1
|
Perona M, Grissi C, Rosemblit C, Salvarredi L, Nicola JP, Thomasz L, Dagrosa MA, Cremaschi G, Durán H, Juvenal G, Ibañez IL. Radiosensitization Following Valproic Acid and Gamma Rays in Anaplastic Thyroid Cancer Cells Increases the Expression of hsa-miR-26a-5p. Arch Med Res 2025; 56:103227. [PMID: 40311382 DOI: 10.1016/j.arcmed.2025.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is a rare lethal human malignancy with a poor prognosis. Multimodality treatment, including radiotherapy, is recommended to improve local control and survival. Valproic acid (VA) is a clinically available anticonvulsant and histone deacetylase inhibitor with a well-documented side effect profile. Furthermore, VA radiosensitizes various cancer cells, including thyroid cancer. MicroRNAs (miRs) are deregulated in several cancers and may modulate radiation response. Therefore, the aim of this study was to analyze the effect of VA combined with gamma radiation in radioresistant ATC cells at the expression level of miRs. METHODS ATC cells (8505c and KTC-2) were VA-treated and gamma-irradiated (2 Gy). The expression profile of miRs in 8505c was evaluated by microarray analysis 4 h after irradiation. Selected miRs were validated by RT-qPCR in both types of ATC cells. RESULTS We observed that after combined VA and gamma irradiation treatment, 8505c cells showed 109 differentially expressed miRs as compared to irradiated cells alone. These miRs exhibited a radiosensitization profile highlighted by upregulation of hsa-miR-26a-5p, which is usually downregulated in aggressive thyroid cancers. Moreover, hsa-miR-27a-3p and hsa-miR-486-5p, which are often deregulated in thyroid neoplasms, were downregulated after irradiation and VA treatment, respectively. The expression level of these three miRs was validated in 8505c and KTC-2 cells after treatments. CONCLUSION The regulated miRs by VA and gamma irradiation reveal a novel miR expression profile with potential to be further studied in the radio-induced response and radiosensitization of ATC cells.
Collapse
Affiliation(s)
- Marina Perona
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Grissi
- Technology and Applications of Accelerators Assistant Management, Research and Applications Management, National Atomic Energy Commission, San Martín, Buenos Aires, Argentina; Institute of Nanosciences and Nanotechnology, National Atomic Energy Commission-National Scientific and Technical Research Council, San Martín, Buenos Aires, Argentina
| | - Cinthia Rosemblit
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Salvarredi
- Nuclear Medicine School Foundation, National Atomic Energy Commission, Mendoza, Argentina
| | - Juan Pablo Nicola
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Córdoba, Córdoba, Argentina; Clinical Biochemistry and Immunology Research Center, Córdoba, Argentina
| | - Lisa Thomasz
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - María A Dagrosa
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Graciela Cremaschi
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Hebe Durán
- Technology and Applications of Accelerators Assistant Management, Research and Applications Management, National Atomic Energy Commission, San Martín, Buenos Aires, Argentina; Institute of Nanosciences and Nanotechnology, National Atomic Energy Commission-National Scientific and Technical Research Council, San Martín, Buenos Aires, Argentina; School of Science and Technology, University of San Martín, San Martín, Buenos Aires, Argentina
| | - Guillermo Juvenal
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires, Argentina
| | - Irene L Ibañez
- Technology and Applications of Accelerators Assistant Management, Research and Applications Management, National Atomic Energy Commission, San Martín, Buenos Aires, Argentina; Institute of Nanosciences and Nanotechnology, National Atomic Energy Commission-National Scientific and Technical Research Council, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Sasaki K, Masaki T. Epigenetic histone modifications in kidney disease and epigenetic memory. Clin Exp Nephrol 2025:10.1007/s10157-025-02668-x. [PMID: 40186651 DOI: 10.1007/s10157-025-02668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, are influenced by environmental factors and play a central role in the progression and therapeutic targeting of kidney diseases, such as diabetic kidney disease (DKD), chronic kidney disease (CKD), and hypertension. These epigenetic changes are also preserved as cellular memory, with this "epigenetic memory" known to have long-term effects on such chronic diseases. Histone modifications are readily reversible epigenetic changes that regulate gene expression by altering chromatin structure or providing docking sites for transcriptional regulators. From a disease perspective, the involvement of epigenetics and "epigenetic memory" in DKD, CKD, senescence, and hypertension has been increasingly studied in recent years. Targeting epigenetic mechanisms is, thus, expected to offer novel therapeutic strategies for these diseases. Advances in treatment include histone deacetylase inhibitors and methyltransferase inhibitors, their applications of which have expanded from oncology to nephrology. However, challenges such as long-term toxicity and off-target effects remain significant. Further elucidation of kidney-specific epigenetic pathways and memory mechanisms may pave the way for precision epigenetic therapies, enabling the reversal of pathological epigenetic signatures and the mitigation of disease progression. CONCLUSION This review integrates recent advancements, highlighting functional evidence that histone modifications, particularly histone tail methylation, are involved in the pathogenesis of kidney diseases. It also emphasizes the translational significance of these findings, underlining the potential of epigenetics-based therapies to transform the management of kidney diseases.
Collapse
Affiliation(s)
- Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
3
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
4
|
Teng Y, Zhao H, Xue G, Zhang G, Huang Y, Guo W, Zou K, Zou L. Molecule interacting with CasL-2 enhances tumor progression and alters radiosensitivity in cervical cancer. J Transl Med 2025; 23:44. [PMID: 39799334 PMCID: PMC11725214 DOI: 10.1186/s12967-024-06065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVE Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes. METHODS The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC). Siha and Hela cells were used to examine the regulatory and biological functions of MICAL2 via knockdown and overexpression experiments. Assays including MTT, colony formation, wound healing, transwell migration, and sphere formation were employed, along with WB analysis. DNA damage in irradiated cells with MICAL2 knockdown or overexpression was evaluated using the comet assay, while γ-H2AX and Rad51 protein levels were detected by WB. In vivo experiments validated the tumorigenic and radioresistance functions of MICAL2. Additionally, the relationship between MICAL2 expression and radiotherapy response was analyzed in 62 patients with cervical cancer by assessing tumor regression and MICAL2 levels six months post-treatment. RESULTS MICAL2 expression was significantly elevated in cervical cancer tissues and cells. Functional analyses demonstrated that MICAL2 promotes cell proliferation, migration, and invasion by activating the MAPK and PI3K/AKT pathways, as confirmed through both in vitro and in vivo experiments. Silencing MICAL2 increased DNA damage, impeded DNA repair, and enhanced radiosensitivity. Among the 62 patients with cervical cancer, elevated MICAL2 expression was associated with a lower complete response rate to radiotherapy (25.6% vs. 60.9% in those with low expression), reduced progression-free survival, and advanced cancer stage (*p < 0.05). CONCLUSION MICAL2 plays a critical role in tumor progression and radiotherapy resistance in cervical cancer. These findings provide a foundation for developing targeted therapies to improve treatment outcomes in this population.
Collapse
Affiliation(s)
- Yun Teng
- Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Hongmei Zhao
- Department of Radiation Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Guoqing Xue
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Guohui Zhang
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Yanbin Huang
- Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Wei Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Kun Zou
- Department of Radiation Oncology, The First Affiliated Hospital of Dalian Medical University, No. 222 of Zhongshan Road, Xigang District, Dalian, 116011, China.
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
5
|
Ji Y, Tian Y, Zhang H, Ma S, Liu Z, Tian Y, Xu Y. Histone modifications in hypoxic ischemic encephalopathy: Implications for therapeutic interventions. Life Sci 2024; 354:122983. [PMID: 39147319 DOI: 10.1016/j.lfs.2024.122983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain injury induced by many causes of cerebral tissue ischemia and hypoxia. Although HIE may occur at many ages, its impact on the neonatal brain is greater because it occurs during the formative stage. Recent research suggests that histone modifications may occur in the human brain in response to acute stress events, resulting in transcriptional changes and HIE development. Because there are no safe and effective therapies for HIE, researchers have focused on HIE treatments that target histone modifications. In this review, four main histone modifications are explored, histone methylation, acetylation, phosphorylation, and crotonylation, as well as their relevance to HIE. The efficacy of histone deacetylase inhibitors in the treatment of HIE is also explored. In conclusion, targeting histone modifications may be a novel strategy for elucidating the mechanism of HIE, as well as a novel approach to HIE treatment.
