization to the nuclear matrix, suggesting the presence of a nuclear matrix targeting sequence (NMTS). Transient transfection experiments showed that NMTS fusions to green fluorescent protein or LexA relocalized these proteins to the nuclear matrix. Difficulties with previous assay systems prompted us to develop retroviral vectors to assess effects of different SATB1 domains on expression of MMTV proviruses or integrated reporter genes. SATB1 overexpression repressed MMTV transcription in the presence and absence of functional glucocorticoid receptor. Repression was alleviated by deletion of the NMTS, which did not affect DNA binding, or by deletion of the MAR-binding domain. Our studies indicate that both nuclear matrix association and DNA binding are required for optimal SATB1-mediated repression of the integrated MMTV promoter and may allow insulation from cellular regulatory elements.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Nucleus/metabolism
- DNA/chemistry
- DNA Primers/chemistry
- Dimerization
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Humans
- Interleukin-2 Receptor alpha Subunit
- Introns
- Jurkat Cells
- Ligands
- Mammary Glands, Animal
- Mammary Tumor Virus, Mouse/genetics
- Matrix Attachment Region Binding Proteins/metabolism
- Matrix Attachment Region Binding Proteins/physiology
- Mice
- Microscopy, Fluorescence
- Mutation
- Plasmids/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- RNA/metabolism
- Rats
- Receptors, Glucocorticoid/metabolism
- Receptors, Interleukin/metabolism
- Recombinant Fusion Proteins/chemistry
- Retroviridae/genetics
- Ribonucleases/metabolism
- Subcellular Fractions
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Jin Seo
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
23
|
Wang H, Song K, Sponseller TL, Danielpour D. Novel Function of Androgen Receptor-associated Protein 55/Hic-5 as a Negative Regulator of Smad3 Signaling. J Biol Chem 2005; 280:5154-62. [PMID: 15561701 DOI: 10.1074/jbc.m411575200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor-associated protein 55 (ARA55/Hic-5) belongs to the LIM protein superfamily and is featured by three or four N-terminal LD motifs and four C-terminal zinc finger-like LIM domains. Both LD motifs and LIM domains can serve as protein-protein interaction interfaces. Recently, we found that enforced expression of ARA55 inhibits transforming growth factor-beta-mediated up-regulation of Smad binding element-luciferase reporter activity in NRP-154 and NRP-152 rat prostate and LNCaP human prostate cell lines. Moreover, ARA55 also inhibits the induction of Smad-binding element 4-luciferase and 3TP-luciferase (a plasminogen activator inhibitor-1 (PAI-1) promoter construct) reporters by constitutively active (CA)-Smad3 in these cell lines. Co-immunoprecipitation studies suggest an interaction between ARA55 and either CA-Smad3 or wild-type Smad3 in HEK293 cells that occurs through the MH2 domain of Smad3 and the C terminus of ARA55 with wild-type Smad3 having stronger affinity than CA-Smad3 to ARA55. Glutathione S-transferase pull-down assays demonstrate that this interaction can occur in a cell-free system. These results are consistent with the luciferase data showing that the C terminus of ARA55 is critical for suppression of Smad3 activity. Furthermore, using a mammalian two-hybrid system, we confirmed that ARA55 interacts with the MH2 domain of Smad3 and suppresses CA-Smad3-induced transcriptional responses. In conclusion, these results support that ARA55 selectively intercepts transforming growth factor-beta signaling through an interaction of the LIM domain of ARA55 with the MH2 domain of Smad3.
Collapse
Affiliation(s)
- Hui Wang
- Ireland Cancer Center Research Laboratories and Department of Pharmacology, Case Western Reserve University/University Hospitals, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|