1
|
Jiang H, Zhang M, Qu Y, Xing B, Wang B, Liu Y, Zhang P. Therapeutic Potential of Nano-Sustained-Release Factors for Bone Scaffolds. J Funct Biomater 2025; 16:136. [PMID: 40278244 PMCID: PMC12027867 DOI: 10.3390/jfb16040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release characteristics of growth factors, drugs, and genes. Nano slow-release bone scaffolds integrate nano slow-release factors, which are loaded with growth factors, drugs, genes, etc., with bone scaffolds, which can significantly improve the efficiency of bone repair. In addition, these drug-loading systems have also been extended to the fields of anti-infection and anti-tumor. However, the problem of heterotopic ossification caused by high doses has led to a shift in research towards a low-dose multi-factor synergistic strategy. Multiple Phase II clinical trials are currently ongoing, evaluating the efficacy and safety of nano-hydroxyapatite scaffolds. Despite significant progress, this field still faces a series of challenges: the immunity risks of the long-term retention of nanomaterials, the precise matching of multi-factor release kinetics, and the limitations of the large-scale production of personalized scaffolds. Future development directions in this area include the development of responsive sustained-release systems, biomimetic sequential release design, the more precise regeneration of injury sites through a combination of gene-editing technology and self-assembled nanomaterials, and precise drug loading and sustained release through microfluidic and bioprinting technologies to reduce the manufacturing cost of bone scaffolds. The progress of these bone scaffolds has gradually changed bone repair from morphology-matched filling regeneration to functional recovery, making the clinical transformation of bone scaffolds safer and more universal.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Bohan Xing
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Bojiang Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Yanqun Liu
- Department of Orthopedic Surgery, Yanbian University Hospital, 1327 Juzi St., Yanji 133002, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| |
Collapse
|
2
|
Wu F, Ge C, Pan H, Han Y, Mishina Y, Kaartinen V, Franceschi RT. Discoidin domain receptor 2 is an important modulator of BMP signaling during heterotopic bone formation. Bone Res 2025; 13:7. [PMID: 39746922 PMCID: PMC11696679 DOI: 10.1038/s41413-024-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity. As will be shown, induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice. In addition, Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva. In cells migrating into BMP2 implants, DDR2 is co-expressed with GLI1, a skeletal stem cell marker, and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages. Consistent with this distribution, conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals. This response was explained by selective inhibition of Gli1+ cell proliferation without changes in apoptosis. The basis for this DDR2 requirement was explored further using bone marrow stromal cells. Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo, bone formation, early BMP responses including SMAD phosphorylation remained largely intact. Instead, Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates, YAP and TAZ. This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix, which subsequently affect BMP responsiveness. In summary, DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.
Collapse
Affiliation(s)
- Fashuai Wu
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxi Ge
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuanyuan Han
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Kiselevskiy MV, Anisimova NY, Kapustin AV, Ryzhkin AA, Kuznetsova DN, Polyakova VV, Enikeev NA. Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review. Biomimetics (Basel) 2023; 8:546. [PMID: 37999187 PMCID: PMC10669447 DOI: 10.3390/biomimetics8070546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
We overview recent findings achieved in the field of model-driven development of additively manufactured porous materials for the development of a new generation of bioactive implants for orthopedic applications. Porous structures produced from biocompatible titanium alloys using selective laser melting can present a promising material to design scaffolds with regulated mechanical properties and with the capacity to be loaded with pharmaceutical products. Adjusting pore geometry, one could control elastic modulus and strength/fatigue properties of the engineered structures to be compatible with bone tissues, thus preventing the stress shield effect when replacing a diseased bone fragment. Adsorption of medicals by internal spaces would make it possible to emit the antibiotic and anti-tumor agents into surrounding tissues. The developed internal porosity and surface roughness can provide the desired vascularization and osteointegration. We critically analyze the recent advances in the field featuring model design approaches, virtual testing of the designed structures, capabilities of additive printing of porous structures, biomedical issues of the engineered scaffolds, and so on. Special attention is paid to highlighting the actual problems in the field and the ways of their solutions.
Collapse
Affiliation(s)
- Mikhail V. Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Department of Casting Technologies and Artistic Processing of Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Natalia Yu. Anisimova
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Department of Casting Technologies and Artistic Processing of Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Alexei V. Kapustin
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Alexander A. Ryzhkin
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Daria N. Kuznetsova
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Veronika V. Polyakova
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Nariman A. Enikeev
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
- Laboratory for Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Bauer M, Aguilar G, Wharton KA, Matsuda S, Affolter M. Heterodimerization-dependent secretion of bone morphogenetic proteins in Drosophila. Dev Cell 2023; 58:645-659.e4. [PMID: 37054707 PMCID: PMC10303954 DOI: 10.1016/j.devcel.2023.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Combinatorial signaling is key to instruct context-dependent cell behaviors. During embryonic development, adult homeostasis, and disease, bone morphogenetic proteins (BMPs) act as dimers to instruct specific cellular responses. BMP ligands can form both homodimers or heterodimers; however, obtaining direct evidence of the endogenous localization and function of each form has proven challenging. Here, we make use of precise genome editing and direct protein manipulation via protein binders to dissect the existence and functional relevance of BMP homodimers and heterodimers in the Drosophila wing imaginal disc. This approach identified in situ the existence of Dpp (BMP2/4)/Gbb (BMP5/6/7/8) heterodimers. We found that Gbb is secreted in a Dpp-dependent manner in the wing imaginal disc. Dpp and Gbb form a gradient of heterodimers, whereas neither Dpp nor Gbb homodimers are evident under endogenous physiological conditions. We find that the formation of heterodimers is critical for obtaining optimal signaling and long-range BMP distribution.
Collapse
Affiliation(s)
- Milena Bauer
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Gustavo Aguilar
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | - Shinya Matsuda
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| | - Markus Affolter
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
5
|
Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC. Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation. Front Bioeng Biotechnol 2022; 10:901317. [PMID: 35837555 PMCID: PMC9274665 DOI: 10.3389/fbioe.2022.901317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body’s healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.
Collapse
Affiliation(s)
- Rachael S. Watson-Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Glyn D. Palmer
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Padraic P. Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - E. Anthony Dacanay
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher H. Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MI, United States
| | - Steven C. Ghivizzani
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Steven C. Ghivizzani,
| |
Collapse
|
6
|
Wang X, Liu J, Jing H, Li B, Sun Z, Li B, Kong D, Leng X, Wang Z. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111872. [PMID: 33579497 DOI: 10.1016/j.msec.2021.111872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
In this study, electrospun scaffolds were fabricated by blending poly(l-lactide-co-ε-caprolactone) (PLCL) and silk fibroin (SF) with different ratios, and further the feasibility of electrospun PLCL/SF scaffolds were evaluated for application of tissue engineered heart valve (TEHV). Scanning electron microscopy (SEM) results showed that the surface of PLCL/SF electrospun scaffolds was smooth and uniform while the mechanical properties were appropriate as valve prosthesis. In vitro cytocompatibility evaluation results demonstrated that all of the PLCL/SF electrospun scaffolds were cytocompatible and valvular interstitial cells (VICs) cultured on PLCL/SF scaffolds of 80/20 & 70/30 ratios exhibited the best cytocompatibility. The in vitro osteogenic differentiation of VICs including alkaline phosphatase (ALP) activity and quantitative polymerase chain reaction (qPCR) assays indicated that PLCL/SF scaffolds of 80/20 & 90/10 ratios behaved better anti-calcification ability. In the in vivo calcification evaluation model of rat subdermal implantation, PLCL/SF scaffolds of 80/20 & 90/10 ratios presented better anti-calcification ability, which was consistent with the in vitro results. Moreover, PLCL/SF scaffolds of 80/20 & 70/30 ratios showed significantly enhanced cell infiltration and M2 macrophage with higher CD206+/CD68+ ratio. Collectively, our data demonstrated that electrospun scaffolds with the PLCL/SF ratio of 80/20 hold great potential as TEHV materials.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300385, China.
| | - Huimin Jing
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Binhan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhiting Sun
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
7
|
Betz VM, Ren B, Betz OB, Jansson V, Müller PE. Osteoinduction within adipose tissue fragments by heterodimeric bone morphogenetic Proteins-2/6 and -2/7 versus homodimeric bone morphogenetic protein-2: Therapeutic implications for bone regeneration. J Gene Med 2021; 23:e3311. [PMID: 33527563 DOI: 10.1002/jgm.3311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Fragments of subcutaneous adipose tissue that have been genetically modified to express bone morphogenetic protein-2 (BMP-2) regenerate large segmental osseous lesions in rodents. Gene-activated adipose tissue can be implanted into osseous defects without prior cell extraction and cell culture. The present study aimed to explore whether the heterodimers BMP-2/6 or BMP-2/7 exceed the osteoinductive effect of BMP-2 on adipose tissue. METHODS In an in vitro tissue culture system, freshly harvested rat subcutaneous adipose tissue was cultivated in the presence of either BMP-2 or BMP-2/6 or BMP-2/7 at a high (200 ng/ml) and low (50 ng/ml) concentration. Gene expression analysis as well as histological and immunohistochemical methods were applied to test for osteoinduction. RESULTS A concentration of 200 ng/ml of homodimeric BMP-2 induced osteogenic differentiation most potently, showing more calcification and a higher expression level of bone markers than both concentrations of BMP-2/6 or -2/7. A concentration of 50 ng/ml of BMP-2 was a significantly stronger osteogenic inducer than both concentrations of BMP-2/6 and the low concentration of BMP-2/7. The most potent heterodimeric driver of osteoinduction was BMP-2/7 at a high concentration, demonstrating effects similar to those of BMP-2 at a low concentration. CONCLUSIONS Homodimeric BMP-2 evoked osteoinduction within adipose tissue more potently and at a lower concentration than heterodimeric BMP-2/6 or BMP-2/7. This result agrees well with the fact that it might be easier to translate adipose grafts activated by homodimeric BMP-2 clinically. Preclinical in vivo gene transfer studies are necessary to confirm the results of the present study.
