1
|
Xin JW, Chai ZX, Zhang CF, Zhang Q, Zhu Y, Cao HW, Ji CY, Chen XY, Jiang H, Zhong JC, Ji QM. Signature of high altitude adaptation in the gluteus proteome of the yak. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:362-372. [PMID: 32779369 DOI: 10.1002/jez.b.22995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
Yak is the unique Bovidae species in the Qinghai-Tibetan Plateau. A previous proteomic study has compared the yak muscle tissue to one cattle strain using the isobaric tags for relative and absolute quantification approach. In this study, to further investigate the molecular mechanisms underlying yak adaptation, the proteomic profiles of gluteus were compared between yak and one moderate-altitude cattle strain (Tibetan cattle) and two low-altitude cattle strains (Holstein and Sanjiang cattle) using a label-free quantitative method. The comparisons identified 20, 364, 143 upregulated proteins and 4, 6, 37 downregulated proteins in yak, compared with Tibetan, Holstein, and Sanjiang cattle, respectively. Protein-protein interaction analysis indicated that these differentially expressed proteins were mainly related to "oxidative phosphorylation" and "electron transport chain." Further analysis revealed that NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4, cytochrome C oxidase subunit 6A2, mitochondrial and cytochrome c oxidase subunit NDUFA4 were all increased in the yak, suggesting that yak might increase mitochondrial capacity to sustain metabolic rates under high altitude conditions, which might be a long-term adaptive mechanism underlying adaptation to high altitude environments. Yak increased the level of thioredoxin reductase 2 to protect themselves from oxidative damages. Moreover, the increased expression levels of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform and caveolin-1 in yak suggested that yaks promoted glucose uptake for adaptation to high altitude. These results provided more information to better understand the molecular mechanisms underlying yak adaption.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, P. R. China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Cidan Yang Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, P. R. China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| |
Collapse
|
2
|
Crombez D, Delcambre S, Nonclercq D, Vander Elst L, Laurent S, Cnop M, Muller RN, Burtea C. Modulation of adiponectin receptors AdipoR1 and AdipoR2 by phage display-derived peptides in in vitro and in vivo models. J Drug Target 2020; 28:831-851. [PMID: 31888393 DOI: 10.1080/1061186x.2019.1710840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Type 2 diabetes (T2D) is often linked to metabolic syndrome, which assembles various risk factors related to obesity. Plasma levels of adiponectin are decreased in T2D and obese subjects. Aiming to develop a peptide able to bind adiponectin receptors and modulate their signalling pathways, a 12-amino acid sequence homologous in AdipoR1/R2 has been targeted by phage display with a linear 12-mer peptide library. The selected peptide P17 recognises AdipoR1/R2 expressed by skeletal muscle, liver and pancreatic islets. In HepaRG and C2C12 cells, P17 induced the activation of AMPK (AMPKα-pT172) and the expression of succinate dehydrogenase and glucokinase; no cytotoxic effects were observed on HepaRG cells. In db/db mice, P17 promoted body weight and glycaemia stabilisation, decreased plasma triglycerides to the range of healthy mice and increased adiponectin (in high fat-fed mice) and insulin (in chow-fed mice) levels. It restored to the range of healthy mice the tissue levels and subcellular distribution of AdipoR1/R2, AMPKα-pT172 and PPARα-pS12. In liver, P17 reduced steatosis and apoptosis. The docking of P17 to AdipoR is reminiscent of the binding mechanism of adiponectin. To conclude, we have developed an AdipoR1/AdipoR2-targeted peptide that modulates adiponectin signalling pathways and has therapeutic relevance for T2D and obesity associated pathologies.