Collapse
Affiliation(s)
- Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongwei Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Vasukutty A, Pillarisetti S, Choi J, Kang SH, Park IK. CXCR4 Targeting Nanoplatform for Transcriptional Activation of Latent HIV-1 Infected T Cells. ACS APPLIED BIO MATERIALS 2024; 7:4831-4842. [PMID: 37586084 DOI: 10.1021/acsabm.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antiretroviral drugs are limited in their ability to target latent retroviral reservoirs in CD4+ T cells, highlighting the need for a T cell-targeted drug delivery system that activates the transcription of inactivated viral DNA in infected cells. Histone deacetylase inhibitors (HDACi) disrupt chromatin-mediated silencing of the viral genome and are explored in HIV latency reversal. But single drug formulations of HDACi are insufficient to elicit therapeutic efficacy, warranting combination therapy. Furthermore, protein kinase C activators (PKC) have shown latency reversal activity in HIV by activating the NF-κB signaling pathway. Combining HDACi (SAHA) with PKC (PMA) activators enhances HIV reservoir activation by promoting chromatin decondensation and subsequent transcriptional activation. In this study, we developed a mixed nanomicelle (PD-CR4) drug delivery system for simultaneous targeting of HIV-infected CD4+ T cells with two drugs, suberoylanilide hydroxamic acid (SAHA) and phorbol 12-myristate 13-acetate (PMA). SAHA is a HDACi that promotes chromatin decondensation, while PMA is a PKC agonist that enhances transcriptional activation. The physicochemical properties of the formulated PD-CR4 nanoparticles were characterized by NMR, CMC, DLS, and TEM analyses. Further, we investigated in vitro safety profiles, targeting efficacy, and transcriptional activation of inactivated HIV reservoir cells. Our results suggest that we successfully prepared a targeted PD system with dual drug loading. We have compared latency reversal efficacy of a single drug nanoformulation and combination drug nanoformulation. Final PD-SP-CR4 successfully activated infected CD4+ T cell reservoirs and showed enhanced antigen release from HIV reservoir T cells, compared with the single drug treatment group as expected. To summarize, our data shows PD-SP-CR4 has potential T cell targeting efficiency and efficiently activated dormant CD4+ T cells. Our data indicate that a dual drug-loaded particle has better therapeutic efficacy than a single loaded particle as expected. Hence, PD-CR4 can be further explored for HIV therapeutic drug delivery studies.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Shin Hyuk Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
8
|
Micheletti G, Boga C, Drius G, Bordoni S, Calonghi N. Suberoylanilide Hydroxamic Acid Analogs with Heteroaryl Amide Group and Different Chain Length: Synthesis and Effect on Histone Deacetylase. Molecules 2024; 29:238. [PMID: 38202821 PMCID: PMC10781187 DOI: 10.3390/molecules29010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review covers the last 25 years of the literature on analogs of suberoylanilide hydroxamic acid (SAHA, known also as vorinostat) acting as an HDAC inhibitor. In particular, the topic has been focused on the synthesis and biological activity of compounds where the phenyl group (the surface recognition moiety, CAP) of SAHA has been replaced by an azaheterocycle through a direct bond with amide nitrogen atom, and the methylene chain in the linker region is of variable length. Most of the compounds displayed good to excellent inhibitory activity against HDACs and in many cases showed antiproliferative activity against human cancer cell lines.
Collapse
Affiliation(s)
- Gabriele Micheletti
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Carla Boga
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Giacomo Drius
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Silvia Bordoni
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
9
|
Mane RR, Kale PP. The roles of HDAC with IMPDH and mTOR with JAK as future targets in the treatment of rheumatoid arthritis with combination therapy. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:689-706. [PMID: 36409592 DOI: 10.1515/jcim-2022-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Various studies have shown that cytokines are important regulators in rheumatoid arthritis (RA). In synovial inflammation alteration of the enzyme HDAC, IMPDH enzyme, mTOR pathway, and JAK pathway increase cytokine level. These increased cytokine levels are responsible for the inflammation in RA. Inflammation is a physiological and normal reaction of the immune system against dangerous stimuli such as injury and infection. The cytokine-based approach improves the treatment of RA. To reach this goal, various researchers and scientists are working more aggressively by using a combination approach. The present review of combination therapy provides essential evidence about the possible synergistic effect of combinatorial agents. We have focused on the effects of HDAC inhibitor with IMPDH inhibitor and mTOR inhibitor with JAK inhibitor in combination for the treatment of RA. Combining various targeted strategies can be helpful for the treatment of RA.
Collapse
Affiliation(s)
- Reshma Rajendra Mane
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
10
|
Sirtuin1 (SIRT1) is involved in the anticancer effect of black raspberry anthocyanins in colorectal cancer. Eur J Nutr 2023; 62:395-406. [PMID: 36056948 DOI: 10.1007/s00394-022-02989-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Abnormal acetylation modification is a common epigenetic change in tumorigenesis and is closely related to the progression of colorectal cancer (CRC). Our previous studies have suggested that black raspberry (BRB) anthocyanins have a significant chemopreventive effect against CRC. This study investigated whether protein acetylation plays an important role in BRB anthocyanins-mediated regulation of CRC progression. METHODS We used the AOM-induced CRC mouse model and the CRC cell lines SW480 and Caco-2 to explore the potential role of acetylation of histone H4 and NF-κB signaling pathway-related proteins (non-histone proteins) in the antitumor process mediated by BRB anthocyanins. The expression of related proteins was detected by western blot. ROS level was detected by immunofluorescence. RESULTS BRB anthocyanins affected the acetylation level by down-regulating the expression of Sirtuin1 (SIRT1) and up-regulating the expression of MOF and EP300. The acetylation level of lysine sites on histone H4 (H4K5, H4K12 and H4K16) was increased. Furthermore, following BRB anthocyanins treatment, the expression of ac-p65 was significantly up-regulated and the NF-κB signal pathway was activated, which in turn up-regulated Bax expression and inhibited Bcl-2, cyclin-D1, c-myc and NLRP3 expression to promote CRC cell cycle arrest, apoptosis and relieve inflammation. CONCLUSION The findings suggested that protein acetylation could play a critical role in BRB anthocyanins-regulated CRC development.
Collapse
|
11
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
12
|
Zong Q, Qu H, Zhao Y, Liu H, Wu S, Wang S, Bao W, Cai D. Sodium butyrate alleviates deoxynivalenol-induced hepatic cholesterol metabolic dysfunction via RORγ-mediated histone acetylation modification in weaning piglets. J Anim Sci Biotechnol 2022; 13:133. [PMID: 36550531 PMCID: PMC9783825 DOI: 10.1186/s40104-022-00793-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cholesterol is an essential component of lipid rafts in cell plasma membrane, which exerts a hepatoprotective role against mycotoxin exposure in pigs, and cholesterol metabolism is vulnerable to epigenetic histone acetylation. Therefore, our present study aimed to investigate whether a histone deacetylase inhibitor (sodium butyrate [NaBu]) could protect the porcine liver from deoxynivalenol (DON) exposure by modulating cholesterol metabolism. Herein, we randomly divided 28 pigs into four groups, which were fed an uncontaminated basal diet, contaminated diet (4 mg DON/kg), uncontaminated diet supplemented with 0.2% NaBu or 4 mg/kg DON contaminated diet (4 mg DON/kg) supplemented with 0.2% NaBu for 28 d. RESULTS We found that the serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were all increased in pigs exposed to DON, indicative of significant liver injury. Furthermore, the cholesterol content in the serum of DON-exposed pigs was significantly reduced, compared to the healthy Vehicle group. Transcriptome analysis of porcine liver tissues revealed that the cholesterol homeostasis pathway was highly enriched due to DON exposure. In which we validated by qRT-PCR and western blotting that the cholesterol program was markedly activated. Importantly, NaBu effectively restored parameters associated with liver injury, along with the cholesterol content and the expression of key genes involved in the cholesterol biosynthesis pathway. Mechanistically, we performed a ChIP-seq analysis of H3K27ac and showed that NaBu strongly diminished DON-increased H3K27ac genome-wide enrichment. We further validated that the elevated H3K27ac and H3K9ac occupancies on cholesterol biosynthesis genes were both decreased by NaBu, as determined by ChIP-qPCR analysis. Notably, nuclear receptor RORγ, a novel regulator of cholesterol biosynthesis, was found in the hyperacetylated regions. Again, a remarkable increase of RORγ at both mRNA and protein levels in DON-exposed porcine livers was drastically reduced by NaBu. Consistent with RORγ expression, NaBu also hindered RORγ transcriptional binding enrichments on these activated cholesterol biosynthesis genes like HMGCR, SQLE, and DHCR24. Furthermore, we conducted an in vitro luciferase reporter assay to verify that porcine RORγ directly bonds to the promoters of the above target genes. CONCLUSIONS Collectively, our results demonstrate the utility of the natural product NaBu as a potential anti-mycotoxin nutritional strategy for regulating cholesterol metabolism via RORγ-mediated histone acetylation modification.