Collapse
Affiliation(s)
- Volker M Betz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Munich, Campus Grosshadern, LMU, Munich, Bavaria, Germany
| | - Bin Ren
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Munich, Campus Grosshadern, LMU, Munich, Bavaria, Germany
| | - Oliver B Betz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Munich, Campus Grosshadern, LMU, Munich, Bavaria, Germany.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Volkmar Jansson
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Munich, Campus Grosshadern, LMU, Munich, Bavaria, Germany
| | - Peter E Müller
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Munich, Campus Grosshadern, LMU, Munich, Bavaria, Germany
| |
Collapse
|
8
|
Zhang N, Lo CW, Utsunomiya T, Maruyama M, Huang E, Rhee C, Gao Q, Yao Z, Goodman SB. PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem Cell Res Ther 2021; 12:40. [PMID: 33413614 PMCID: PMC7792350 DOI: 10.1186/s13287-020-02086-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapy has the potential for immunomodulation and enhancement of tissue regeneration. Genetically modified MSCs that over-express specific cytokines, growth factors, or chemokines have shown great promise in pre-clinical studies. In this regard, the anti-inflammatory cytokine interleukin (IL)-4 converts pro-inflammatory M1 macrophages into an anti-inflammatory M2 phenotype; M2 macrophages mitigate chronic inflammation and enhance osteogenesis by MSC lineage cells. However, exposure to IL-4 prematurely inhibits osteogenesis of MSCs in vitro; furthermore, IL-4 overexpressing MSCs inhibit osteogenesis in vivo during the acute inflammatory period. Platelet-derived growth factor (PDGF)-BB has been shown to enhance osteogenesis of MSCs with a dose-dependent effect. METHODS In this study, we generated a lentiviral vector that produces PDGF-BB under a weak promoter (phosphoglycerate kinase, PGK) and lentiviral vector producing IL-4 under a strong promoter (cytomegalovirus, CMV). We infected MSCs with PDGF-BB and IL-4-producing lentiviral vectors separately or in combination to investigate cell proliferation and viability, protein expression, and the capability for osteogenesis. RESULTS PDGF-BB and IL-4 co-overexpression was observed in the co-infected MSCs and shown to enhance cell proliferation and viability, and osteogenesis compared to IL-4 overexpressing MSCs alone. CONCLUSIONS Overexpression of PDGF-BB together with IL-4 mitigates the inhibitory effect of IL-4 on osteogenesis by IL-4 overexpressing MSCS. PDGF-BB and IL-4 overexpressing MSCs may be a potential strategy to facilitate osteogenesis in scenarios of both acute and chronic inflammation.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Chi-Wen Lo
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Wu C, Shao X, Lin X, Gao W, Fang Y, Wang J. Surface modification of titanium with collagen/hyaluronic acid and bone morphogenetic protein 2/7 heterodimer promotes osteoblastic differentiation. Dent Mater J 2020; 39:1072-1079. [PMID: 33028783 DOI: 10.4012/dmj.2019-249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the effects of a collagen/hyaluronic acid coating without or with incorporated heterodimeric bone morphogenetic protein 2/7 (BMP2/7) on in-vitro osteoblastic differentiation on titanium discs. The multilayer collagen/hyaluronic acid coatings without or without incorporated BMP2/7 were deposited on titanium discs via a layer-by-layer technique. The effects of the coatings were evaluated by assessing the alkaline phosphatase (ALP) activity (an early osteoblastic differentiation marker) and the osteocalcin expression (a late osteoblastic differentiation marker). The expression levels of the osteoblastic genes, such as alkaline phosphatase 2 (AKP2) and osteocalcin (OC) were detected using real-time RT-PCR. ALP activity and OC expression were significantly increased when cells were cultured with collagen/hyaluronic acid+BMP2/7 heterodimer (p<0.05). The same result was found in cells with the expression of a BMP2/7 fusion gene, OC and AKP2. These results indicated that collagen/hyaluronic acid+BMP2/7 heterodimer-coated discs might have the potential to greatly enhance osseointegration than a either BMP2 or BMP7 solution or a mixture of BMP2 and BMP7 BMP2/7.
Collapse
Affiliation(s)
- Chengzhong Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Xia Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Xianglin Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Weijin Gao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Yiming Fang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Jingxiao Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
10
|
Omi M, Kaartinen V, Mishina Y. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J Biol Chem 2019; 294:17818-17836. [PMID: 31619522 DOI: 10.1074/jbc.ra119.009521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are important mediators of osteoclast differentiation. Although accumulating evidence has implicated BMPs in osteoblastogenesis, the mechanisms by which BMPs regulate osteoclastogenesis remain unclear. Activin A receptor type 1 (ACVR1) is a BMP type 1 receptor essential for skeletal development. Here, we observed that BMP-7, which preferentially binds to ACVR1, promotes osteoclast differentiation, suggesting ACVR1 is involved in osteoclastogenesis. To investigate this further, we isolated osteoclasts from either Acvr1-floxed mice or mice with constitutively-activated Acvr1 (caAcvr1) carrying tamoxifen-inducible Cre driven by a ubiquitin promotor and induced Cre activity in culture. Osteoclasts from the Acvr1-floxed mice had reduced osteoclast numbers and demineralization activity, whereas those from the caAcvr1-mutant mice formed large osteoclasts and demineralized pits, suggesting that BMP signaling through ACVR1 regulates osteoclast fusion and activity. It is reported that BMP-2 binds to BMPR1A, another BMP type 1 receptor, whereas BMP-7 binds to ACVR1 to activate SMAD1/5/9 signaling. Here, Bmpr1a-disrupted osteoclasts displayed reduced phospho-SMAD1/5/9 (pSMAD1/5/9) levels when induced by BMP-2, whereas no impacts on pSMAD1/5/9 were observed when induced by BMP-7. In contract, Acvr1-disrupted osteoclasts displayed reduced pSMAD1/5/9 levels when induced either by BMP-2 or BMP-7, suggesting that ACVR1 is the major receptor for transducing BMP-7 signals in osteoclasts. Indeed, LDN-193189 and LDN-212854, which specifically block SMAD1/5/9 phosphorylation, inhibited osteoclastogenesis of caAcvr1-mutant cells. Moreover, increased BMP signaling promoted nuclear translocation of nuclear factor-activated T-cells 1 (NFATc1), which was inhibited by LDN treatments. Taken together, ACVR1-mediated BMP-SMAD signaling activates NFATc1, a regulatory protein crucial for receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
11
|
Miao C, Qin D, Cao P, Lu P, Xia Y, Li M, Sun M, Zhang W, Yang F, Zhang Y, Tang S, Liu T, Liu F. BMP2/7 heterodimer enhances osteogenic differentiation of rat BMSCs via ERK signaling compared with respective homodimers. J Cell Biochem 2019; 120:8754-8763. [PMID: 30485526 DOI: 10.1002/jcb.28162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Bone morphogenetic protein (BMP)2/7 heterodimer shows greater efficacy in enhancing bone regeneration. However, the precise mechanism and the role of mitogen-activated protein kinase (MAPK) signaling network in BMP2/7-driven osteogenesis remain ambiguous. In this study, we evaluated the effects of BMP2/7 heterodimers on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (BMSCs), with the aim to elaborate how MAPKs might be involved in this cellular process by treatment of rat BMSCs with BMP2/-7 with a special signal-pathway inhibitor. We found that BMP2/7 heterodimer induced a much stronger osteogenic response in rat BMSCs compared with either homodimer. Most interestingly, extracellular signal-regulated kinase (ERK) demonstrated a highly sustained phosphorylation and activation in the BMP2/7 heterodimer treatment groups, and inhibition of ERK cascades using U0126 special inhibitor that significantly reduced the activity of ALP and calcium mineralization to a substantial degree in rat BMSCs treated with BMP2/7 heterodimers. Collectively, we demonstrate that BMP2/7 heterodimer shows a potent ability to stimulate osteogenesis in rat BMSCs. The activated ERK signaling pathway involved in this process may contribute partially to an increased osteogenic potency of heterodimeric BMP2/7 growth factors.