Collapse
Affiliation(s)
- Deborah Crombez
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Mons, Belgium
| | - Sébastien Delcambre
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Mons, Belgium
| | - Denis Nonclercq
- Department of Histology, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Mons, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Charleroi, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), and Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Charleroi, Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
3
|
Huang Y, Deng Y, Shang L, Yang L, Huang J, Ma J, Liao X, Zhou H, Xian J, Liang G, Huang Q. Effect of type 2 diabetes mellitus caveolin-3 K15N mutation on glycometabolism. Exp Ther Med 2019; 18:2531-2539. [PMID: 31572504 PMCID: PMC6755474 DOI: 10.3892/etm.2019.7840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Caveolin-3 (CAV3) is a muscle-specific protein present within the muscle cell membrane that affects signaling pathways, including the insulin signaling pathway. A previous assessment of patients with newly developed type 2 diabetes (T2DM) demonstrated that CAV3 gene mutations may lead to changes in protein secondary structure. A severe CAV3 P104L mutation has previously been indicated to influence the phosphorylation of skeletal muscle cells and result in impaired glucose metabolism. In the present study, the effect of CAV3 K15N gene transfection in C2C12 cells was assessed. Transfection with K15N reduced the expression of total CAV3 and AKT2 proteins in the cells, and the translocation of glucose transporter type 4 to the muscle cell membrane, which resulted in decreased glucose uptake and glycogen synthesis in myocytes. In conclusion, these results indicate that the CAV3 K15N mutation may cause insulin-stimulated impaired glucose metabolism in myocytes, which may contribute to the development of T2DM.
Collapse
Affiliation(s)
- Yiyuan Huang
- School of Nursing, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Yufeng Deng
- School of Nursing, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Lina Shang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lihui Yang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Juanjuan Huang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Ma
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xianshan Liao
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hui Zhou
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guining Liang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin Huang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
4
|
Insulin Antagonizes LPS-Induced Inflammatory Responses by Activating SR-A1/ERK Axis in Macrophages. Inflammation 2018; 42:754-762. [DOI: 10.1007/s10753-018-0933-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Decoding resistant hypertension signalling pathways. Clin Sci (Lond) 2017; 131:2813-2834. [PMID: 29184046 DOI: 10.1042/cs20171398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches.
Collapse
|
6
|
Ariana M, Arabi N, Pornour M, Vaseghi H, Ganji SM, Alivand MR, Salari M, Akbari ME. The diversity in the expression profile of caveolin II transcripts, considering its new transcript in breast cancer. J Cell Biochem 2017; 119:2168-2178. [PMID: 28857238 DOI: 10.1002/jcb.26378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
Most studies have revealed the effects of caveolins in cancer inhibition. However, due to a lack of reports about their new transcripts, their presence and their effects on different cancers are unclear. This study was conducted to evaluate the cavolin-2 (cav-2) transcripts expression changes in tumoral and corresponding tissues and in contralateral breast, to investigate their variation associated with the variation of caveolin-1 (cav-1) expression in breast cancer. There were 40 breast-derived tumoral, corresponding, and contralateral tissues obtained from the patients with breast cancer. The RNA and proteins were extracted from these samples. So, cav-1 and cav-2 transcripts' variation were assessed in whole tumoral, corresponding, and contralateral breast. Also, their expression modifications were evaluated via the Western blotting technique. The results derived from this study verified the presence of transcript III of cav-2 for the first time, which was reported only in the gene bank, but we could not detect and validate any protein associated with these transcripts. Also, the decreasing trend of cav-1 and the cav-2 (transcripts I and II) were observed in tumoral tissues compared to unaffected tissues especially in stages I and II. It seems that the descending expression levels of cav-1 and cav-2 (transcript I, II) besides the lasting expression of cav-2 (transcript III) are associated with the incidence and promotion of breast cancer, especially in the initial stages of breast cancer. So, this may show a potential in determining the patients who can undergo the prophylactic mastectomy. Moreover, the results of the study demonstrated that transcript III may be a candidate as a non-coding RNA.