Collapse
Affiliation(s)
- Qiufang Zong
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Huan Qu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Yahui Zhao
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Haoyu Liu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Shenglong Wu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| | - Shuai Wang
- grid.35155.370000 0004 1790 4137Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Wenbin Bao
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| | - Demin Cai
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| |
Collapse
|
13
|
Wei Z, Li Y, Ali F, Wang Y, Liu J, Yang Z, Wang Z, Xing Y, Li F. Transcriptomic analysis reveals the key role of histone deacetylation via mediating different phytohormone signalings in fiber initiation of cotton. Cell Biosci 2022; 12:107. [PMID: 35831870 PMCID: PMC9277824 DOI: 10.1186/s13578-022-00840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background Histone deacetylation is one of the most important epigenetic modifications and plays diverse roles in plant development. However, the detailed functions and mechanisms of histone deacetylation in fiber development of cotton are still unclear. HDAC inhibitors (HDACi) have been commonly used to study the molecular mechanism underlying histone deacetylation or to facilitate disease therapy in humans through hindering the histone deacetylase catalytic activity. Trichostatin A (TSA)—the most widely used HDACi has been extensively employed to determine the role of histone deacetylation on different developmental stages of plants. Results Through in vitro culture of ovules, we observed that exogenous application of TSA was able to inhibit the fiber initiation development. Subsequently, we performed a transcriptomic analysis to reveal the underlying mechanisms. The data showed that TSA treatment resulted in 4209 differentially expressed genes, which were mostly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, and carbon metabolism pathways. The phytohormone signal transduction pathways harbor the most differentially expressed genes. Deeper studies showed that some genes promoting auxin, Gibberellic Acid (GA) signaling were down-regulated, while some genes facilitating Abscisic Acid (ABA) and inhibiting Jasmonic Acid (JA) signaling were up-regulated after the TSA treatments. Further analysis of plant hormone contents proved that TSA significantly promoted the accumulation of ABA, JA and GA3. Conclusions Collectively, histone deacetylation can regulate some key genes involved in different phytohormone pathways, and consequently promoting the auxin, GA, and JA signaling, whereas repressing the ABA synthesis and signaling to improve the fiber cell initiation. Moreover, the genes associated with energy metabolism, phenylpropanoid, and glutathione metabolism were also regulated by histone deacetylation. The above results provided novel clues to illuminate the underlying mechanisms of epigenetic modifications as well as related different phytohormones in fiber cell differentiation, which is also very valuable for the molecular breeding of higher quality cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00840-4.
Collapse
|
14
|
Singh S, Singh M, Gaur S. Probiotics as multifaceted oral vaccines against colon cancer: A review. Front Immunol 2022; 13:1002674. [PMID: 36263037 PMCID: PMC9573965 DOI: 10.3389/fimmu.2022.1002674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics are known as the live microorganisms that, upon adequate administration, elicit a health beneficial response inside the host. The probiotics are known as immunomodulators and exhibit anti-tumor properties. Advanced research has explored the potential use of probiotics as the oral vaccines without the latent risks of pathogenicity. Probiotic-based oral vaccines are known to induce mucosal immunity that prevents the host from several enteric infections. Probiotic bacteria have the ability to produce metabolites in the form of anti-inflammatory cytokines, which play an important role in the prevention of carcinogenesis and in the activation of the phagocytes that eliminate the preliminary stage cancer cells. This review discusses the advantages and disadvantages of using the oral probiotic vaccines as well as the mechanism of action of probiotics in colon cancer therapy. This review also employs the use of “PROBIO” database for selecting certain probiotics with immunomodulatory properties. Furthermore, the use of several probiotic bacteria as anti-colon cancer adjuvants has also been discussed in detail. Because the current studies and trials are more focused on using the attenuated pathogens instead of using the probiotic-based vaccines, future studies must involve the advanced research in exploiting the potential of several probiotic strains as adjuvants in cancer therapies.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- *Correspondence: Smriti Gaur,
| |
Collapse
|
15
|
Nasehi L, Morassaei B, Ghaffari M, Sharafi A, Dehpour AR, Hosseini MJ. The impacts of vorinostat on NADPH oxidase and mitochondrial biogenesis gene expression in the heart of mice model of depression. Can J Physiol Pharmacol 2022; 100:1077-1085. [PMID: 36166834 DOI: 10.1139/cjpp-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The comorbidity of depression and high risk of cardiovascular diseases (CVD) have been reported as major health problems. Our previous study confirmed that fluoxetine (FLX) therapy had a significant influence on brain function but not on the heart in depression. In the present study, suberoyanilide hydroxamic acid (SAHA) was proposed as another therapeutic candidate for treatment of depression comorbid CVD in maternal separation model, following behavioral analyses and gene expression level in the heart. Our data demonstrated that SAHA significantly attenuates the NOX-4 gene expression level in treated mice with SAHA and FLX without significant change in NOX-2 expression level. SAHA decreased the gene expression level of peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and nuclear respiratory factors (Nrf2) in heart tissues of maternally separated mice. It supposed that non-effectiveness of FLX on mitochondrial biogenesis and NOX gene expression level in the heart of depressed patient can be related to recurrence of depression. It revealed that SAHA not only reversed the depressive-like behavior similar to our previous data but also recovered the heart mitochondrial function via effect on NOX-2, NOX-4, and mitochondrial biogenesis genes' (PGC-1α, Nrf-2, and peroxisome proliferator-activated receptor-α (PPAR-α)) expression levels. We suggest performing more studies to confirm SAHA as a therapeutic candidate in depression comorbid CVD.
Collapse
Affiliation(s)
- Leila Nasehi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahareh Morassaei
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Maryam Ghaffari
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| |
Collapse
|
16
|
Miceli M, Maruotti GM, Sarno L, Carbone L, Guida M, Pelagalli A. Preliminary Characterization of the Epigenetic Modulation in the Human Mesenchymal Stem Cells during Chondrogenic Process. Int J Mol Sci 2022; 23:9870. [PMID: 36077266 PMCID: PMC9456537 DOI: 10.3390/ijms23179870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine represents a growing hot topic in biomedical sciences, aiming at setting out novel therapeutic strategies to repair or regenerate damaged tissues and organs. For this perspective, human mesenchymal stem cells (hMSCs) play a key role in tissue regeneration, having the potential to differentiate into many cell types, including chondrocytes. Accordingly, in the last few years, researchers have focused on several in vitro strategies to optimize hMSC differentiation protocols, including those relying on epigenetic manipulations that, in turn, lead to the modulation of gene expression patterns. Therefore, in the present study, we investigated the role of the class II histone deacetylase (HDAC) inhibitor, MC1568, in the hMSCs-derived chondrogenesis. The hMSCs we used for this work were the hMSCs obtained from the amniotic fluid, given their greater differentiation capacity. Our preliminary data documented that MC1568 drove both the improvement and acceleration of hMSCs chondrogenic differentiation in vitro, since the differentiation process in MC1568-treated cells took place in about seven days, much less than that normally observed, namely 21 days. Collectively, these preliminary data might shed light on the validity of such a new differentiative protocol, in order to better assess the potential role of the epigenetic modulation in the process of the hypertrophic cartilage formation, which represents the starting point for endochondral ossification.
Collapse
Affiliation(s)
- Marco Miceli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Sarno
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Luigi Carbone
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
17
|
Song C, Lin W, Meng H, Li N, Geng Q. Integrated Analysis Reveals the Potential Significance of HDAC Family Genes in Lung Adenocarcinoma. Front Genet 2022; 13:862977. [PMID: 36072664 PMCID: PMC9441483 DOI: 10.3389/fgene.2022.862977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Histone deacetylases comprise a family of 18 genes, and classical HDACs are a promising class of novel anticancer drug targets. However, to date, no systematic study has been comprehensive to reveal the potential significance of these 18 genes in lung adenocarcinoma (LUAD). Here, we used a systematic bioinformatics approach to comprehensively describe the biological characteristics of the HDACs in LUAD. Unsupervised consensus clustering was performed to identify LUAD molecular subtypes. The ssGSEA, CIBERSORT, MCP counter, and ESTIMATE algorithms were used to depict the tumor microenvironment (TME) landscape. The Cox proportional hazards model and LASSO regression analyses were used to construct the HDAC scoring system for evaluating the prognosis of individual tumors. In this study, three distinct HDAC-mediated molecular subtypes were determined, which were also related to different clinical outcomes and biological pathways. HDACsCluster-C subtype had lowest PD-L1/PD-1/CTLA4 expression and immune score. The constructed HDAC scoring system (HDACsScore) could be used as an independent predictor to assess patient prognosis and effectively identify patients with different prognosis. High- and low-HDACsScore groups presented distinct genetic features, immune infiltration, and biological processes. The high-HDACsScore group was more likely to benefit from immunotherapy, as well as from the application of common chemotherapeutic agents (cyclopamine, docetaxel, doxorubicin, gemcitabine, paclitaxel, and pyrimethamine). Overall, HDAC family genes play important roles in LUAD, and the three LUAD subtypes and the HDAC scoring system identified in this study would help enhance our perception of LUAD prognostic differences and provide important insights into the efficacy of immunotherapy and chemotherapy.