Collapse
Affiliation(s)
- Chunlei Miao
- Division of Plastic Surgery, Institute of Plastic and Reconstructive Surgery, Hospital for Plastic Surgery, Weifang Medical University, Weifang, Shandong, China
| | - Dengke Qin
- Department of Plastic and Cosmetic Surgery, HuaDong Hospital, Fudan University, Shanghai, China
| | - Peigang Cao
- Department of Stomatology, Weifang People's hospital, Weifang, Shandong, China
| | - Ping Lu
- Department of Obstetrics and Gynecology, Zhucheng People's Hospital, Zhucheng, Shandong, China
| | - Yutong Xia
- Department of Plastic and Cosmetic Surgery, HuaDong Hospital, Fudan University, Shanghai, China.,Department of Academic Support, Shanghai Pinghe School, Shanghai, China
| | - Mengjiao Li
- Division of Plastic Surgery, Institute of Plastic and Reconstructive Surgery, Hospital for Plastic Surgery, Weifang Medical University, Weifang, Shandong, China
| | - Miao Sun
- Division of Plastic Surgery, Institute of Plastic and Reconstructive Surgery, Hospital for Plastic Surgery, Weifang Medical University, Weifang, Shandong, China
| | - Wei Zhang
- Division of Plastic Surgery, Institute of Plastic and Reconstructive Surgery, Hospital for Plastic Surgery, Weifang Medical University, Weifang, Shandong, China
| | - Fanghong Yang
- Department of Stomatology, Weifang People's hospital, Weifang, Shandong, China
| | - Yingjie Zhang
- Division of Research & Development, Eugenom Inc, San Diego, CA
| | - Shengjian Tang
- Division of Plastic Surgery, Institute of Plastic and Reconstructive Surgery, Hospital for Plastic Surgery, Weifang Medical University, Weifang, Shandong, China
| | - Tianyi Liu
- Department of Plastic and Cosmetic Surgery, HuaDong Hospital, Fudan University, Shanghai, China
| | - Fangjun Liu
- Division of Plastic Surgery, Institute of Plastic and Reconstructive Surgery, Hospital for Plastic Surgery, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
12
|
Zhang X, Chen S, Liu Y, Zhang P, Ge Y, Guo J, Wu G, Zhou Y. Heterodimeric BMP-2/7 exhibits different osteoinductive effects in human and murine cells. Growth Factors 2018; 36:141-152. [PMID: 30238816 DOI: 10.1080/08977194.2018.1477139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As robust osteoinductive cytokines, bone morphogenetic proteins (BMPs) play a significant role in bone tissue engineering. Constituted of two different polypeptides, heterodimeric BMPs are more effective than the homodimers in bone formation. While most studies focused on the murine cell lines, such as murine preosteoblasts MC3T3-E1, the role of heterodimeric BMPs in the osteogenic differentiation of human cells remains uncertain, which hinders their application to practical treatment. In this study, we compared the osteoinductive effects of BMP-2/7 heterodimer in human adipose-derived stem cells (hASCs) with their homodimers BMP-2 and BMP-7, in which MC3T3-E1 cells were utilized as a positive control. The results indicated that BMP-2/7 was not a stronger inducer during the osteogenic differentiation of hASCs as that for MC3T3-E1, and extracellular-signal-regulated kinase signaling played a role in the different effects of BMP-2/7 between hASCs and MC3T3-E1. Our study demonstrates the osteoinductive effects of heterodimeric BMP-2/7 present in a cell-specific pattern and cautions should be taken when applying heterodimeric BMP-2/7 to clinical practice.
Collapse
Affiliation(s)
- Xiao Zhang
- a Department of Prosthodontics , Peking University School and Hospital of Stomatology , Beijing , China
- b National Engineering Lab for Digital and Material Technology of Stomatology , Beijing , China
- c National Clinical Research Center for Oral Diseases , Beijing , China
- d Beijing Key Laboratory for Digital Stomatology , Beijing , China
| | - Si Chen
- a Department of Prosthodontics , Peking University School and Hospital of Stomatology , Beijing , China
- b National Engineering Lab for Digital and Material Technology of Stomatology , Beijing , China
- c National Clinical Research Center for Oral Diseases , Beijing , China
- d Beijing Key Laboratory for Digital Stomatology , Beijing , China
| | - Yunsong Liu
- a Department of Prosthodontics , Peking University School and Hospital of Stomatology , Beijing , China
- b National Engineering Lab for Digital and Material Technology of Stomatology , Beijing , China
- c National Clinical Research Center for Oral Diseases , Beijing , China
- d Beijing Key Laboratory for Digital Stomatology , Beijing , China
| | - Ping Zhang
- a Department of Prosthodontics , Peking University School and Hospital of Stomatology , Beijing , China
- b National Engineering Lab for Digital and Material Technology of Stomatology , Beijing , China
- c National Clinical Research Center for Oral Diseases , Beijing , China
- d Beijing Key Laboratory for Digital Stomatology , Beijing , China
| | - Yanjun Ge
- a Department of Prosthodontics , Peking University School and Hospital of Stomatology , Beijing , China
- b National Engineering Lab for Digital and Material Technology of Stomatology , Beijing , China
- c National Clinical Research Center for Oral Diseases , Beijing , China
- d Beijing Key Laboratory for Digital Stomatology , Beijing , China
| | - Jing Guo
- e Department of Oral Cell Biology , Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam , LA Amsterdam , The Netherland
| | - Gang Wu
- f Department of Oral Implantology and Prosthetic Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam , LA Amsterdam , The Netherland
| | - Yongsheng Zhou
- a Department of Prosthodontics , Peking University School and Hospital of Stomatology , Beijing , China
- b National Engineering Lab for Digital and Material Technology of Stomatology , Beijing , China
- c National Clinical Research Center for Oral Diseases , Beijing , China
- d Beijing Key Laboratory for Digital Stomatology , Beijing , China
| |
Collapse
|
13
|
Betz VM, Ren B, Messmer C, Jansson V, Betz OB, Müller PE. Bone morphogenetic protein-2 is a stronger inducer of osteogenesis within muscle tissue than heterodimeric bone morphogenetic protein-2/6 and -2/7: Implications for expedited gene-enhanced bone repair. J Gene Med 2018; 20:e3042. [DOI: 10.1002/jgm.3042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Volker M. Betz
- Department of Gene Therapy; University of Ulm; Ulm Germany
- Center for Rehabilitation; RKU - University and Rehabilitation Hospitals Ulm; Ulm Germany
| | - Bin Ren
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation; University Hospital Grosshadern, Ludwig-Maximilians-University Munich; Munich Germany
| | - Carolin Messmer
- Center for Rehabilitation; RKU - University and Rehabilitation Hospitals Ulm; Ulm Germany
| | - Volkmar Jansson
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation; University Hospital Grosshadern, Ludwig-Maximilians-University Munich; Munich Germany
| | - Oliver B. Betz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation; University Hospital Grosshadern, Ludwig-Maximilians-University Munich; Munich Germany
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Peter E. Müller
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation; University Hospital Grosshadern, Ludwig-Maximilians-University Munich; Munich Germany
| |
Collapse
|
14
|
Betz VM, Kochanek S, Rammelt S, Müller PE, Betz OB, Messmer C. Recent advances in gene-enhanced bone tissue engineering. J Gene Med 2018; 20:e3018. [PMID: 29601661 DOI: 10.1002/jgm.3018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022] Open
Abstract
The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years.
Collapse
Affiliation(s)
- Volker M Betz
- Department of Gene Therapy, University of Ulm, Ulm, Germany.,Center for Rehabilitation, RKU - University and Rehabilitation Hospitals Ulm, Ulm, Germany
| | | | - Stefan Rammelt
- University Center of Orthopedics and Traumatology and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - Peter E Müller
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver B Betz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolin Messmer
- Center for Rehabilitation, RKU - University and Rehabilitation Hospitals Ulm, Ulm, Germany
| |
Collapse
|
15
|
Ren LF, Shi GS, Tong YQ, Jiang SY, Zhang F. Effects of rhBMP-2/7 Heterodimer and RADA16 Hydrogel Scaffold on Bone Formation During Rabbit Mandibular Distraction. J Oral Maxillofac Surg 2018; 76:1092.e1-1092.e10. [DOI: 10.1016/j.joms.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
|
16
|
Antibody-Mediated Osseous Regeneration for Bone Tissue Engineering in Canine Segmental Defects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9508721. [PMID: 29682573 PMCID: PMC5851338 DOI: 10.1155/2018/9508721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/16/2017] [Accepted: 01/16/2018] [Indexed: 01/29/2023]
Abstract
Among many applications of therapeutic monoclonal antibodies (mAbs), a unique approach for regenerative medicine has entailed antibody-mediated osseous regeneration (AMOR). In an effort to identify a clinically relevant model of craniofacial defect, the present study investigated the efficacy of mAb specific for bone morphogenetic protein- (BMP-) 2 to repair canine segmental mandibular continuity defect model. Accordingly, a 15 mm unilateral segmental defect was created in mandible and fixated with a titanium plate. Anorganic bovine bone mineral with 10% collagen (ABBM-C) was functionalized with 25 μg/mL of either chimeric anti-BMP-2 mAb or isotype-matched mAb (negative control). Recombinant human (rh) BMP-2 served as positive control. Morphometric analyses were performed on computed tomography (CT) and histologic images. Bone densities within healed defect sites at 12 weeks after surgery were 1360.81 ± 10.52 Hounsfield Unit (HU), 1044.27 ± 141.16 HU, and 839.45 ± 179.41 HU, in sites with implanted anti-BMP-2 mAb, rhBMP-2, and isotype mAb groups, respectively. Osteoid bone formation in anti-BMP-2 mAb (42.99% ± 8.67) and rhBMP-2 (48.97% ± 2.96) groups was not significantly different but was higher (p < 0.05) than in sites with isotype control mAb (26.8% ± 5.35). In view of the long-term objective of translational application of AMOR in humans, the results of the present study demonstrated the feasibility of AMOR in a large clinically relevant animal model.