Collapse
Affiliation(s)
- Mehdi Ariana
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Arabi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Pornour
- Photo Healing and Regeneration Research Group, Medical Laser research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hajar Vaseghi
- Photo Healing and Regeneration Research Group, Medical Laser research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | | | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Salari
- Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
7
|
Dahlmans D, Houzelle A, Jörgensen JA, Phielix E, Lindeboom L, Hesselink MKC, Schrauwen P, Hoeks J. Evaluation of Muscle microRNA Expression in Relation to Human Peripheral Insulin Sensitivity: A Cross-Sectional Study in Metabolically Distinct Subject Groups. Front Physiol 2017; 8:711. [PMID: 28983252 PMCID: PMC5613141 DOI: 10.3389/fphys.2017.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
In recent years, several microRNAs (miRNAs)—post-transcriptional regulators of gene expression—have been linked to the regulation of peripheral insulin sensitivity. Many of these studies, however, have been conducted in cell or animal models and the few human studies available lack adequate measurements of peripheral insulin sensitivity. In the present study, we examined the expression of 25 miRNAs, putatively involved in (peripheral) insulin sensitivity, in skeletal muscle biopsies from extensively phenotyped human individuals, widely ranging in insulin sensitivity. To identify miRNAs expressed in skeletal muscle and associated with insulin sensitivity and type 2 diabetes, a comprehensive PubMed-based literature search was performed. Subsequently, the expression of selected miRNAs was determined by RT-qPCR using predesigned 384-well Pick-&-Mix miRNA PCR Panel plates in muscle biopsies from type 2 diabetes patients, non-diabetic obese/overweight individuals, lean sedentary individuals and endurance-trained athletes. In all subjects, peripheral insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. The literature search resulted in 25 candidate miRNAs, 6 of which were differentially expressed in human type 2 diabetes compared to non-diabetic obese/overweight individuals. In turn, four of these miRNAs, i.e., miRNA27a-3p (r = −0.45, p = 0.0012), miRNA-29a-3p (r = −0.40, p = 0.0052), miRNA-29b-3p (r = −0.70, p < 0.0001) and miRNA-29c-3p (r = −0.50, p = 0.0004) demonstrated strong negative correlations with peripheral insulin sensitivity across all four subject groups. We identified miR-27a-3p and all members of the miRNA-29 family as potential regulatory players in insulin sensitivity in humans. These miRNA's may represent interesting novel targets for maintaining or improving insulin sensitivity.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Alexandre Houzelle
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Johanna A. Jörgensen
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Esther Phielix
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Lucas Lindeboom
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
- Departments of Radiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical CenterMaastricht, Netherlands
| | - Matthijs K. C. Hesselink
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Patrick Schrauwen
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Joris Hoeks
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
- *Correspondence: Joris Hoeks
| |
Collapse
|
8
|
Deng YF, Huang YY, Lu WS, Huang YH, Xian J, Wei HQ, Huang Q. The Caveolin-3 P104L mutation of LGMD-1C leads to disordered glucose metabolism in muscle cells. Biochem Biophys Res Commun 2017; 486:218-223. [PMID: 28232187 DOI: 10.1016/j.bbrc.2017.02.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
Abstract
Caveolin-3 (CAV3) is a muscle specific protein that plays an important role in maintaining muscle health and glucose homeostasis in vivo. A novel autosomal dominant form of LGMD-1C in humans is due to a P104L mutation within the coding sequence of the human CAV3 gene. The mechanism by which the LGMD-1C mutation leads to muscle weakness remains unknown. Our objective was to determine whether muscle weakness was related to the imbalance of glucose metabolism. We found that when the P104L mutation was transiently transfected into C2C12 cells, there was decreased glucose uptake and glycogen synthesis after insulin stimulation. Immunoblotting analysis showed that the P104L mutation resulted in decreased expression of CAV3, CAV1 and pAkt. Confocal immunomicroscopy indicated that the P104L mutation reduced CAV3 and GLUT4 in the cell membrane, which accumulated mainly near the nucleus. This work is the first report of an association between muscle weakness due to LGMD-1C and energy metabolism. The P104L mutation led to a decrease in C2C12 muscle glucose uptake and glycogen synthesis and may be involved in the pathogenesis of LGMD-1C.
Collapse
Affiliation(s)
- Yu Feng Deng
- School of Nursing, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yi Yuan Huang
- School of Nursing, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Wen Sheng Lu
- Department of Endocrinology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yuan Heng Huang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Qiao Wei
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Huang
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
9
|
Xu Q, Shang Y, Li Y, Zhang F, Gao S, Yao M. MicroRNAs 103 and 107 link type 2 diabetes and post-menopausal breast cancer. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0412-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
10
|
Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, Cheema BS, Lys I, Leikis M, Sheard PW, Wakefield SJ, Breier B, Hathout Y, Brown K, Marathi R, Orkunoglu-Suer FE, Devaney JM, Leiken B, Many G, Krebs J, Hopkins WG, Hoffman EP. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. Physiol Genomics 2014; 46:747-65. [PMID: 25138607 PMCID: PMC4200377 DOI: 10.1152/physiolgenomics.00024.2014] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/08/2014] [Indexed: 01/19/2023] Open
Abstract
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation.