Collapse
|
18
|
Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines 2022; 10:biomedicines10081872. [PMID: 36009418 PMCID: PMC9405166 DOI: 10.3390/biomedicines10081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a major diagnosed cancer among men globally, and about 20% of patients develop metastatic prostate cancer (mPCa) in the initial diagnosis. PCa is a typical androgen-dependent disease; thus, hormonal therapy is commonly used as a standard care for mPCa by inhibiting androgen receptor (AR) activities, or androgen metabolism. Inevitably, almost all PCa will acquire resistance and become castration-resistant PCa (CRPC) that is associated with AR gene mutations or amplification, the presence of AR variants, loss of AR expression toward neuroendocrine phenotype, or other hormonal receptors. Treating CRPC poses a great challenge to clinicians. Research efforts in the last decade have come up with several new anti-androgen agents to prolong overall survival of CRPC patients. In addition, many potential targeting agents have been at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the emerging strategies including small-molecule inhibitors to AR variants, DNA repair enzymes, cell survival pathway, neuroendocrine differentiation pathway, radiotherapy, CRPC-specific theranostics and immune therapy that are underway or have recently been completed.
Collapse
|
19
|
Wu MS, Li XJ, Liu CY, Xu Q, Huang JQ, Gu S, Chen JX. Effects of Histone Modification in Major Depressive Disorder. Curr Neuropharmacol 2022; 20:1261-1277. [PMID: 34551699 PMCID: PMC9881074 DOI: 10.2174/1570159x19666210922150043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Major depressive disorder (MDD) is a disease associated with many factors; specifically, environmental, genetic, psychological, and biological factors play critical roles. Recent studies have demonstrated that histone modification may occur in the human brain in response to severely stressful events, resulting in transcriptional changes and the development of MDD. In this review, we discuss five different histone modifications, histone methylation, histone acetylation, histone phosphorylation, histone crotonylation and histone β-hydroxybutyrylation, and their relationships with MDD. The utility of histone deacetylase (HDAC) inhibitors (HDACis) for MDD treatment is also discussed. As a large number of MDD patients in China have been treated with traditional Chineses medicine (TCM), we also discuss some TCM therapies, such as Xiaoyaosan (XYS), and their effects on histone modification. In summary, targeting histone modification may be a new strategy for elucidating the mechanism of MDD and a new direction for MDD treatment.
Collapse
Affiliation(s)
- Man-Si Wu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Chen-Yue Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China;
| | - Qiuyue Xu
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China;
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; ,Address correspondence to this author at the Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; E-mail:
| |
Collapse
|
20
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
21
|
Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol 2022; 16:101312. [PMID: 34922087 PMCID: PMC8688863 DOI: 10.1016/j.tranon.2021.101312] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a key role in the epigenetic regulation of gene expression by remodeling chromatin. Inhibition of HDACs is a prospective therapeutic approach for reversing epigenetic alteration in several diseases. In preclinical research, numerous types of HDAC inhibitors were discovered to exhibit powerful and selective anticancer properties. However, such research has revealed that the effects of HDAC inhibitors may be far broader and more intricate than previously thought. This review will provide insight into the HDAC inhibitors and their mechanism of action with special emphasis on the significance of HDAC inhibitors in the treatment of Chronic Obstructive Pulmonary Disease and lung cancer. Nanocarrier-mediated HDAC inhibitor delivery and new approaches for targeting HDACs are also discussed.
Collapse
Affiliation(s)
- Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
22
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
23
|
McDermott A, Kim K, Kasper S, Ho SM, Leung YK. The androgen receptor inhibits transcription of GPER1 by preventing Sp1 and Sp3 from binding to the promoters in prostate cancer cells. Oncotarget 2022; 13:46-60. [PMID: 35018219 PMCID: PMC8741193 DOI: 10.18632/oncotarget.28169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022] Open
Abstract
G-1, a GPER1 agonist, was shown to inhibit the growth of castration-resistant mouse xenografts but not their parental androgen-dependent tumors. It is currently unknown how the androgen receptor (AR) represses GPER1 expression. Here, we found that two GPER1 mRNA variants (GPER1v2 and GPER1v4) were transcriptionally repressed, not via transcript destabilization, by the androgen-activated AR. Although no AR binding was found in all active promoters near GPER1, data from promoter assays suggested that both variants' promoters were inhibited by androgen treatment. Site-directed mutagenesis on Sp1/Sp3 binding sites revealed their role in supporting the basal expression of GPER1. Knockdown of Sp1 and Sp3 together but not separately repressed GPER1 expression whereas overexpression of both Sp1 and Sp3 together was required to alleviate AR repression of GPER1. Based on the chromatin immunoprecipitation data, Sp3 was found to bind to the promoters prior to the binding of Sp1 and RNA polymerase II. However, the binding of all three transcription factors was inhibited by DHT treatment. Concordantly, DHT treatment induced nuclear interactions between AR and Sp1 or Sp3. Taken together, these results indicate that AR represses transcription of GPER1 by binding to Sp1 and Sp3 independently to prevent their transactivation of the GPER1 promoters.
Collapse
Affiliation(s)
- Austin McDermott
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - KyoungHyun Kim
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Susan Kasper
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Shuk-Mei Ho
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
24
|
Decourtye-Espiard L, Bougen-Zhukov N, Godwin T, Brew T, Schulpen E, Black MA, Guilford P. E-Cadherin-Deficient Epithelial Cells Are Sensitive to HDAC Inhibitors. Cancers (Basel) 2021; 14:cancers14010175. [PMID: 35008338 PMCID: PMC8749989 DOI: 10.3390/cancers14010175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Inactivating germline mutations in the CDH1 gene (encoding the E-cadherin protein) are the genetic hallmark of hereditary diffuse gastric cancer (HDGC), and somatic CDH1 mutations are an early event in the development of sporadic diffuse gastric cancer (DGC) and lobular breast cancer (LBC). In this study, histone deacetylase (HDAC) inhibitors were tested for their ability to preferentially inhibit the growth of human cell lines (MCF10A and NCI-N87) and murine organoids lacking CDH1 expression. CDH1-/- breast and gastric cells were more sensitive to the pan-HDAC inhibitors entinostat, pracinostat, mocetinostat and vorinostat than wild-type cells, with an elevated growth inhibition that was, in part, attributable to increased apoptosis. CDH1-null cells were also sensitive to more class-specific HDAC inhibitors, but compared to the pan-inhibitors, these effects were less robust to genetic background. Increased sensitivity to entinostat was also observed in gastric organoids with both Cdh1 and Tp53 deletions. However, the deletion of Tp53 largely abrogated the sensitivity of the Cdh1-null organoids to pracinostat and mocetinostat. Finally, entinostat enhanced Cdh1 expression in heterozygous Cdh1+/- murine organoids. In conclusion, entinostat is a promising drug for the chemoprevention and/or treatment of HDGC and may also be beneficial for the treatment of sporadic CDH1-deficient cancers.