Collapse
|
17
|
Ma J, Guo W, Gao M, Huang B, Qi Q, Ling Z, Chen Y, Hu H, Zhou H, Yu F, Chen K, Richards G, Lin J, Zhou Z, Xiao D, Zou X. Biomimetic matrix fabricated by LMP-1 gene-transduced MC3T3-E1 cells for bone regeneration. Biofabrication 2017; 9:045010. [PMID: 28930090 DOI: 10.1088/1758-5090/aa8dd1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone healing is regulated by multiple microenvironmental signals provided by the extracellular matrix (ECM). This study aimed to mimic the native osteoinductive microenvironment by developing an ECM using gene-transduced cells. The LIM mineralization protein-1 (LMP-1) gene was transferred to murine pre-osteoblast cells (MC3T3-E1) using lentiviral vectors. Western blotting assay indicated that the MC3T3-E1 cells expressed an increased level of bone morphologic protein-2, -4 and -7 (BMP-2, -4 and -7) after LMP-1 gene transduction. The transduced cells were then seeded into calcined bovine bone scaffolds and cultured for 7, 14, and 21 days to construct ECMs on the scaffolds. The ECM-scaffold composites were then decellularized using the freeze-drying method. Scaffolds without ECM deposition were used as controls. The composites and controls were implanted into critical-sized bone defects created in the distal femurs of New Zealand rabbits. Twelve weeks after the surgery, both microcomputed tomography and histologic results indicated that the 7-day-cell-modified ECM-scaffold composites induced bone regeneration with significantly larger volume, trabecular thickness and connectivity than the controls. However, the 14- and 21-day-cell-modified ECM-scaffold composites triggered sustained inflammation response even at 12 weeks after the surgery and showed less bone ingrowth and integration than their 7-day-cell-modified counterparts. In conclusion, these results highlight the viable gene transfer techniques for manipulating cells in a constructed microenvironment of ECM for bone regeneration. However, the unresolved inflammation relating to the duration of ECM modification needs to be considered.
Collapse
Affiliation(s)
- Junxuan Ma
- Department of Orthopedic, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China. Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliate Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Safe, effective approaches for bone regeneration are needed to reverse bone loss caused by trauma, disease, and tumor resection. Unfortunately, the science of bone regeneration is still in its infancy, with all current or emerging therapies having serious limitations. Unlike current regenerative therapies that use single regenerative factors, the natural processes of bone formation and repair require the coordinated expression of many molecules, including growth factors, bone morphogenetic proteins, and specific transcription factors. As will be developed in this article, future advances in bone regeneration will likely incorporate therapies that mimic critical aspects of these natural biological processes, using the tools of gene therapy and tissue engineering. This review will summarize current knowledge related to normal bone development and fracture repair, and will describe how gene therapy, in combination with tissue engineering, may mimic critical aspects of these natural processes. Current gene therapy approaches for bone regeneration will then be summarized, including recent work where combinatorial gene therapy was used to express groups of molecules that synergistically interacted to stimulate bone regeneration. Last, proposed future directions for this field will be discussed, where regulated gene expression systems will be combined with cells seeded in precise three-dimensional configurations on synthetic scaffolds to control both temporal and spatial distribution of regenerative factors. It is the premise of this article that such approaches will eventually allow us to achieve the ultimate goal of bone tissue engineering: to reconstruct entire bones with associated joints, ligaments, or sutures. Abbreviations used: BMP, bone morphogenetic protein; FGF, fibroblast growth factor; AER, apical ectodermal ridge; ZPA, zone of polarizing activity; PZ, progress zone; SHH, sonic hedgehog; OSX, osterix transcription factor; FGFR, fibroblast growth factor receptor; PMN, polymorphonuclear neutrophil; PDGF, platelet-derived growth factor; IGF, insulin-like growth factor; TGF-β, tumor-derived growth factor β; CAR, coxsackievirus and adenovirus receptor; MLV, murine leukemia virus; HIV, human immunodeficiency virus; AAV, adeno-associated virus; CAT, computer-aided tomography; CMV, cytomegalovirus; GAM, gene-activated matrix; MSC, marrow stromal cell; MDSC, muscle-derived stem cell; VEGF, vascular endothelial growth factor.
Collapse
Affiliation(s)
- R T Franceschi
- University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
19
|
Zhao Z, Wang Z, Ge C, Krebsbach P, Franceschi R. Healing Cranial Defects with AdRunx2-transduced Marrow Stromal Cells. J Dent Res 2016; 86:1207-11. [DOI: 10.1177/154405910708601213] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Marrow stromal cells (MSCs) include stem cells capable of forming all mesenchymal tissues, including bone. However, before MSCs can be successfully used in regeneration procedures, methods must be developed to stimulate their differentiation selectively to osteoblasts. Runx2, a bone-specific transcription factor, is known to stimulate osteoblast differentiation. In the present study, we tested the hypothesis that Runx2 gene therapy can be used to heal a critical-sized defect in mouse calvaria. Runx2-engineered MSCs displayed enhanced osteogenic potential and osteoblast-specific gene expression in vitro and in vivo. Runx2-expressing cells also dramatically enhanced the healing of critical-sized calvarial defects and increased both bone volume fraction and bone mineral density. These studies provide a novel route for enhancing osteogenesis that may have future therapeutic applications for craniofacial bone regeneration.
Collapse
Affiliation(s)
- Z. Zhao
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Z. Wang
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - C. Ge
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - P. Krebsbach
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - R.T. Franceschi
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries. Stem Cells Int 2016; 2016:7403890. [PMID: 27818692 PMCID: PMC5081458 DOI: 10.1155/2016/7403890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.
Collapse
|
21
|
Raftery RM, Walsh DP, Castaño IM, Heise A, Duffy GP, Cryan SA, O'Brien FJ. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5447-5469. [PMID: 26840618 DOI: 10.1002/adma.201505088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/27/2015] [Indexed: 06/05/2023]
Abstract
As well as acting to fill defects and allow for cell infiltration and proliferation in regenerative medicine, biomaterial scaffolds can also act as carriers for therapeutics, further enhancing their efficacy. Drug and protein delivery on scaffolds have shown potential, however, supraphysiological quantities of therapeutic are often released at the defect site, causing off-target side effects and cytotoxicity. Gene therapy involves the introduction of foreign genes into a cell in order to exert an effect; either replacing a missing gene or modulating expression of a protein. State of the art gene therapy also encompasses manipulation of the transcriptome by harnessing RNA interference (RNAi) therapy. The delivery of nucleic acid nanomedicines on biomaterial scaffolds - gene-activated scaffolds -has shown potential for use in a variety of tissue engineering applications, but as of yet, have not reached clinical use. The current state of the art in terms of biomaterial scaffolds and delivery vector materials for gene therapy is reviewed, and the limitations of current procedures discussed. Future directions in the clinical translation of gene-activated scaffolds are also considered, with a particular focus on bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - David P Walsh
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Andreas Heise
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
22
|
Sharma S, Sapkota D, Xue Y, Sun Y, Finne-Wistrand A, Bruland O, Mustafa K. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation. PLoS One 2016; 11:e0147507. [PMID: 26808122 PMCID: PMC4725849 DOI: 10.1371/journal.pone.0147507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 01/27/2023] Open
Abstract
Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Dipak Sapkota
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Yang Sun
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
| | - Ove Bruland
- Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
23
|
Glowacki J. Demineralized Bone and BMPs: Basic Science and Clinical Utility. J Oral Maxillofac Surg 2015; 73:S126-31. [DOI: 10.1016/j.joms.2015.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/08/2015] [Indexed: 10/22/2022]
|
24
|