Collapse
Affiliation(s)
- David S Rowlands
- School of Sport and Exercise, Massey University, Wellington, New Zealand;
| | - Rachel A Page
- Institute of Food, Nutrition & Human Health, Massey University, New Zealand
| | - William R Sukala
- Institute of Food, Nutrition & Human Health, Massey University, New Zealand
| | - Mamta Giri
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Svetlana D Ghimbovschi
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Irum Hayat
- Institute of Food, Nutrition & Human Health, Massey University, New Zealand
| | - Birinder S Cheema
- School of Science and Health, University of Western Sydney, Campbelltown, Australia
| | - Isabelle Lys
- Faculty of Engineering, Health, Science and the Environment, Charles Darwin University, Australia
| | - Murray Leikis
- Wellington Hospital, Capital and Coast District Health Board, Wellington, New Zealand
| | - Phillip W Sheard
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - St John Wakefield
- Department of Pathology, University of Otago, Wellington, New Zealand; and
| | - Bernhard Breier
- Institute of Food, Nutrition & Human Health, Massey University, New Zealand
| | - Yetrib Hathout
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Kristy Brown
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Ramya Marathi
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Funda E Orkunoglu-Suer
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Joseph M Devaney
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Benjamin Leiken
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Gina Many
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| | - Jeremy Krebs
- Endocrine and Diabetes Unit, Capital and Coast District Health Board, Wellington, New Zealand
| | - Will G Hopkins
- Health Science/Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
| | - Eric P Hoffman
- Children's National Medical Center, Center for Genetic Medicine Research (CGMR), Washington, District of Columbia
| |
Collapse
|
11
|
KIF21A-mediated axonal transport and selective endocytosis underlie the polarized targeting of NCKX2. J Neurosci 2012; 32:4102-17. [PMID: 22442075 DOI: 10.1523/jneurosci.6331-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that K(+)-dependent Na(+)/Ca(2+) exchanger (NCKX) is a major calcium clearance mechanism at the large axon terminals of central neurons, whereas their somata display little NCKX activity. We investigated mechanisms underlying the axonal polarization of NCKX2 in rat hippocampal neurons. We identified NCKX2 as the first neuron-specific cargo molecule of kinesin family member 21A (KIF21A). The intracellular loop of NCKX2 specifically interacted with the WD-40 repeats, a putative cargo-binding domain, of KIF21A. Dominant-negative mutant or depletion of KIF21A inhibited the transport of NCKX2-GFP to axon fibers. Knockdown of KIF21A caused calcium dysregulation at axonal boutons but not at somatodendritic regions. Despite the axonal polarization of the NCKX activity, both somatodendritic and axonal regions were immunoreactive to NCKX2. The surface expression of NCKX2 revealed by live-cell immunocytochemistry, however, displayed highly polarized distribution to the axon. Inhibition of endocytosis increased the somatodendritic surface NCKX2 and thus abolished the axonal polarization of surface NCKX2. These results indicate that KIF21A-mediated axonal transport and selective somatodendritic endocytosis underlie the axonal polarized surface expression of NCKX2.