Collapse
|
25
|
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone Modification in NSCLC: Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222111701. [PMID: 34769131 PMCID: PMC8584007 DOI: 10.3390/ijms222111701] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality in both genders, with non-small cell lung cancer (NSCLC) accounting for about 85% of all lung cancers. At the time of diagnosis, the tumour is usually locally advanced or metastatic, shaping a poor disease outcome. NSCLC includes adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Searching for novel therapeutic targets is mandated due to the modest effect of platinum-based therapy as well as the targeted therapies developed in the last decade. The latter is mainly due to the lack of mutation detection in around half of all NSCLC cases. New therapeutic modalities are also required to enhance the effect of immunotherapy in NSCLC. Identifying the molecular signature of NSCLC subtypes, including genetics and epigenetic variation, is crucial for selecting the appropriate therapy or combination of therapies. Epigenetic dysregulation has a key role in the tumourigenicity, tumour heterogeneity, and tumour resistance to conventional anti-cancer therapy. Epigenomic modulation is a potential therapeutic strategy in NSCLC that was suggested a long time ago and recently starting to attract further attention. Histone acetylation and deacetylation are the most frequently studied patterns of epigenetic modification. Several histone deacetylase (HDAC) inhibitors (HDIs), such as vorinostat and panobinostat, have shown promise in preclinical and clinical investigations on NSCLC. However, further research on HDIs in NSCLC is needed to assess their anti-tumour impact. Another modification, histone methylation, is one of the most well recognized patterns of histone modification. It can either promote or inhibit transcription at different gene loci, thus playing a rather complex role in lung cancer. Some histone methylation modifiers have demonstrated altered activities, suggesting their oncogenic or tumour-suppressive roles. In this review, patterns of histone modifications in NSCLC will be discussed, focusing on the molecular mechanisms of epigenetic modifications in tumour progression and metastasis, as well as in developing drug resistance. Then, we will explore the therapeutic targets emerging from studying the NSCLC epigenome, referring to the completed and ongoing clinical trials on those medications.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rakhee K. Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11559, Egypt
- Correspondence: ; Tel.: +971-6-505-7219; Fax: +971-5-558-5879
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
26
|
Tylińska B, Dobosz A, Spychała J, Cwynar-Zając Ł, Czyżnikowska Ż, Kuźniarski A, Gębarowski T. Evaluation of Interactions of Selected Olivacine Derivatives with DNA and Topoisomerase II. Int J Mol Sci 2021; 22:ijms22168492. [PMID: 34445198 PMCID: PMC8395211 DOI: 10.3390/ijms22168492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Olivacine and ellipticine are model anticancer drugs acting as topoisomerase II inhibitors. Here, we present investigations performed on four olivacine derivatives in light of their antitumor activity. The aim of this study was to identify the best antitumor compound among the four tested olivacine derivatives. The study was performed using CCRF/CEM and MCF-7 cell lines. Comet assay, polarography, inhibition of topoisomerase II activity, histone acetylation, and molecular docking studies were performed. Each tested compound displayed interaction with DNA and topoisomerase II, but did not cause histone acetylation. Compound 2 (9-methoxy-5,6-dimethyl-1-({[1-hydroxy-2-(hydroxymethyl)butan-2-yl]amino}methyl)-6H-pyrido[4,3-b]carbazole) was found to be the best candidate as an anticancer drug because it had the highest affinity for topoisomerase II and caused the least genotoxic damage in cells.
Collapse
Affiliation(s)
- Beata Tylińska
- Department of Organic Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.S.); (Ł.C.-Z.); (T.G.)
- Correspondence: ; Tel.: +48-717-840-482
| | - Jan Spychała
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.S.); (Ł.C.-Z.); (T.G.)
| | - Łucja Cwynar-Zając
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.S.); (Ł.C.-Z.); (T.G.)
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.S.); (Ł.C.-Z.); (T.G.)
| |
Collapse
|
27
|
Toshev N, Cheshmedzhieva D, Dudev T. Factors governing the affinity and selectivity of histone deacetylase inhibitors for the HDAC8 enzyme active site: Implications for anticancer therapy. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikolay Toshev
- Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
- Faculty of Trade Economics and Commodity Science Plekhanov Russian University of Economics Moscow Russia
| | | | - Todor Dudev
- Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| |
Collapse
|
28
|
Henneberg LT, Schulman BA. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem Biol 2021; 28:889-902. [PMID: 33831368 PMCID: PMC7611516 DOI: 10.1016/j.chembiol.2021.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modification of proteins by ubiquitin is required for nearly all aspects of eukaryotic cell function. The numerous targets of ubiquitylation, and variety of ubiquitin modifications, are often likened to a code, where the ultimate messages are diverse responses to target ubiquitylation. E1, E2, and E3 multiprotein enzymatic assemblies modify specific targets and thus function as messengers. Recent advances in chemical and protein tools have revolutionized our ability to explore the ubiquitin system, through enabling new high-throughput screening methods, matching ubiquitylation enzymes with their cellular targets, revealing intricate allosteric mechanisms regulating ubiquitylating enzymes, facilitating structural revelation of transient assemblies determined by multivalent interactions, and providing new paradigms for inhibiting and redirecting ubiquitylation in vivo as new therapeutics. Here we discuss the development of methods that control, disrupt, and extract the flow of information across the ubiquitin system and have enabled elucidation of the underlying molecular and cellular biology.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
29
|
Kamimura S, Inoue K, Mizutani E, Kim JM, Inoue H, Ogonuki N, Miyamoto K, Ihashi S, Itami N, Wakayama T, Ito A, Nishino N, Yoshida M, Ogura A. Improved development of mouse somatic cell nuclear transfer embryos by chlamydocin analogues, class I and IIa histone deacetylase inhibitors†. Biol Reprod 2021; 105:543-553. [PMID: 33982061 PMCID: PMC8335354 DOI: 10.1093/biolre/ioab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian cloning by somatic cell nuclear transfer (SCNT), the treatment of reconstructed embryos with histone deacetylase (HDAC) inhibitors improves efficiency. So far, most of those used for SCNT are hydroxamic acid derivatives-such as trichostatin A-characterized by their broad inhibitory spectrum. Here, we examined whether mouse SCNT efficiency could be improved using chlamydocin analogues, a family of newly designed agents that specifically inhibit class I and IIa HDACs. Development of SCNT-derived embryos in vitro and in vivo revealed that four out of five chlamydocin analogues tested could promote the development of cloned embryos. The highest pup rates (7.1-7.2%) were obtained with Ky-9, similar to those achieved with trichostatin A (7.2-7.3%). Thus, inhibition of class I and/or IIa HDACs in SCNT-derived embryos is enough for significant improvements in full-term development. In mouse SCNT, the exposure of reconstructed oocytes to HDAC inhibitors is limited to 8-10 h because longer inhibition with class I inhibitors causes a two-cell developmental block. Therefore, we used Ky-29, with higher selectivity for class IIa than class I HDACs for longer treatment of SCNT-derived embryos. As expected, 24-h treatment with Ky-29 up to the two-cell stage did not induce a developmental block, but the pup rate was not improved. This suggests that the one-cell stage is a critical period for improving SCNT cloning using HDAC inhibitors. Thus, chlamydocin analogues appear promising for understanding and improving the epigenetic status of mammalian SCNT-derived embryos through their specific inhibitory effects on HDACs.
Collapse
Affiliation(s)
- Satoshi Kamimura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.,Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kimiko Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiji Mizutani
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.,Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jin-Moon Kim
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroki Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Narumi Ogonuki
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kei Miyamoto
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama-ken, Japan
| | - Shunya Ihashi
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama-ken, Japan
| | - Nobuhiko Itami
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Norikazu Nishino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
30
|
Yang D, Chen T, Zhan M, Xu S, Yin X, Liu Q, Chen W, Zhang Y, Liu D, Yan J, Huang Q, Wang J. Modulation of mTOR and epigenetic pathways as therapeutics in gallbladder cancer. Mol Ther Oncolytics 2021; 20:59-70. [PMID: 33575471 PMCID: PMC7851494 DOI: 10.1016/j.omto.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the biliary tract, with extremely dismal prognosis. Limited therapeutic options are available for GBC patients. We used whole-exome sequencing of human GBC to identify the ErbB and epigenetic pathways as two vulnerabilities in GBC. We screened two focused small-molecule libraries that target these two pathways using GBC cell lines and identified the mTOR inhibitor INK-128 and the histone deacetylase (HDAC) inhibitor JNJ-26481585 as compounds that inhibited proliferation at low concentrations. Both significantly suppressed tumor growth and metastases in mouse models. Both synergized with the standard of care chemotherapeutic agent gemcitabine in cell lines and in mouse models. Furthermore, the activation of the mTOR pathway, measured by immunostaining for phosphorylated mTOR and downstream effector S6K1, is correlated with poor prognosis in GBC. Phosphorylated mTOR or p-S6K1 in clinical samples is an independent indicator for overall survival in GBC patients. Taken together, our findings suggest that mTOR inhibitors and HDAC inhibitors can serve as potential therapeutics for GBC, and the phosphorylation of mTOR and S6K1 may serve as biomarkers for GBC.