Zhang X, Guo J, Wu G, Zhou Y. Effects of heterodimeric bone morphogenetic protein-2/7 on osteogenesis of human adipose-derived stem cells. Cell Prolif 2015; 48:650-60. [PMID: 26466853 DOI: 10.1111/cpr.12218] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Roles of bone morphogenetic proteins (BMPs) on osteogenesis of human adipose-derived stem cells (hASCs) remain ambiguous. In this study, we evaluated in vitro and in vivo functional characteristics of BMPs of different dimerization types, with the aim of determining osteoinductive efficiency of heterodimeric BMP-2/7 on osteogenesis of hASCs. MATERIALS AND METHODS We explored osteoinductive effects of three different BMPs by using cell DNA assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and mineralization assay, and real-time PCR, in vitro. Also, we examined ectopic bone formation in nude mice by using soft X-ray, histomorphometric and immunohistochemical analyses in vivo. RESULTS In our dose-response study, we showed that BMPs with both dimerization types did not induce in vitro osteogenesis of hASCs without osteogenic medium (OM). In the presence of OM, BMPs significantly enhanced hASC osteogenesis in a dose-dependent manner. In in vivo experiments, our analyses indicated that BMPs promoted osteogenesis of hASCs without in vitro osteogenic induction. However, both in vitro and in vivo, there were no significant differences in hASC osteogenic induction between heterodimeric and homodimeric BMPs. CONCLUSIONS Heterodimeric BMP-2/7 significantly promoted osteogenesis of hASCs in vitro and in vivo. However, BMP-2/7 was not found to be a stronger inducer of osteogenesis compared to homodimeric either BMP-2 or BMP-7.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, 1081 LA, Amsterdam, the Netherland
| | - Jing Guo
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, 1081 LA, Amsterdam, the Netherland
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, 1081 LA, Amsterdam, the Netherland
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
25
|
Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease. Oncogene 2015; 35:366-76. [PMID: 25867060 PMCID: PMC4603996 DOI: 10.1038/onc.2015.91] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 01/23/2023]
Abstract
The osteogenic transcription factor, Runx2, is abnormally expressed in prostate cancer (PCa) and associated with metastatic disease. During bone development, Runx2 is activated by signals known to be hyperactive in PCa including the RAS/MAP kinase pathway, which phosphorylates Runx2 on multiple serine residues including S301 and S319 (equivalent to S294 and S312 in human Runx2). This study examines the role of these phosphorylation sites in PCa. Runx2 was preferentially expressed in more invasive prostate cancer cell lines (PC3 > C4-2B > LNCaP). Furthermore, analysis using a P-S319-Runx2-specific antibody revealed that the ratio of P-S319-Runx2/total Runx2 as well as P-ERK/total ERK was highest in PC3 followed by C4-2B and LNCaP cells. These results were confirmed by immunofluorescence confocal microscopy, which showed a higher percentage of PC3 cells staining positive for P-S319-Runx2 relative to C4-2B and LNCaP cells. Phosphorylated Runx2 had an exclusively nuclear localization. When expressed in prostate cell lines, wild type Runx2 increased metastasis-associated gene expression, in vitro migratory and invasive activity as well as in vivo growth of tumor cell xenografts. In contrast, S301A/S319A phosphorylation site mutations greatly attenuated these Runx2 responses. Analysis of tissue microarrays from 129 patients revealed strong nuclear staining with the P-S319-Runx2 antibody in primary prostate cancers and metastases. P-S319-Runx2 staining was positively correlated with Gleason score and occurrence of lymph node metastases while little or no Runx2 phosphorylation was seen in normal prostate, benign prostate hyperplasia or prostatitis indicating that Runx2 S319 phosphorylation is closely associated with prostate cancer induction and progression towards an aggressive phenotype. These studies establish the importance of Runx2 phosphorylation in prostate tumor growth and highlight its value as a potential diagnostic marker and therapeutic target.
Collapse
|
26
|
Fibrin Hydrogel Based Bone Substitute Tethered with BMP-2 and BMP-2/7 Heterodimers. MATERIALS 2015; 8:977-991. [PMID: 28787983 PMCID: PMC5455435 DOI: 10.3390/ma8030977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/09/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
Current clinically used delivery methods for bone morphogenetic proteins (BMPs) are collagen based and require large concentrations that can lead to dangerous side effects. Fibrin hydrogels can serve as osteoinductive bone substitute materials in non-load bearing bone defects in combination with BMPs. Two strategies to even further optimize such a fibrin based system include employing more potent BMP heterodimers and engineering growth factors that can be covalently tethered to and slowly released from a fibrin matrix. Here we present an engineered BMP-2/BMP-7 heterodimer where an N-terminal transglutaminase substrate domain in the BMP-2 portion provides covalent attachment to fibrin together with a central plasmin substrate domain, a cleavage site for local release of the attached BMP-2/BMP-7 heterodimer under the influence of cell-activated plasmin. In vitro and in vivo results revealed that the engineered BMP-2/BMP-7 heterodimer induces significantly more alkaline phosphatase activity in pluripotent cells and bone formation in a rat calvarial model than the engineered BMP-2 homodimer. Therefore, the engineered BMP-2/BMP-7 heterodimer could be used to reduce the amount of BMP needed for clinical effect.
Collapse
|
27
|
Gupta K, Singh S, Garg KN. Gene therapy in dentistry: Tool of genetic engineering. Revisited. Arch Oral Biol 2015; 60:439-46. [DOI: 10.1016/j.archoralbio.2014.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/17/2023]
|
28
|
Baba M, Itaka K, Kondo K, Yamasoba T, Kataoka K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J Control Release 2015; 201:41-8. [DOI: 10.1016/j.jconrel.2015.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/30/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
29
|
Curtin CM, Tierney EG, McSorley K, Cryan SA, Duffy GP, O'Brien FJ. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater 2015; 4:223-7. [PMID: 25125073 DOI: 10.1002/adhm.201400397] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Indexed: 12/27/2022]
Abstract
Vascularization and bone repair are accelerated by a series of gene-activated scaffolds delivering both an angiogenic and an osteogenic gene. Stem cell-mediated osteogenesis in vitro, in addition to increased vascularization and bone repair by host cells in vivo, is enhanced using all systems while the use of the nanohydroxyapatite vector to deliver both genes markedly enhances bone healing.
Collapse
Affiliation(s)
- Caroline M. Curtin
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin; Dublin Ireland
| | - Erica G. Tierney
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin; Dublin Ireland
| | - Kevin McSorley
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Sally-Ann Cryan
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Garry P. Duffy
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin; Dublin Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin; Dublin Ireland
| |
Collapse
|
30
|
Tsukinowa T, Onodera S, Yoshizawa Y, Saito A, Muramatsu T, Furusawa M, Azuma T. Synergistic and Mutual Antagonistic Regulations of Wnt Inhibitors Play an Important Role in Osteoblast Differentiation of Human Periodontal Ligament Cells. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Takashi Tsukinowa
- Department of Endodontics and Clinical Cariology, Tokyo Dental College
| | | | - Yuusei Yoshizawa
- Department of Endodontics and Clinical Cariology, Tokyo Dental College
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College
| | - Takashi Muramatsu
- Department of Endodontics and Clinical Cariology, Tokyo Dental College
| | - Masahiro Furusawa
- Department of Endodontics and Clinical Cariology, Tokyo Dental College
| | | |
Collapse
|
31
|
Borrajo E, Vidal A, Alonso MJ, Garcia‐Fuentes M. How Regenerative Medicine Can Benefit from Nucleic Acids Delivery Nanocarriers? POLYMERS IN REGENERATIVE MEDICINE 2014:285-336. [DOI: 10.1002/9781118356692.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
32
|
Nicholls F, Ng AH, Hu S, Janic K, Fallis C, Willett T, Grynpas M, Ferguson P. Can OP-1 stimulate union in a rat model of pathological fracture post treatment for soft tissue sarcoma? J Orthop Res 2014; 32:1252-63. [PMID: 24964906 DOI: 10.1002/jor.22661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/14/2014] [Indexed: 02/04/2023]
Abstract
The goal of soft tissue sarcoma management in the extremities is limb preservation, often combining surgery and external beam radiation. In patients who have undergone this therapy in the thigh, pathologic fracture is a serious, late complication. Non-union rates of 80-90% persist. No reliable biologic solution exists. A rat model combining one 18 Gy dose of radiation and diaphyseal periosteal excision reliably generates atrophic non-union of femoral fractures. We hypothesized that augmentation with OP-1 would increase union rate. Female Sprague-Dawley retired breeder rats were randomized to Control, Disease (external beam radiotherapy and periosteal stripping), Control + OP-1 (80 µg) and Disease + OP-1 groups. Animals underwent prophylactic fixation and controlled left femur fracture. Twenty-eight, 35, and 42 days post-fracture were end-points. Femora were analyzed using MicroCT, Back Scattered Electron Microscopy, and Histomorphometry. We observed a 2% union rate in the Disease groups (±OP-1 treatment). The union rate in Control groups was 97%. MicroCT demonstrated a lack of callus volume in Disease groups. Heterotopic ossification was observed in some OP-1 treated animals. The ineffectiveness of OP-1 in stimulating fracture union in this model suggests the endogenous repair mechanism has been compromised beyond the capabilities of osteoinductive biologics.