Collapse
|
12
|
Tan Z, Zhou LJ, Mu PW, Liu SP, Chen SJ, Fu XD, Wang TH. Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats. J Nutr Biochem 2012; 23:1716-24. [PMID: 22569348 DOI: 10.1016/j.jnutbio.2011.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 01/26/2023]
Abstract
Insulin resistance is recognized as a common metabolic factor which predicts the future development of both type 2 diabetes and atherosclerotic disease. Resveratrol (RSV), an agonist of estrogen receptor (ER), is known to affect insulin sensitivity, but the mechanism is unclear. Evidence suggests that caveolin-3 (CAV-3), a member of the caveolin family, is involved in insulin-stimulated glucose uptake. Our recent work indicated that estrogen via ER improves glucose uptake by up-regulation of CAV-3 expression. Here, we investigated the role of CAV-3 in the effect of RSV on insulin resistance in skeletal muscle both in vivo and in vitro. The results demonstrated that RSV ameliorated high-fat-diet (HFD)-induced glucose intolerance and insulin resistance in ovariectomized rats. RSV elevated insulin-stimulated glucose uptake in isolated soleus muscle in vivo and in C2C12 myotubes in vitro by enhancing GLUT4 translocation to the plasma membrane rather than increasing GLUT4 protein expression. Through ERα-mediated transcription, RSV increased CAV-3 protein expression, which contributed to GLUT4 translocation. Moreover, after knockdown of CAV-3 gene, the effects of RSV on glucose uptake and the translocation of GLUT4 to the plasma membrane, as well as the association of CAV-3 and GLUT4 in the membrane, were significantly attenuated. Our findings demonstrated that RSV via ERα elevated CAV-3 expression and then enhanced GLUT4 translocation to the plasma membrane to promote glucose uptake in skeletal muscle, exerting its protective effects against HFD-induced insulin resistance. It suggests that this pathway could represent an effective therapeutic target to fight against insulin resistance syndrome induced by HFD.
Collapse
Affiliation(s)
- Zhi Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Strålfors P. Caveolins and Caveolae, Roles in Insulin Signalling and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:111-26. [DOI: 10.1007/978-1-4614-1222-9_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Kaur K, Bhatia H, Datta M. MicroRNAs in hepatic pathophysiology in diabetes. World J Diabetes 2011; 2:158-63. [PMID: 22013501 PMCID: PMC3196616 DOI: 10.4239/wjd.v2.i10.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/14/2011] [Accepted: 09/21/2011] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are small approximately 22 nucleotide RNA species that are believed to regulate diverse metabolic and physiological processes. In the recent past, several reports have surfaced that demonstrate the role of miRNAs in various biological processes and numerous disease states. For a disease as complex as diabetes, the emergence of miRNAs as key regulators leading to the disease phenotype has added a novel dimension to the area of diabetes research. On the other hand, the liver, a metabolic hub, contributes in a major way towards maintaining normal glucose levels in the body as it can both stimulate and inhibit hepatic glucose output. This equilibrium is frequently disturbed in diabetes and hence, the liver assumes special significance considering the correlation between altered hepatic physiology and diabetes. While the understanding of the mechanisms behind this altered hepatic behavior is not yet completely understood, recent reports on the status and role of miRNAs in the diabetic liver have further added to the complexities of the knowledge of hepatic pathophysiology in diabetes. Here, we bring together the various miRNAs that play a role in the altered hepatic behavior during diabetes.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Kirandeep Kaur, Himanshi Bhatia, Malabika Datta, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi-110 007, India
| | | | | |
Collapse
|
15
|
Pojoga LH, Underwood PC, Goodarzi MO, Williams JS, Adler GK, Jeunemaitre X, Hopkins PN, Raby BA, Lasky-Su J, Sun B, Cui J, Guo X, Taylor KD, Chen YDI, Xiang A, Raffel LJ, Buchanan TA, Rotter JI, Williams GH. Variants of the caveolin-1 gene: a translational investigation linking insulin resistance and hypertension. J Clin Endocrinol Metab 2011; 96:E1288-92. [PMID: 21613355 PMCID: PMC3146791 DOI: 10.1210/jc.2010-2738] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The co-occurrence of insulin resistance (IR) and hypertension is a heritable condition leading to cardiovascular complications. Caveolin-1 (CAV1), a gene previously associated with metabolic dysfunction in animal and cellular models, may be a marker for these conditions in humans. OBJECTIVE The objective of the study was to examine the relationship between CAV1 variants and IR in two hypertensive cohorts and to corroborate the findings in a CAV1 knockout