Collapse
Affiliation(s)
- Dong Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangfan Yin
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinchun Yan
- Department of Radiation Oncology, Cancer Hospital of Fudan University, 270 Dong An Road, Shanghai, China
| | - Qihong Huang
- Shanghai Respiratory Research Institute, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Wang H, Liu YC, Zhu CY, Yan F, Wang MZ, Chen XS, Wang XK, Pang BX, Li YH, Liu DH, Gao CJ, Liu SJ, Dou LP. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway. J Exp Clin Cancer Res 2020; 39:278. [PMID: 33298132 PMCID: PMC7724824 DOI: 10.1186/s13046-020-01792-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Induction therapy for acute myeloid leukemia (AML) is an anthracycline-based chemotherapy regimen. However, many patients experience a relapse or exhibit refractory disease (R/R). There is an urgent need for more effective regimens to reverse anthracycline resistance in these patients. METHODS In this paper, Twenty-seven R/R AML patients with anthracycline resistance consecutively received chidamide in combination with anthracycline-based regimen as salvage therapy at the Chinese PLA General Hospital. RESULTS Of the 27 patients who had received one course of salvage therapy, 13 achieved a complete response and 1 achieved a partial response. We found that the HDAC3-AKT-P21-CDK2 signaling pathway was significantly upregulated in anthracycline-resistant AML cells compared to non-resistant cells. AML patients with higher levels of HDAC3 had lower event-free survival (EFS) and overall survival (OS) rates. Moreover, anthracycline-resistant AML cells are susceptible to chidamide, a histone deacetylase inhibitor which can inhibit cell proliferation, increase cell apoptosis and induce cell-cycle arrest in a time- and dose-dependent manner. Chidamide increases the sensitivity of anthracycline-resistant cells to anthracycline drugs, and these effects are associated with the inhibition of the HDAC3-AKT-P21-CDK2 signaling pathway. CONCLUSION Chidamide can increase anthracycline drug sensitivity by inhibiting HDAC3-AKT-P21-CDK2 signaling pathway, thus demonstrating the potential for application.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aminopyridines/administration & dosage
- Animals
- Anthracyclines/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis
- Benzamides/administration & dosage
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle
- Cell Proliferation
- Child
- Cyclin-Dependent Kinase 2/genetics
- Cyclin-Dependent Kinase 2/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Salvage Therapy
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
Affiliation(s)
- Hao Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yu-Chen Liu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Cheng-Ying Zhu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Meng-Zhen Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Xiao-Su Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Kai Wang
- Department of Orthopedics, Xiqing Hospital, 403 Xiqing Road, Yangliuqing, Tianjin, 300000, China
| | - Bao-Xu Pang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yong-Hui Li
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Dai-Hong Liu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Chun-Ji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Shu-Jun Liu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA.
| | - Li-Ping Dou
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
32
|
Fattahi Y, Heidari HR, Khosroushahi AY. Review of short-chain fatty acids effects on the immune system and cancer. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Shi Y, Li SS, Liu DY, Yu Y. Cutaneous metastases of pancreatic carcinoma to the labia majora: A case report and review of literature. World J Gastrointest Oncol 2020; 12:1372-1380. [PMID: 33250968 PMCID: PMC7667456 DOI: 10.4251/wjgo.v12.i11.1372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cutaneous metastases originating from pancreatic cancer are relatively rare. The most common reported site of metastasis is the umbilicus, and this manifestation is known as the Sister Mary Joseph’s nodule. Non-umbilical cutaneous metastases are far less common, with only a few cases reported in the literature. Our case is the first case report, to our knowledge, on metastasis involving the labia majora and flat papules.
CASE SUMMARY A 49-year-old Chinese female patient presented with a number of red, swollen papules on the vulva for 2 mo. Histological examination of the labia majora lesion revealed metastatic adenocarcinoma. The serum levels of tumor biomarkers CA199, CA242, and CA125 were significantly elevated. B-mode ultrasound-guided needle biopsy of the pancreas demonstrated moderately and poorly differentiated adenocarcinoma. The patient finally declined treatment for financial reasons and died 3 mo later.
CONCLUSION Metastatic cutaneous lesions could indicate pancreatic cancer. Serum levels of tumor biomarkers may aid in diagnosing metastatic pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Ying Shi
- Department of Dermatology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Shan-Shan Li
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Dan-Yan Liu
- Department of Radiology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yan Yu
- Department of Dermatology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
34
|
Histone Deacetylase Inhibitors Enhance the Amoebicidal Effect of Low Concentration of Polyhexamethylene Biguanide by Inducing Apoptosis. Cornea 2020; 39:245-249. [PMID: 31724982 DOI: 10.1097/ico.0000000000002201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE The aim of this study was to reduce the cytotoxicity and improve the amoebicidal effect of polyhexamethylene biguanide (PHMB) at low concentrations by combining it with histone deacetylase (HDAC) inhibitors. METHODS To reduce the cytotoxic effect on human corneal epithelial (HCE) cells, the concentration of PHMB was reduced to 0.0002%. To enhance the amoebicidal effect of PHMB, HDAC inhibitors such as suberoylanilide hydroxamic acid, MS275, or MC1568 were combined with it. Acanthamoeba and HCE cells were treated with 3 combinations to evaluate the amoebicidal and cytotoxic effects. Microscopy and fluorescence-activated cell sorting analysis were performed to investigate the apoptotic cell death of Acanthamoeba by these combinatorial treatments. RESULTS The low concentration of PHMB (0.0002%) alone demonstrated no cytopathic effects (CPEs) on HCE cells. Three combinatorial treatments using 0.0002% PHMB with 10 μM suberoylanilide hydroxamic acid, 10 μM MS275, or 10 μM MC1568 showed higher amoebicidal effects on A. castellanii trophozoites than PHMB alone. Fluorescence-activated cell sorting analysis confirmed that HDAC inhibitors increased the apoptotic cell death of Acanthamoeba. Mild CPEs were observed from HCE cells cotreated with PHMB and the HDAC inhibitors after 24 hours of exposure. CONCLUSIONS Combinatorial treatments showed high amoebicidal effects on Acanthamoeba and low CPEs on HCE cells, which suggests their potential application for Acanthamoeba keratitis treatment.
Collapse
|
35
|
Smalley JP, Cowley SM, Hodgkinson JT. Bifunctional HDAC Therapeutics: One Drug to Rule Them All? Molecules 2020; 25:E4394. [PMID: 32987782 PMCID: PMC7583022 DOI: 10.3390/molecules25194394] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety. This review summarises the recent advancements in novel types of dual-targeting HDAC modulators, including proteolysis-targeting chimeras (PROTACs), with a focus on HDAC isoform and complex selectivity, and the future potential of such bifunctional molecules in achieving enhanced drug efficacy and therapeutic benefits in treating disease.
Collapse
Affiliation(s)
- Joshua P. Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| | - Shaun M. Cowley
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK;
| | - James T. Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
36
|
Zhang Q, Xu G, Bao Y, Jiao M, Li J. Design, Synthesis, and Biological Evaluation of Dual c-Met/HDAC Inhibitors Bearing 2-Aminopyrimidine Scaffold. PHARMACEUTICAL FRONTS 2020; 02:e143-e149. [DOI: 10.1055/s-0040-1722543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractA series of c-Met/histone deacetylase (HDAC) bifunctional inhibitors was designed and synthesized by merging pharmacophores of c-Met and HDAC inhibitors. Among them, the most potent compound, 2o, inhibited c-Met kinase and HDACs, with IC50 values of 9.0 and 31.6 nM, respectively, and showed efficient antiproliferative activities against both A549 and HCT-116 cancer cell lines with greater potency than an equimolar mixture of the respective inhibitors of the two enzymes: crizotinib and vorinostat (SAHA). Our study provided an efficient strategy for the discovery of multitargeted antitumor drugs.