Collapse
Affiliation(s)
- Fred Nicholls
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Combined effects of dentin sialoprotein and bone morphogenetic protein-2 on differentiation in human cementoblasts. Cell Tissue Res 2014; 357:119-32. [DOI: 10.1007/s00441-014-1831-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
|
34
|
Krase A, Abedian R, Steck E, Hurschler C, Richter W. BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs. Osteoarthritis Cartilage 2014; 22:284-92. [PMID: 24280245 DOI: 10.1016/j.joca.2013.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/26/2013] [Accepted: 11/15/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Bone morphogenetic protein (BMP-) and Wnt-signalling play crucial roles in cartilage homeostasis. Our objective was to investigate whether activation of the BMP-pathway or stimulation of Wnt-signalling cascades effectively enhances cartilage-specific extracellular matrix (ECM) accumulation and functional biomechanical parameters of chondrocyte-seeded tissue engineering (TE)-constructs. DESIGN Articular chondrocytes were cultured in collagen-type-I/III-matrices over 6 weeks to create a biomechanical standard curve. Effects of stimulation with 100 ng/mL BMP-4/-7 heterodimer or 10 mM lithium chloride (LiCl) on ECM-deposition was quantified and characterized histologically. Biomechanical parameters were determined by the Very Low Rubber Hardness (VLRH) method and under confined compression stress relaxation. RESULTS BMP-4/-7 treatment resulted in stronger collagen type-II staining and significantly enhanced glycosaminoglycan (GAG) deposition (3.2-fold; *P < 0.01) correlating with improved hardness (∼1.7-fold; *P = 0.001) reaching 83% of native cartilage values after 28 days, a value not reached before 9 weeks without stimulation. LiCl treatment enhanced VLRH slightly, but significantly (∼1.3-fold; *P = 0.016) with a trend to more ECM-deposition. BMP-4/-7 treatment significantly enhanced the E Modulus (105.7 ± 34.1 kPa; *P = 0.000001) compared to controls (8.0 ± 4.2 kPa). Poisson's ratio was significantly improved by BMP-4/-7 treatment (0.0703 ± 0.0409; *P = 0.013) vs controls (0.0432 ± 0.0284) and a significantly lower permeability (5.8 ± 2.1056 × 10(-14) m4/N.s; *P = 0.00001) was detected compared to untreated scaffolds (4.4 ± 3.1289 × 10(-13) m4/N.s). CONCLUSIONS While Wnt-activation is less effective, BMP-4/-7 heterodimer stimulation approximated native cartilage features in less than 50% of standard culture time representing a promising strategy for functional cartilage TE to improve biomechanical parameters of engineered cartilage.
Collapse
Affiliation(s)
- A Krase
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany.
| | - R Abedian
- Laboratory for Biomechanics and Biomaterials, Orthopaedic Department, Hannover Medical School of Hannover, Hannover, Germany.
| | - E Steck
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany.
| | - C Hurschler
- Laboratory for Biomechanics and Biomaterials, Orthopaedic Department, Hannover Medical School of Hannover, Hannover, Germany.
| | - W Richter
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
35
|
Feichtinger GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E, Neef A, Nomikou N, Nau T, van Griensven M, McHale AP, Redl H. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum Gene Ther Methods 2013; 25:57-71. [PMID: 24164605 DOI: 10.1089/hgtb.2013.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An ideal novel treatment for bone defects should provide regeneration without autologous or allogenous grafting, exogenous cells, growth factors, or biomaterials while ensuring spatial and temporal control as well as safety. Therefore, a novel osteoinductive nonviral in vivo gene therapy approach using sonoporation was investigated in ectopic and orthotopic models. Constitutive or regulated, doxycycline-inducible, bone morphogenetic protein 2 and 7 coexpression plasmids were repeatedly applied for 5 days. Ectopic and orthotopic gene transfer efficacy was monitored by coapplication of a luciferase plasmid and bioluminescence imaging. Orthotopic plasmid DNA distribution was investigated using a novel plasmid-labeling method. Luciferase imaging demonstrated an increased trend (61% vs. 100%) of gene transfer efficacy, and micro-computed tomography evaluation showed significantly enhanced frequency of ectopic bone formation for sonoporation compared with passive gene delivery (46% vs. 100%) dependent on applied ultrasound power. Bone formation by the inducible system (83%) was stringently controlled by doxycycline in vivo, and no ectopic bone formation was observed without induction or with passive gene transfer without sonoporation. Orthotopic evaluation in a rat femur segmental defect model demonstrated an increased trend of gene transfer efficacy using sonoporation. Investigation of DNA distribution demonstrated extensive binding of plasmid DNA to bone tissue. Sonoporated animals displayed a potentially increased union rate (33%) without extensive callus formation or heterotopic ossification. We conclude that sonoporation of BMP2/7 coexpression plasmids is a feasible, minimally invasive method for osteoinduction and that improvement of bone regeneration by sonoporative gene delivery is superior to passive gene delivery.
Collapse
Affiliation(s)
- Georg A Feichtinger
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG) , Vienna-Branch, 1200 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bone morphogenetic proteins 4 and 2/7 induce osteogenic differentiation of mouse skin derived fibroblast and dermal papilla cells. Cell Tissue Res 2013; 355:463-70. [PMID: 24253465 DOI: 10.1007/s00441-013-1745-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023]
Abstract
Heterotopic ossification is a pathological condition in which bone forms outside the skeletal system. It can also occur in skin, which is the case in some genetic disorders. In addition to precursor cells and the appropriate tissue environment, heterotopic ossification requires inductive signals such as bone morphogenetic proteins (BMP). BMPs are growth and differentiation factors that have the ability to induce cartilage and bone formation in ectopic sites. The objective of this study is to explore the effect of the BMP-4 homodimer and BMP-2/7 heterodimer on the osteogenic differentiation of primary mouse skin fibroblasts and hair follicle dermal papilla (DP) cells. Osteogenic differentiation was induced by osteogenic induction medium (OS) containing 10 nM dexamethasone. The effect of BMP-4 and BMP-2/7 was studied using alkaline phosphatase (ALP) and calcium assays after 1.5, 3 and 5 weeks of differentiation. Fibroblasts and DP cells were able to differentiate into osteoblast-like matrix mineralizing cells. The first visible sign of differentiation was the change of morphology from rounded to more spindle-shaped cells. BMP-4 and BMP-2/7 exposure elevated ALP activity and calcium production significantly more than OS alone. The osteogenic response to BMP-4 and BMP-2/7 was similar in fibroblasts, whereas, in DP cells, BMP-2/7 was more potent than BMP-4. OS alone could not induce osteogenic differentiation in DP cells. Clear and consistent results show that dermal fibroblasts and stem cells from the dermal papilla were capable of osteogenic differentiation. The BMP-2/7 heterodimer was significantly more effective on hair follicular dermal stem cell differentiation.
Collapse
|
37
|
Kaito T, Johnson J, Ellerman J, Tian H, Aydogan M, Chatsrinopkun M, Ngo S, Choi C, Wang JC. Synergistic effect of bone morphogenetic proteins 2 and 7 by ex vivo gene therapy in a rat spinal fusion model. J Bone Joint Surg Am 2013; 95:1612-9. [PMID: 24005203 DOI: 10.2106/jbjs.l.01396] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Previous studies have suggested that the co-expression of two different bone morphogenetic protein (BMP) genes can result in the production of heterodimeric BMPs that may be more potent than homodimers. In this study, combined BMP-2 and BMP-7 gene transfer was performed ex vivo to compare the resulting new bone formation with that of single-BMP gene transfer in a rat spinal fusion model. METHODS Forty-four athymic rats underwent posterolateral fusion at L4-L5 and were implanted with a collagen sponge containing human adipose-derived stem cells. Group A received untreated cells, and the remaining groups received cells transfected with various genes in a lentivirus vector. The transferred genes were GFP (green fluorescent protein) in Group B, BMP-2 in Group C, BMP-7 in Group D, and both BMP-2 and BMP-7 in Group E. In vitro production of BMP-2 and BMP-7 was quantified by means of an enzyme-linked immunosorbent assay (ELISA) specific to BMP-2 or BMP-7. Osseous fusion was quantified with use of radiography and microcomputed tomography. RESULTS ELISA demonstrated that Group E, which was treated with both BMP-2 and BMP-7, produced less than one-fourth as much BMP as the groups treated with a single transfected BMP (Groups C and D). Radiographs showed that all of the spines in Groups C, D, and E appeared to be fused by eight weeks; the spines in Groups A and B showed minimal evidence of new bone formation. Measurements confirmed that the mean bone formation area was significantly greater in Groups C, D, and E compared with Groups A and B (p < 0.001). In addition, the bone formation area was significantly greater in Group E compared with Groups C and D (p < 0.001). CONCLUSIONS Combined BMP-2 and BMP-7 ex vivo gene transfer was found to be significantly more effective for inducing new bone formation compared with ex vivo gene transfer of an individual BMP in a rat spinal fusion model. CLINICAL RELEVANCE Combined BMP-2 and BMP-7 therapy may lead to efficient bone regeneration.