mouse. DESIGN, SETTING, AND PARTICIPANTS A candidate gene association study was conducted in two hypertensive cohorts: 1) Caucasian and 2) Hispanic. Multivariate associations between individual variants and insulin-resistant phenotypes were analyzed, accounting for age, gender, body mass index, and sibling relatedness. Intraperitoneal glucose tolerance tests were conducted in wild-type and CAV1 knockout mice. RESULTS In the Caucasian hypertensive cohort, minor allele carriers of two CAV1 single-nucleotide polymorphisms (rs926198, rs3807989) had significantly higher fasting insulin levels (P = 0.005, P = 0.007), increased homeostatic assessment model for insulin resistance (HOMA-IR) (P =0.005, P = 0.008), and decreased M value during hyperinsulinemic, euglycemic clamp procedure (P = 0.004, P = 0.05) than major allele homozygotes. Findings were replicated in the Hispanic hypertensive cohort cohort for fasting insulin levels (P = 0.005, P = 0.02) and HOMA-IR (P = 0.008 and P = 0.02). Meta-analysis demonstrated significant associations of both single-nucleotide polymorphisms with fasting insulin levels (P = 0.00008, P = 0.0004) and HOMA-IR (P = 0.0001, P = 0.0004). As compared with wild type, CAV1 knockout mice displayed higher blood pressure levels and higher fasting glucose, insulin, and HOMA-IR levels and an exaggerated glycemic response to a glucose challenge. CONCLUSION Variations in the CAV1 gene are associated with IR and hypertension. CAV1 gene polymorphisms may be a biomarker for IR and hypertension, enabling earlier detection and improved treatment strategies.
Collapse
|
16
|
Oh YS, Lee TS, Cheon GJ, Jang IS, Jun HS, Park SC. Modulation of insulin sensitivity and caveolin-1 expression by orchidectomy in a nonobese type 2 diabetes animal model. Mol Med 2010; 17:4-11. [PMID: 20844837 DOI: 10.2119/molmed.2009.00105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/09/2010] [Indexed: 11/06/2022] Open
Abstract
Previously, we found that male JYD mice developed type 2 diabetes but female mice did not, and that decreased expression levels of caveolin-1 were correlated with the development of a diabetic phenotype in these mice. Therefore, we hypothesized that sex hormones affect the expression of caveolin-1 and contribute to the development of insulin resistance and hyperglycemia in JYD mice. We used glucose and insulin tolerance tests to examine insulin sensitivity in male, female and orchidectomized male JYD mice. Glucose uptake was analyzed by using (18)F-fluorodeoxyglucose positron emission tomography. We also examined insulin-signaling molecules and caveolin proteins in various tissues in these mice by Western blotting. In addition, we examined changes of caveolin-1 expression in L6 skeletal muscle cells treated with 17-β estradiol or dihydroxytestosterone. We found that glucose and insulin tolerance were impaired and hyperglycemia developed in male, but not female, JYD mice. Expression of insulin-signaling molecules such as insulin receptor, protein kinase B, and glucose transporter-4 were decreased in male JYD mice compared with female mice. Orchidectomized JYD male mice showed improved glucose and insulin tolerance with a concomitant increase in the expression of insulin-signaling molecules and caveolin-1 in adipose tissue and skeletal muscle. Moreover, 17-β-estradiol treatment increased the expression of caveolin-1 in differentiated skeletal muscle cells. We conclude that sex hormones modulate the expression of caveolin-1 and insulin-signaling molecules, subsequently affecting insulin sensitivity and the development of type 2 diabetes in JYD mice.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Gómez-Ruiz A, Milagro FI, Campión J, Martínez JA, de Miguel C. Caveolin expression and activation in retroperitoneal and subcutaneous adipocytes: Influence of a high-fat diet. J Cell Physiol 2010; 225:206-13. [DOI: 10.1002/jcp.22241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Gómez-Ruiz A, de Miguel C, Campión J, Martínez JA, Milagro FI. Time-dependent regulation of muscle caveolin activation and insulin signalling in response to high-fat diet. FEBS Lett 2009; 583:3259-64. [PMID: 19751730 DOI: 10.1016/j.febslet.2009.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 11/25/2022]
Abstract
We studied the effect of high-fat diet on the expression and activation of the three caveolins in rat skeletal muscle and their association with the insulin signalling cascade. Initial response was characterized by increased signalling through Cav-1 and Cav-3 phosphorylation, suggesting that both participate in an initial acute response to the calorie surplus. Afterwards, Cav-1 signalling was slightly reduced, whereas Cav-3 remained active. Late chronic phase signalling through both proteins was impaired inducing a prediabetic state. Summarizing, caveolins seem to mediate a time-dependent regulation of insulin cascade in response to high-fat diet in muscle.