Collapse
Affiliation(s)
- Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Guili Xu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, PR China
| | - Ya Bao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, PR China
| | - Minru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| |
Collapse
|
37
|
Dawood M, Fleischer E, Klinger A, Bringmann G, Shan L, Efferth T. Inhibition of cell migration and induction of apoptosis by a novel class II histone deacetylase inhibitor, MCC2344. Pharmacol Res 2020; 160:105076. [PMID: 32659428 DOI: 10.1016/j.phrs.2020.105076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Epigenetic modifiers provide a new target for the development of anti-cancer drugs. The eraser histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that targets various non-histone proteins such as transcription factors, nuclear receptors, cytoskeletal proteins, DNA repair proteins, and molecular chaperones. Therefore, it became an attractive target for cancer treatment. In this study, virtual screening was applied to the MicroCombiChem database with 1162 drug-like compounds to identify new HDAC6 inhibitors. Five compounds were tested in silico and in vitro as HDAC6 inhibitors. Both analyses revealed 1-cyclohexene-1-carboxamide, 2-hydroxy-4,4-dimethyl-N-1-naphthalenyl-6-oxo- (MCC2344) as the best HDAC6 inhibitor among the five ligands. The binding affinity of MCC2344 to HDAC6 was further confirmed by microscale thermophoresis. Additionally, the anti-cancer activity of MCC2344 was tested in several tumor cell lines. Leukemia cells were the most sensitive cells towards MCC2344, particularly the P-glycoprotein-overexpressing multidrug-resistant cell line CEM/ADR5000 exhibited remarkable collateral sensitivity towards MCC2344. Transcriptome analysis using microarray hybridization was performed for investigating downstream mechanisms of action of MCC2344 in leukemia cells. MCC2344 affected microtubule dynamics and suppressed cell migration in the wound healing assay as well as in a spheroid model by hyper-acetylation of tubulin and HSP-90. MCC2344 induced cell death in CEM/ADR5000 cells by activation of PARP, caspase-3, and p21 in addition to the downregulation of p62. MCC2344 significantly inhibited tumor growth in vivo in zebrafish larvae without mortality until 20 pM. We propose MCC2344 as a novel HDAC6 inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | | | | | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
38
|
Dewaker V, Srivastava AK, Arora A, Prabhakar YS. Investigation of HDAC8-ligands’ intermolecular forces through molecular dynamics simulations: profiling of non-bonding energies to design potential compounds as new anti-cancer agents. J Biomol Struct Dyn 2020; 39:4726-4751. [DOI: 10.1080/07391102.2020.1780940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ajay K. Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ashish Arora
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
39
|
Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers (Basel) 2020; 12:cancers12061664. [PMID: 32585896 PMCID: PMC7352721 DOI: 10.3390/cancers12061664] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Histones are the main structural proteins of eukaryotic chromatin. Histone acetylation/ deacetylation are the epigenetic mechanisms of the regulation of gene expression and are catalyzed by histone acetyltransferases (HAT) and histone deacetylases (HDAC). These epigenetic alterations of DNA structure influence the action of transcription factors which can induce or repress gene transcription. The HATs catalyze acetylation and the events related to gene transcription and are also responsible for transporting newly synthesized histones from the cytoplasm to the nucleus. The activity of HDACs is mainly involved in silencing gene expression and according to their specialized functions are divided into classes I, II, III and IV. The disturbance of the expression and mutations of HDAC genes causes the aberrant transcription of key genes regulating important cancer pathways such as cell proliferation, cell-cycle regulation and apoptosis. In view of their role in cancer pathways, HDACs are considered promising therapeutic targets and the development of HDAC inhibitors is a hot topic in the search for new anticancer drugs. The present review will focus on HDACs I, II and IV, the best known inhibitors and potential alternative inhibitors derived from natural and synthetic products which can be used to influence HDAC activity and the development of new cancer therapies.
Collapse
Affiliation(s)
- Flávia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
| | - Umashankar Das
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
| | - Jonathan R. Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Pharmaceutical Sciences School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| |
Collapse
|
40
|
Epigenetic Modifiers as Potential Therapeutic Targets in Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21114113. [PMID: 32526941 PMCID: PMC7312774 DOI: 10.3390/ijms21114113] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease is one of the fastest growing causes of death worldwide. Epigenetic regulators control gene expression and are potential therapeutic targets. There is functional interventional evidence for a role of DNA methylation and the histone post-translational modifications-histone methylation, acetylation and crotonylation-in the pathogenesis of kidney disease, including diabetic kidney disease. Readers of epigenetic marks, such as bromodomain and extra terminal (BET) proteins, are also therapeutic targets. Thus, the BD2 selective BET inhibitor apabetalone was the first epigenetic regulator to undergo phase-3 clinical trials in diabetic kidney disease with an endpoint of kidney function. The direct therapeutic modulation of epigenetic features is possible through pharmacological modulators of the specific enzymes involved and through the therapeutic use of the required substrates. Of further interest is the characterization of potential indirect effects of nephroprotective drugs on epigenetic regulation. Thus, SGLT2 inhibitors increase the circulating and tissue levels of β-hydroxybutyrate, a molecule that generates a specific histone modification, β-hydroxybutyrylation, which has been associated with the beneficial health effects of fasting. To what extent this impact on epigenetic regulation may underlie or contribute to the so-far unclear molecular mechanisms of cardio- and nephroprotection offered by SGLT2 inhibitors merits further in-depth studies.
Collapse
|
41
|
Zhang Q, Xu G, Bao Y, Jiao M, Li J. Design, Synthesis, and Biological Evaluation of Dual c-Met/HDAC Inhibitors Bearing 2-Aminopyrimidine Scaffold. PHARMACEUTICAL FRONTS 2020; 02:e117-e117. [DOI: 10.1055/s-0040-1719162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| | - Guili Xu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, PR China
| | - Ya Bao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, PR China
| | - Minru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| |
Collapse
|
42
|
Hashemi P, Sadowski I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med Res Rev 2020; 40:881-908. [PMID: 31608481 PMCID: PMC7216841 DOI: 10.1002/med.21638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The latency phenomenon produced by human immunodeficiency virus (HIV-1) prevents viral clearance by current therapies, and consequently development of a cure for HIV-1 disease represents a formidable challenge. Research over the past decade has resulted in identification of small molecules that are capable of exposing HIV-1 latent reservoirs, by reactivation of viral transcription, which is intended to render these infected cells sensitive to elimination by immune defense recognition or apoptosis. Molecules with this capability, known as latency-reversing agents (LRAs) could lead to realization of proposed HIV-1 cure strategies collectively termed "shock and kill," which are intended to eliminate the latently infected population by forced reactivation of virus replication in combination with additional interventions that enhance killing by the immune system or virus-mediated apoptosis. Here, we review efforts to discover novel LRAs via low- and high-throughput small molecule screens, and summarize characteristics and biochemical properties of chemical structures with this activity. We expect this analysis will provide insight toward further research into optimized designs for new classes of more potent LRAs.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
43
|
Jahangirian H, Saleh B, Kalantari K, Rafiee-Moghaddam R, Nikpey B, Jahangirian S, Webster TJ. Enzymatic Synthesis of Ricinoleyl Hydroxamic Acid Based on Commercial Castor Oil, Cytotoxicity Properties and Application as a New Anticancer Agent. Int J Nanomedicine 2020; 15:2935-2945. [PMID: 32425525 PMCID: PMC7196198 DOI: 10.2147/ijn.s223796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/29/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND New anticancer agents that rely on natural/healthy, not synthetic/toxic, components are very much needed. METHODS Ricinoleyl hydroxamic acid (RHA) was synthesized from castor oil and hydroxylamine using Lipozyme TL IM as a catalyst. To optimize the conversion, the effects of the following parameters were investigated: type of organic solvent, period of reaction, amount of enzyme, the molar ratio of reactants and temperature. The highest conversion was obtained when the reaction was carried out under the following conditions: hexane as a solvent; reaction period of 48 hours; 120 mg of Lipozyme TL IM/3 mmol oil; HA-oil ratio of 19 mmol HA/3 mmol oil; and temperature of 40°C. The cytotoxicity of the synthesized RHA was assessed using human dermal fibroblasts (HDF), and its application towards fighting cancer was assessed using melanoma and glioblastoma cancer cells over a duration of 24 and 48 hours. RESULTS RHA was successfully synthesized and it demonstrated strong anticancer activity against glioblastoma and melanoma cells at as low as a 1 µg/mL concentration while it did not demonstrate any toxicity against HDF cells. CONCLUSION This is the first report on the synthesis of RHA with great potential to be used as a new anticancer agent.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| | - Bahram Saleh
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| | - Katayoon Kalantari
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| | - Bahareh Nikpey
- Department of Agronomy and Plant Breeding, Faculty of Engineering and Agriculture, Science and Research Branch, IA University, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| |
Collapse
|
44
|
Peedicayil J. The Potential Role of Epigenetic Drugs in the Treatment of Anxiety Disorders. Neuropsychiatr Dis Treat 2020; 16:597-606. [PMID: 32184601 PMCID: PMC7060022 DOI: 10.2147/ndt.s242040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that abnormalities in epigenetic mechanisms of gene expression contribute to the pathogenesis of anxiety disorders (ADs). This article discusses the role of epigenetic mechanisms of gene expression in the pathogenesis of ADs. It also discusses the data so far obtained from preclinical and clinical trials on the use of epigenetic drugs for treating ADs. Most drug trials investigating the use of epigenetic drugs for treating ADs have used histone deacetylase inhibitors (HDACi). HDACi are showing favorable results in both preclinical and clinical drug trials for treating ADs. However, at present the mode of action of HDACi in ADs is not clear. More work needs to be done to elucidate how epigenetic dysregulation contributes to the pathogenesis of ADs. More work also needs to be done on the mode of action of HDACi in alleviating the signs and symptoms of ADs.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
45
|
Richa S, Dey P, Park C, Yang J, Son JY, Park JH, Lee SH, Ahn MY, Kim IS, Moon HR, Kim HS. A New Histone Deacetylase Inhibitor, MHY4381, Induces Apoptosis via Generation of Reactive Oxygen Species in Human Prostate Cancer Cells. Biomol Ther (Seoul) 2020; 28:184-194. [PMID: 31476841 PMCID: PMC7059815 DOI: 10.4062/biomolther.2019.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors represent a novel class of anticancer agents, which can be used to inhibit cell proliferation and induce apoptosis in several types of cancer cells. In this study, we investigated the anticancer activity of MHY4381, a newly synthesized HDAC inhibitor, against human prostate cancer cell lines and compared its efficacy with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. We assessed cell viability, apoptosis, cell cycle regulation, and other biological effects in the prostate cancer cells. We also evaluated a possible mechanism of MHY4381 on the apoptotic cell death pathway. The IC50 value of MHY4381 was lower in DU145 cells (IC50=0.31 µM) than in LNCaP (IC50=0.85 µM) and PC-3 cells (IC50=5.23 µM). In addition, the IC50 values of MHY4381 measured in this assay were significantly lower than those of SAHA against prostate cancer cell lines. MHY4381 increased the levels of acetylated histones H3 and H4 and reduced the expression of HDAC proteins in the prostate cancer cell lines. MHY4381 increased G2/M phase arrest in DU145 cells, and G1 arrest in LNCaP cells. It also activated reactive oxygen species (ROS) generation, which induced apoptosis in the DU145 and LNCaP cells by increasing the ratio of Bax/Bcl-2 and releasing cytochrome c into the cytoplasm. Our results indicated that MHY4381 preferentially results in antitumor effects in DU145 and LNCaP cells via mitochondria-mediated apoptosis and ROS-facilitated cell death pathway, and therefore can be used as a promising prostate cancer therapeutic.