Collapse
Affiliation(s)
- Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fan J, Park H, Tan S, Lee M. Enhanced osteogenesis of adipose derived stem cells with Noggin suppression and delivery of BMP-2. PLoS One 2013; 8:e72474. [PMID: 23977305 PMCID: PMC3744499 DOI: 10.1371/journal.pone.0072474] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/17/2013] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors. However, BMPs are highly pleiotropic molecules and their supra-physiological high dose requirement leads to adverse side effects and inefficient bone formation. Thus, there is a need to develop alternative osteoinductive growth factor strategies that can effectively complement BMP activity. In this study, we intrinsically stimulated BMP signaling in adipose derived stem cells (ASCs) by downregulating noggin, a potent BMP antagonist, using an RNAi strategy. ASCs transduced with noggin shRNA significantly enhanced osteogenic differentiation of cells. The potency of endogenous BMPs was subsequently enhanced by stimulating ASCs with exogenous BMPs at a significantly reduced dose. The level of mineralization in noggin shRNA treated ASCs when treated with BMP-2 was comparable to that of control shRNA treated cell treated with 10-fold more BMP-2. The complementary strategy of noggin suppression + BMP-2 to enhance osteogenesis was further confirmed in 3D in vitro environments using scaffolds consisting of chitosan (CH), chondroitin sulfate (CS), and apatite layer on their surfaces designed to slowly release BMP-2. This finding supports the novel therapeutic potential of this complementary strategy in bone regeneration.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hyejin Park
- Division of Advanced Prosthodontics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven Tan
- Division of Advanced Prosthodontics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Min Lee
- Division of Advanced Prosthodontics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lee JT, Jung JW, Choi JY, Kwon TG. Enhanced bone morphogenic protein adenoviral gene delivery to bone marrow stromal cells using magnetic nanoparticle. J Korean Assoc Oral Maxillofac Surg 2013; 39:112-9. [PMID: 24471028 PMCID: PMC3858166 DOI: 10.5125/jkaoms.2013.39.3.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/04/2022] Open
Abstract
Objectives This study investigated the question of whether adenoviral magnetofection can be a suitable method for increasing the efficacy of gene delivery into bone marrow stromal cell (BMSC) and for generation of a high level of bone morphogenic protein (BMP) secretion at a minimized viral titer. Materials and Methods Primary BMSCs were isolated from C57BL6 mice and transduced with adenoviral vectors encoding β galactosidase or BMP2 and BMP7. The level of BMP secretion, activity of osteoblast differentiation, and cell viability of magnetofection were measured and compared with those of the control group. Results The expression level of β galactosidase showed that the cell transduction efficiency of AdLacZ increased according to the increased amount of magnetic nanoparticles. No change in cell viability was observed after magnetofection with 2 µL of magnetic nanoparticle. Secretion of BMP2 or BMP7 was accelerated after transduction of AdBMP2 and 7 with magnetofection. AdBMP2 adenoviral magnetofection resulted in up to 7.2-fold higher secretion of BMP2, compared with conventional AdBMP2-transduced BMSCs. Magnetofection also induced a dramatic increase in secretion of BMP7 by up to 10-fold compared to the control. Use of only 1 multiplicity of infection (moi) of magnetofection with adenoviral transduction of AdBMP2 or AdBMP7 resulted in significantly higher transgene expression compared to 20 moi of conventional adenoviral transduction. Conclusion Magnetic particle-mediated gene transudation is a highly efficient method of gene delivery to BMSCs. Magnetofection can lower the amount of viral particles while improving the efficacy of gene delivery.
Collapse
Affiliation(s)
- Jung-Tae Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jae-Whan Jung
- Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae-Yong Choi
- Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
40
|
Effects of allogenous periosteal-derived cells transfected with adenovirus-mediated BMP-2 on repairing defects of the mandible in rabbits. J Oral Maxillofac Surg 2013; 71:1789-99. [PMID: 23676775 DOI: 10.1016/j.joms.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/22/2022]
Abstract
PURPOSE This report describes the effect of periosteal-derived cells transfected with adenovirus-mediated bone morphogenetic protein-2 (BMP-2) on the repair of mandibular defects in rabbits. MATERIALS AND METHODS Periosteal-derived cells were transfected with a replication-defective adenoviral vector encoding BMP-2, and the expression of BMP-2 was examined in transfected cells using in situ hybridization and enzyme-linked immunosorbent assay. In addition, the proliferation ability and activity of alkaline phosphatase of transfected cells were examined using the 3-[4,5-dimethylthiazol-2-Yl]-2,5-diphenyltetrazolium bromide method and enzymology, respectively. In vitro critical-size defects (about 10 × 6 mm) were made bilaterally in each rabbit mandible, and individual sites were implanted with tissue-engineered bone modified with an adenovirus construct encoding the recombinant human BMP-2 gene (Ad-BMP-2), tissue-engineered bone without modification, single bioactive glass ceramic, or no implants (control). New bone formation was evaluated by histochemical stain. RESULTS BMP-2 expression in the supernate of infected cells was detected from the first day after Ad-BMP-2 transfection and remained at a high level for at least 2 weeks. Alkaline phosphatase expression in transfected cells was significantly greater than in uninfected cells. The group of Ad-BMP-2-modified periosteal-derived cells formed more new bone than the other group at any time point. CONCLUSION Gene-modified tissue-engineered bone grafts have greater osteogenic potential than single tissue-engineered bone and single bioactive glass ceramic graft. Ex vivo Ad-BMP-2 transfer to periosteal-derived cells can increase bone formation in critical-size bone defects. Further studies are needed to determine if modified engineered cells can be developed for safe and effective clinical applications.
Collapse
|
41
|
Nomikou N, Feichtinger GA, Redl H, McHale AP. Ultrasound-mediated gene transfer (sonoporation) in fibrin-based matrices: potential for use in tissue regeneration. J Tissue Eng Regen Med 2013; 10:29-39. [PMID: 23596105 DOI: 10.1002/term.1730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/19/2012] [Accepted: 01/29/2013] [Indexed: 12/16/2022]
Abstract
It has been suggested that gene transfer into donor cells is an efficient and practical means of locally supplying requisite growth factors for applications in tissue regeneration. Here we describe, for the first time, an ultrasound-mediated system that can non-invasively facilitate gene transfer into cells entrapped within fibrin-based matrices. Since ultrasound-mediated gene transfer is enhanced using microbubbles, we compared the efficacy of neutral and cationic forms of these reagents on the ultrasound-stimulated gene transfer process in gel matrices. In doing so we demonstrated the beneficial effects associated with the use of cationic microbubble preparations that interact directly with cells and nucleic acid within matrices. In some cases, gene expression was increased two-fold in gel matrices when cationic microbubbles were compared with neutral microbubbles. In addition, incorporating collagen into fibrin gels yielded a 25-fold increase in gene expression after application of ultrasound to microbubble-containing matrices. We suggest that this novel system may facilitate non-invasive temporal and spatial control of gene transfer in gel-based matrices for the purposes of tissue regeneration.
Collapse
Affiliation(s)
| | - Georg A Feichtinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Anthony P McHale
- Department of Pharmacy and Pharmaceutical Sciences, University of Ulster, Northern Ireland
| |
Collapse
|
42
|
Zheng Y, Wu G, Liu T, Liu Y, Wismeijer D, Liu Y. A Novel BMP2-Coprecipitated, Layer-by-Layer Assembled Biomimetic Calcium Phosphate Particle: A Biodegradable and Highly Efficient Osteoinducer. Clin Implant Dent Relat Res 2013; 16:643-54. [DOI: 10.1111/cid.12050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuanna Zheng
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
- School of Stomatology/Dental Clinic; Zhejiang Chinese Medical University; Hangzhou China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
| | - Tie Liu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
| | - Yi Liu
- School of Stomatology/Dental Clinic; Zhejiang Chinese Medical University; Hangzhou China
| | - Daniel Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
43
|
Liu Y, Chen C, He H, Wang D, E L, Liu Z, Liu H. Lentiviral-mediated gene transfer into human adipose-derived stem cells: role of NELL1 versus BMP2 in osteogenesis and adipogenesis in vitro. Acta Biochim Biophys Sin (Shanghai) 2012; 44:856-65. [PMID: 23017834 DOI: 10.1093/abbs/gms070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
NEL-like molecule 1 (NELL1) is a potent osteogenic factor associated with craniosynostosis. Adenoviruses, the most commonly used viral vectors for gene therapy, have several disadvantages that may restrict osteogenesis. Previous studies have shown that lentiviruses can serve as ideal vectors for gene therapy for bone regeneration. In this study, two lentiviral vectors (LvNELL1 and LvBMP2) that encode human NELL1 and bone morphogenetic protein-2 (BMP2), respectively, were constructed. The effect of LvNELL1 infection on the proliferation, osteogenesis, and adipogenesis of human adipose-derived stem cells (hADSCs) in vitro was assessed and compared with that of LvBMP2. The results showed that hADSCs infected with LvNELL1 could efficiently and stably overexpress the target genes. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results demonstrated that LvBMP2, but not LvNELL1, enhanced the proliferation of hADSCs. Assessment of alkaline phosphatase activity and cellular mineralization indicated that LvNELL1 infection promoted the osteogenic differentiation of hADSCs, and the effect was comparable with that of LvBMP2. Real-time polymerase chain reaction (PCR) revealed that LvNELL1 infection upregulated OSX expression but not RUNX2 expression in hADSCs. In addition, adipogenic markers (lipid droplets, peroxisome proliferator-activating receptor γ, and lipoprotein lipase) analysis showed that LvNELL1 could dramatically inhibit the adipogenic differentiation of hADSCs, but LvBMP2 had no such effect. Taken together, these findings suggested that lentiviral-mediated NELL1 gene transfer in hADSCs may be a novel and promising approach to achieve effective and precise bone regeneration.