Collapse
Affiliation(s)
- Ana Gómez-Ruiz
- Department of Biochemistry and Molecular Biology, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
19
|
Immunohistochemical evidence of caveolin-1 expression in the human fetal and neonatal striated muscle and absence in the adult's. Appl Immunohistochem Mol Morphol 2009; 16:267-73. [PMID: 18301242 DOI: 10.1097/pai.0b013e31812e4b0e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Caveolin-1 (Cav-1) is a 22-kd protein, which exerts essential roles in the regulation of cell proliferation and in transmembrane transport processes. It is mainly expressed in adipocytes, smooth muscle, fibroblasts, and endothelial cells. Its expression in striated muscle fibers is controversial. Indeed, most authors have attributed Cav-1 detection in striated muscle to endothelial cells, adipocytes, and fibroblasts secretion. Nonetheless, recent in vitro studies have shown that Cav-1 is expressed in L6 myoblasts and maintained during the differentiation process. In view of this, and, because only one study has heretofore explored Cav-1 expression in human striated muscle, the aim of the present study was to evaluate and to compare Cav-1 immunohistochemical expression in the human striated muscles of fetus, newborn, and adult. DESIGN Samples of skeletal muscles of different sites and of myocardium were taken at autopsy from 13 fetuses and 4 newborns and submitted to the immunohistochemical analysis for Cav-1 together with 10 samples of adult skeletal muscle. RESULTS Myocardial fibers displayed a weak immunoreaction in all samples, from both the newborns and the fetuses, independently of the week of gestation. Conversely, skeletal muscle fibers were only labeled in specimens from fetuses at late gestation and from the newborns, whereas no immunoreaction was evidenced in muscles taken from fetuses at mid-gestation and in the adult samples. CONCLUSIONS This novel and unexpected pattern of Cav-1 expression in human skeletal muscle suggests a role for Cav-1 in terminal differentiation processes, which need to be clarified by further studies.
Collapse
|
20
|
Hahn-Obercyger M, Graeve L, Madar Z. A high-cholesterol diet increases the association between caveolae and insulin receptors in rat liver. J Lipid Res 2008; 50:98-107. [PMID: 18757837 DOI: 10.1194/jlr.m800441-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolin-1, a component of caveolae, regulates signaling pathway compartmentalization by interacting with tyrosine (Tyr) kinase receptors and their substrates. Perturbations in caveolae lipid composition have been shown in vitro to displace proteins from lipid microdomains, thereby altering their functionality and subsequent downstream signaling. The role of caveolin-1 in insulin receptor (IR) signaling has been widely investigated in vitro mainly in 3T3-L1 adipocyte cells. However, in vivo experiments investigating this connection in liver tissue have not been carried out. The objective of the present study was to investigate the effects of a high-cholesterol diet on caveolin-1 expression and IR localization and activity in the rat liver. Compared with a standard diet, rats fed with diet rich in cholesterol significantly altered liver caveolae by increasing both caveolin-1 (66%, P < 0.05) and caveolin-2 (55%, P < 0.05) expression while caveolin-1 mRNA levels were reduced. Concomitantly, a 25% increase in localization of the caveolae-resident signaling protein IR was observed. The distribution of caveolar and noncaveolar phosphorylated IR was unaffected but insulin-induced IR activation was significantly enhanced following consumption of the high-cholesterol diet (120%, P < 0.001). However, the downstream molecules IRS-1 and Akt have shown impaired activity in cholesterol-fed rats suggesting insulin resistance condition. Insulin stimulation failed to induce Tyr phosphorylation of caveolin-1 in cholesterol-fed rats. These findings suggest a mechanism by which a high-cholesterol diet altered caveolin-1 expression in vivo accompanied by altered IR localization and activity.