Collapse
Affiliation(s)
- Sachan Richa
- School of Pharmacy, Sungkyunkwan University, Suwon 16419
| | - Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419
| | - Chaeun Park
- College of Pharmacy, Pusan National University, Busan 46241
| | - Jungho Yang
- College of Pharmacy, Pusan National University, Busan 46241
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon 16419
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419
| | - Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419
| | - Mee-Young Ahn
- Major in Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958,
Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419
| | | | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419
| |
Collapse
|
46
|
Combination of tert-butyl hydroperoxide with vorinostat induces cell death of Acanthamoeba through cell cycle arrest. Exp Parasitol 2020; 210:107833. [PMID: 31935358 DOI: 10.1016/j.exppara.2020.107833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022]
Abstract
Safety precautions prior to contact lens usage is essential for preventing Acanthamoeba keratitis. Contact lens disinfecting solutions containing 3% hydrogen peroxide (H2O2) are known to exert amoebicidal effect against Acanthamoeba. Yet, these solutions need to be neutralized to prevent ocular irritation, which consequently may result in incomplete disinfection. In this study, amoebicidal effect of tert-butyl hydroperoxide (tBHP) was investigated and its efficacy was compared to those of hydrogen peroxide (H2O2). H2O2 and tBHP showed dose dependent amoebicidal effect, however high concentration of these compounds demonstrated cytotoxicity in human corneal epithelial (HCE) cells. To reduce their cytotoxicity, the concentrations of both compounds were diluted to 50 μM and subsequently combined with 10 μM vorinostat to enhance amoebicidal effect. Addition of vorinostat induced high amoebicidal effect against Acanthamoeba trophozoites, even at low concentrations of H2O2 or tBHP. Cellular damage induced by combined treatment of H2O2 or tBHP with vorinostat in Acanthamoeba were determined by assessing cell cycle arrest and apoptosis via FACS analysis. While 50 μM H2O2 combined with 10 μM vorinostat showed 36.26% cytotoxicity on HCE cells during 24 h exposure, 50 μM tBHP with 10 μM vorinostat did not show cytotoxicity on HCE cells. These findings suggest that the application of tBHP and vorinostat for Acanthamoeba keratitis treatment and contact lens disinfection system is highly plausible.
Collapse
|
47
|
Xu L, Li W, Shi Q, Wang M, Li H, Yang X, Zhang J. MicroRNA‑936 inhibits the malignant phenotype of retinoblastoma by directly targeting HDAC9 and deactivating the PI3K/AKT pathway. Oncol Rep 2020; 43:635-645. [PMID: 31922233 PMCID: PMC6967128 DOI: 10.3892/or.2020.7456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/02/2019] [Indexed: 02/05/2023] Open
Abstract
MicroRNA-936 (miR-936) has been reported to play important roles in the progression of non-small cell lung cancer and glioma. However, the expression and functions of miR-936 in retinoblastoma (RB) remain elusive and need to be further elucidated. Herein, the aims were to measure miR-936 expression in RB, identify the functional importance of miR-936 in the oncogenicity of RB, and investigate the underlying molecular mechanisms. Reverse-transcription quantitative PCR was carried out to determine miR-936 expression in RB tissues and cell lines. Cell proliferation, colony formation, apoptosis, migration, and invasion in vitro and tumor growth in vivo were examined respectively by Cell Counting Kit-8, colony formation, flow cytometric, and Transwell migration and invasion assays and a subcutaneous heterotopic xenograft experiment. The potential target of miR-936 was predicted by bioinformatic analysis and was subsequently validated by luciferase reporter assay, reverse-transcription quantitative PCR, and western blotting. miR-936 expression was weak in both RB tissues and cell lines and was correlated with differentiation, lymph node metastasis and TNM staging in RB. RB cell proliferation, colony formation, migration, and invasion in vitro and tumor growth in vivo were attenuated by exogenous miR-936, whereas apoptosis was enhanced by miR-936 overexpression. Further molecular investigation identified histone deacetylase 9 (HDAC9) as a direct target gene of miR-936 in RB cells. HDAC9 depletion had effects similar to those of miR-936 overexpression in RB cells. Recovery of HDAC9 expression counteracted the tumor-suppressive action of miR-936 on the oncogenicity of RB cells. Ectopic miR-936 expression deactivated the PI3K/AKT pathway in RB cells in vitro and in vivo by decreasing HDAC9 expression. Downregulated miR-936 is related to poor prognosis in RB, and its upregulation inhibits RB aggressiveness via direct targeting of HDAC9 mRNA and thereby inactivation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lishuai Xu
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Weidong Li
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
| | - Qian Shi
- Department of Ophthalmology, Yixing Eye Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Minfeng Wang
- Department of Ophthalmology, Yixing Eye Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Heng Li
- Department of Ophthalmology, Suining Central Hospital, Suining, Sichuan 637000, P.R. China
| | - Xiaoli Yang
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Junjun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
48
|
Histone deacetylases 1, 2 and 3 in nervous system development. Curr Opin Pharmacol 2020; 50:74-81. [PMID: 31901696 DOI: 10.1016/j.coph.2019.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022]
Abstract
Although histone acetylases (HDACS) were initially believed to render chromatin in a transcriptionally repressed state by deacetylating histones, it is now known that they both repress and activate transcription. Moreover, HDACs regulate the activity and/or function of a large number of other cellular proteins localized in the nucleus and cytoplasm. Accumulating evidence indicates that HDACs also play a key role in the development of the nervous system. This review focuses on three classical HDACS - HDACs 1, 2 and 3. Although much evidence on the involvement of HDACs in neurodevelopment has come from the use of pharmacological inhibitors, because these agents are not specific in their action on individual HDAC proteins, this review only describes evidence derived from the use of molecular genetic approaches. Our review describes that HDACs 1, 2 and 3 play crucial roles in neurodevelopment by regulating neurogenesis, gliogenesis, the development of neural circuitry and synaptic transmission.
Collapse
|
49
|
Kiany S, Harrison D, Gordon N. The Histone Deacetylase Inhibitor Entinostat/Syndax 275 in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:75-83. [PMID: 32483732 DOI: 10.1007/978-3-030-43032-0_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The prognosis for metastatic osteosarcoma (OS) is poor and has not changed in several decades. Therapeutic paradigms that target and exploit novel molecular pathways are desperately needed. Recent preclinical data suggests that modulation of the Fas/FasL pathway may offer benefit in the treatment of refractory osteosarcoma. Fas and FasL are complimentary receptor-ligand proteins. Fas is expressed in multiple tissues, whereas FasL is restricted to privilege organs, such as the lung. Fas expression has been shown to inversely correlate with the metastatic potential of OS cells; tumor cells which express high levels of Fas have decreased metastatic potential and the ones that reach the lung undergo cell death upon interaction with constitutive FasL in the lung. Agents such as gemcitabine and the HDAC inhibitor, entinostat/Syndax 275, have been shown to upregulate Fas expression on OS cells, potentially leading to decreased OS pulmonary metastasis and improved outcome. Clinical trials are in development to evaluate this combination as a potential treatment option for patients with refractory OS.
Collapse
Affiliation(s)
- Simin Kiany
- Department of Pediatrics Research, MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas Harrison
- Department of Pediatrics - Patient Care, MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics Research, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
50
|
Ogbadu J, Singh G, Aggarwal D. Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives. Eur J Pharmacol 2019; 865:172711. [DOI: 10.1016/j.ejphar.2019.172711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
|