Collapse
Affiliation(s)
- Yajing Liu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang WB, Zheng LW, Chua DTT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg 2012; 70:1711-6. [PMID: 22580096 DOI: 10.1016/j.joms.2012.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 12/16/2022]
Abstract
PURPOSE The study aimed to evaluate whether mesenchymal stem cells transfected with bone morphogenetic protein (BMP) 2/7 could increase bone regeneration after radiotherapy using a rabbit model of mandibular distraction osteogenesis. MATERIALS AND METHODS Twelve rabbits were randomly assigned to the sham control, radiotherapy control, nontransfected mesenchymal stem cells (MSCs), and MSCs transfected with BMP-2/7 groups. All rabbits, except those in the sham control group, received preoperative radiation of 9 Gy for 5 fractions. One month after radiotherapy, all rabbits underwent unilateral mandibular distraction at a rate of 0.9 mm/d for 11 days. At the end of active distraction, MSCs combined with bovine collagen were injected into the distraction zone. After 4 weeks of consolidation, the mandibular samples were collected and subjected to radiographic, microcomputed tomographic, and histologic examinations. RESULTS By radiographic examination, animals injected with nontransfected MSCs or MSCs encoding BMP-2/7 exhibited more bone formation than the control groups. Histologic examination showed that the group with MSCs encoding BMP-2/7 had a more mature medullary cavity than the nontransfected MSCs group. CONCLUSIONS MSCs encoding BMP-2/7 can increase bone healing in irradiated mandibular bone.
Collapse
Affiliation(s)
- Wen Biao Zhang
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
45
|
Guo J, Wu G. The signaling and functions of heterodimeric bone morphogenetic proteins. Cytokine Growth Factor Rev 2012; 23:61-7. [PMID: 22421241 DOI: 10.1016/j.cytogfr.2012.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 02/07/2023]
Abstract
Heterodimeric bone morphogenetic proteins (BMPs) consist of disulfide-linked dimeric monomers derived from different BMP members. Owing to this specific constitution pattern, they bear high affinity to both type I and type II BMP receptors simultaneously. Meanwhile, the antagonism efficiency of extracellular antagonists to heterodimeric BMPs is also significantly lower than that to homodimeric ones. All these specific properties confer heterodimeric BMPs with distinct signaling and bio-functions that are characterized by more speediness, lower concentration/dose threshold and higher efficiency than homodimeric BMPs. Consequently, heterodimeric BMPs bear promising application potential in inducing osteogenesis. In addition, they may play indispensible roles in organogenesis. In this review, we summarize the current knowledge of heterodimeric BMPs in their signaling pathways and bio-functions.
Collapse
Affiliation(s)
- Jing Guo
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
46
|
Zheng Y, Wang L, Zhang X, Zhang X, Gu Z, Wu G. BMP2/7 Heterodimer Can Modulate All Cellular Events of the In Vitro RANKL-Mediated Osteoclastogenesis, Respectively, in Different Dose Patterns. Tissue Eng Part A 2012; 18:621-30. [PMID: 21981321 DOI: 10.1089/ten.tea.2011.0366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yuanna Zheng
- School of Stomatology/Hangzhou Dental Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
- School/Hospital of Stomatology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Linhong Wang
- Department of Stomatology, Zhejiang Provincial People's Hospital, Shangtang Road, Hangzhou, People's Republic of China
| | - Xiaodan Zhang
- School/Hospital of Stomatology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Zhang
- School/Hospital of Stomatology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhiyuan Gu
- School of Stomatology/Hangzhou Dental Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
- School/Hospital of Stomatology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Southwood LL, Kawcak CE, Hidaka C, McIlwraith CW, Werpy N, Macleay J, Frisbie DD. Evaluation of direct in vivo gene transfer in an equine metacarpal IV ostectomy model using an adenoviral vector encoding the bone morphogenetic protein-2 and protein-7 gene. Vet Surg 2012; 41:345-54. [PMID: 22308976 DOI: 10.1111/j.1532-950x.2011.00947.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate gene transfer in an equine metacarpal IV (MCIV) ostectomy model using adenoviral vectors encoding the human bone morphogenetic protein-2 and protein-7 gene (Ad-BMP-2/-7). STUDY DESIGN EXPERIMENTAL ANIMALS Healthy adult horses (n = 15). METHODS A plate stabilized, critical size 1.5 cm ostectomy was created in left and right MCIV. The ostectomy site was injected with either Ad-green fluorescent protein (Ad-GFP) or Ad-hBMP-2/-7 at completion of surgery; the same treatment was assigned to both the left and right forelimb of each horse (n = 5 horses/group). Bone healing was evaluated radiographically every 2 weeks for 16 weeks. Horses in a pilot study (n = 5) were used as untreated controls for radiographic evaluation to 8 weeks. After euthanasia at 16 weeks bone healing was evaluated using dual energy X-ray absorptiometry (DEXA) and histomorphometry. Data were analyzed using an ANOVA or Kruskal-Wallis test. Level of significance was P < .05. RESULTS At 4 and 6 weeks, the Ad-GFP group had a significantly lower percentage defect ossification compared with the untreated control group. There was no significant difference between untreated and Ad-hBMP-2/-7 groups at any time point and no significant difference in bone healing radiographically, histologically, or using DEXA between any groups at 16 weeks. CONCLUSIONS Ad-hBMP-2/-7 did not improve bone healing in horses at 16 weeks.
Collapse
Affiliation(s)
- Louise L Southwood
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
SUN P, WANG J, ZHENG Y, FAN Y, GU Z. BMP2/7 heterodimer is a stronger inducer of bone regeneration in peri-implant bone defects model than BMP2 or BMP7 homodimer. Dent Mater J 2012; 31:239-48. [DOI: 10.4012/dmj.2011-191] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ping SUN
- School/Hospital of Stomatology, Zhejiang University
| | - Jingxiao WANG
- Department of Stomatology, the First Affiliated Hospital of Wenzhou Medical College
| | - Yuanna ZHENG
- School of Stomatology, Zhejiang Chinese Medical University
| | - Yi FAN
- School/Hospital of Stomatology, Zhejiang University
| | - Zhiyuan GU
- School/Hospital of Stomatology, Zhejiang University
- School of Stomatology, Zhejiang Chinese Medical University
| |
Collapse
|
49
|
Chitty DW, Tremblay RG, Ribecco-Lutkiewicz M, Haukenfrers J, Zurakowski B, Massie B, Sikorska M, Bani-Yaghoub M. Development of BMP7-producing human cells, using a third generation lentiviral gene delivery system. J Neurosci Methods 2011; 205:17-27. [PMID: 22209770 DOI: 10.1016/j.jneumeth.2011.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 12/16/2022]
Abstract
Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor β (TGF-β) superfamily, plays important roles in the development of various tissues and organs in mouse and human. In particular, BMP7 is critical for the formation of the nervous system and it is considered to have therapeutic potential in brain injury and stroke. One approach to make BMP7 more suitable for therapeutic purposes is the development of efficient vectors that allow the consistent, reliable and cost-effective production of the BMP7 protein. In this study, we developed an efficient BMP7 delivery system, using a third generation lentiviral vector to produce functional BMP7 protein. The lentiviral transduction of several human cell types, including human embryonic kidney 293 (HEK293) cells, amniotic fluid cells, NTera2 neurons (NT2-N) and primary neuronal cultures resulted in BMP7 expression. The production of BMP7 protein was achieved for at least 4 weeks post-transduction, as determined by enzyme-linked immunosorbent assay (ELISA). SMAD phosphorylation and neuronal differentiation assays verified the bioactivity and functionality of the lentiviral-based BMP7 protein, respectively. In addition, the intracerebroventricular injection of the lentivirus resulted in exogenous BMP7 expression in both neurons and astrocytes in the mouse brain. Taken together, this gene delivery system provides a reliable source of functional BMP7 protein for future in vitro and in vivo studies.
Collapse
Affiliation(s)
- David W Chitty
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu G, Hunziker EB, Zheng Y, Wismeijer D, Liu Y. Functionalization of deproteinized bovine bone with a coating-incorporated depot of BMP-2 renders the material efficiently osteoinductive and suppresses foreign-body reactivity. Bone 2011; 49:1323-30. [PMID: 21983022 DOI: 10.1016/j.bone.2011.09.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/14/2023]
Abstract
The repair of critical-sized bony defects remains a challenge in the fields of implantology, maxillofacial surgery and orthopaedics. As an alternative bone-defect filler to autologous bone grafts, deproteinized bovine bone (DBB) is highly osteoconductive and clinically now widely used. However, this product suffers from the disadvantage of not being intrinsically osteoinductive. In the present study, this property was conferred by coating DBB with a layer of calcium phosphate into which bone morphogenetic protein 2 (BMP-2) was incorporated. Granules of DBB bearing a coating-incorporated depot of BMP-2--together with the appropriate controls (DBB bearing a coating but no BMP-2; uncoated DBB bearing adsorbed BMP-2; uncoated DBB bearing no BMP-2)--were implanted subcutaneously in rats. Five weeks later, the implants were withdrawn for a histomorphometric analysis of the volume densities of (i) bone, (ii) bone marrow, (iii) foreign-body giant cells and (iv) fibrous capsular tissue. Parameters (i) and (ii) were highest, whilst parameters (iii) and (iv) were lowest in association with DBB bearing a coating-incorporated depot of BMP-2. Hence, this mode of functionalization not only confers DBB with the property of osteoinductivity but also improves its biocompatibility--thus dually enhancing its clinical potential in the repair of bony defects.
Collapse
Affiliation(s)
- Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|