Collapse
Affiliation(s)
- Michal Hahn-Obercyger
- The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Institute of Biochemistry, Food Science and Nutrition, Rehovot, Israel
| | | | | |
Collapse
|
21
|
Oh YS, Khil LY, Cho KA, Ryu SJ, Ha MK, Cheon GJ, Lee TS, Yoon JW, Jun HS, Park SC. A potential role for skeletal muscle caveolin-1 as an insulin sensitivity modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse model. Diabetologia 2008; 51:1025-34. [PMID: 18408913 DOI: 10.1007/s00125-008-0993-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus is a common age-dependent disease. We discovered that male offspring of non-diabetic C57BL/6 and DBA/2 mice, called JYD mice, develop type 2 diabetes when they grow old. JYD mice show characteristics of insulin resistance, hyperglycaemia and hyperinsulinaemia in old age without obesity. We postulated that the mechanism of age-dependent type 2 diabetes in this model relates to caveolin-1 status in skeletal muscle, which appears to regulate insulin sensitivity in the mice. METHODS We compared insulin sensitivity in aged C57BL/6 and JYD mice using glucose and insulin tolerance tests and (18)F-fluorodeoxyglucose positron emission tomography. We also determined insulin signalling molecules and caveolin proteins using western blotting, and altered caveolin-1 levels in skeletal muscle of C57BL/6 and JYD mice using viral vector systems, to examine the effect of this on insulin sensitivity. RESULTS In 30-week-old C57BL/6 and JYD mice, the basal levels of IRS-1, Akt and peroxisome proliferator-activated receptor-gamma decreased, as did insulin-stimulated phosphorylation of Akt and insulin receptor beta. However, caveolin-1 was only increased about twofold in 30-week-old JYD mice as compared with 3-week-old mice, whereas an eightfold increase was seen in C57BL/6 mice. Downregulation of caveolin-1 production in C57BL/6 mice caused severe impairment of glucose and insulin tolerance. Upregulation of caveolin-1 in aged diabetic JYD mice significantly improved insulin sensitivity with a concomitant increase of glucose uptake in the skeletal muscle. CONCLUSIONS/INTERPRETATION The level of skeletal muscle caveolin-1 is correlated with the progression of age-dependent type 2 diabetes in JYD mice.
Collapse
Affiliation(s)
- Y S Oh
- Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, 28 Yungon Dong, Chongno Ku, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Goetz JG, Lajoie P, Wiseman SM, Nabi IR. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 2008; 27:715-35. [DOI: 10.1007/s10555-008-9160-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Shi L, Zhang W, Zhou YY, Zhang YN, Li JY, Hu LH, Li J. Corosolic acid stimulates glucose uptake via enhancing insulin receptor phosphorylation. Eur J Pharmacol 2008; 584:21-9. [DOI: 10.1016/j.ejphar.2008.01.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 12/23/2007] [Accepted: 01/15/2008] [Indexed: 11/25/2022]
|
24
|
Elsasser TH, Caperna TJ, Li CJ, Kahl S, Sartin JL. Critical control points in the impact of the proinflammatory immune response on growth and metabolism1,2. J Anim Sci 2008; 86:E105-25. [DOI: 10.2527/jas.2007-0634] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
25
|
Ma DWL. Lipid mediators in membrane rafts are important determinants of human health and disease. Appl Physiol Nutr Metab 2007; 32:341-50. [PMID: 17510668 DOI: 10.1139/h07-036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The new field of membrane rafts has provided fresh insight and a novel framework in which to understand the interaction, relation, and organization of lipids and proteins within cell membranes. This review will examine our current understanding of membrane rafts and their role in human health. In addition, the effect of various lipids, including dietary lipids, on membrane raft structure and function will be discussed. Membrane rafts are found in all cells and are characterized by their high concentration of cholesterol, sphingolipids, and saturated fatty acids. These lipids impart lateral segregation of membrane proteins, thus facilitating the spatial organization and regulation of membrane proteins involved in many cellular processes, such as cell proliferation, apoptosis, and cell signaling. Therefore, membrane rafts are shedding new light on the origins of metabolic disturbances and diseases such as cancer, insulin resistance, inflammation, cardiovascular disease, and Alzheimer's disease, which will be further discussed in this review.
Collapse
Affiliation(s)
- David W L Ma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|