1
|
Willemsen S, Yengej FAY, Puschhof J, Rookmaaker MB, Verhaar MC, van Es J, Beumer J, Clevers H. A comprehensive transcriptome characterization of individual nuclear receptor pathways in the human small intestine. Proc Natl Acad Sci U S A 2024; 121:e2411189121. [PMID: 39475639 PMCID: PMC11551338 DOI: 10.1073/pnas.2411189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 11/13/2024] Open
Abstract
Nuclear receptors (NRs) are widely expressed transcription factors that bind small, lipophilic compounds and regulate diverse biological processes. In the small intestine, NRs are known to act as sensors that control transcriptional responses to endogenous and exogenous signals, yet their downstream effects have not been characterized extensively. Here, we investigate the activation of six different NRs individually in human intestinal organoids using small molecules agonists. We observe changes in key enterocyte functions such as lipid, glucose, and amino acid absorption, the regulation of electrolyte balance, and drug metabolism. Our findings reinforce PXR, LXR, FXR, and PPARα as regulators of lipid absorption. Furthermore, known hepatic effects of AHR and VDR activation were recapitulated in the human small intestine. Finally, we identify unique target genes for intestinal PXR activation (ERG28, TMEM97, and TM7SF2), LXR activation (RAB6B), and VDR activation (CA12). This study provides an unbiased and comprehensive transcriptomic description of individual NR pathways in the human small intestine. By gaining a deeper understanding of the effects of individual NRs, we might better harness their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Sam Willemsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Junior Research Group Epithelium Microbiome Interactions, German Cancer Research Center, Heidelberg69120, Germany
| | | | | | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Institute of Human Biology, Roche Innovation Center Basel, Basel4058, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht3584 CS, The Netherlands
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, BaselCH-4070, Switzerland
| |
Collapse
|
2
|
Chung EH, Kim JW, Kim JH, Jeong JS, Lim JH, Boo SY, Ko JW, Kim TW. Ageratum conyzoides Extract Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia via Inhibiting Proliferation, Inflammation of Prostates, and Induction of Apoptosis in Rats. Nutrients 2024; 16:2267. [PMID: 39064710 PMCID: PMC11280401 DOI: 10.3390/nu16142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Ageratum conyzoides, an annual herbaceous plant that inhabits tropical and subtropical regions, has been traditionally used in Asia, Africa, and South America for phytotherapy to treat infectious and inflammatory conditions. However, the pharmacological effects of standardized ethanolic extract of Ageratum conyzoides (ACE) on benign prostatic hyperplasia (BPH) remain unexplored. The objective of this research is to examine the potential physiological impacts of ACE, a traditionally utilized remedy for inflammatory ailments, in a rat model with BPH induced by testosterone propionate (TP). Rats were subcutaneously administered TP (3 mg/kg) to induce BPH and concurrently orally administered ACE (20, 50, and 100 mg/kg) daily for 42 days. ACE markedly improved BPH characteristics, including prostate weight, prostate index, and epithelial thickness, while also suppressing androgens and related hormones. The findings were supported by a decrease in androgen receptor and downstream signals associated with BPH in the prostate tissues of the ACE groups. Furthermore, increased apoptotic signals were observed in the prostate tissue of the ACE groups, along with heightened detection of the apoptotic nucleus compared to the BPH alone group. These changes seen in the group that received finasteride were similar to those observed in this group. These findings suggest that ACE shows promise as an alternative phytotherapeutic agent for treating BPH.
Collapse
Affiliation(s)
- Eun-Hye Chung
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Jeong-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Jin-Hwa Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Ji-Soo Jeong
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | | | - So-Young Boo
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| |
Collapse
|
3
|
Pozas J, Álvarez Rodríguez S, Fernández VA, Burgos J, Santoni M, Manneh Kopp R, Molina-Cerrillo J, Alonso-Gordoa T. Androgen Receptor Signaling Inhibition in Advanced Castration Resistance Prostate Cancer: What Is Expected for the Near Future? Cancers (Basel) 2022; 14:6071. [PMID: 36551557 PMCID: PMC9776956 DOI: 10.3390/cancers14246071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The androgen signaling pathway is the cornerstone in the treatment of high risk or advanced prostate cancer patients. However, in recent years, different mechanisms of resistance have been defined in this field, limiting the efficacy of the currently approved antiandrogen drugs. Different therapeutic approaches are under research to assess the role of combination therapies against escape signaling pathways or the development of novel antiandrogen drugs to try to solve the primary or acquired resistance against androgen dependent or independent pathways. The present review aims to summarize the current state of androgen inhibition in the therapeutic algorithm of patients with advanced prostate cancer and the mechanisms of resistance to those available drugs. In addition, this review conducted a comprehensive overview of the main present and future research approaches in the field of androgen receptor inhibition to overcome these resistances and the potential new drugs under research coming into this setting.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Álvarez Rodríguez
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | | | - Javier Burgos
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Matteo Santoni
- Medical Oncology Department, Mazerata Hospital, 62100 Macerata, Italy
| | - Ray Manneh Kopp
- Sociedad de Oncología y Hematología del Cesar, Valledupar 200001, Colombia
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| |
Collapse
|
4
|
Zhang H, Zhou Y, Xing Z, Sah RK, Hu J, Hu H. Androgen Metabolism and Response in Prostate Cancer Anti-Androgen Therapy Resistance. Int J Mol Sci 2022; 23:ijms232113521. [PMID: 36362304 PMCID: PMC9655897 DOI: 10.3390/ijms232113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
All aspects of prostate cancer evolution are closely related to androgen levels and the status of the androgen receptor (AR). Almost all treatments target androgen metabolism pathways and AR, from castration-sensitive prostate cancer (CSPC) to castration-resistant prostate cancer (CRPC). Alterations in androgen metabolism and its response are one of the main reasons for prostate cancer drug resistance. In this review, we will introduce androgen metabolism, including how the androgen was synthesized, consumed, and responded to in healthy people and prostate cancer patients, and discuss how these alterations in androgen metabolism contribute to the resistance to anti-androgen therapy.
Collapse
Affiliation(s)
- Haozhe Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengzhen Xing
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rajiv Kumar Sah
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junqi Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-0755-88018249
| |
Collapse
|
5
|
Krause W. Resistance to prostate cancer treatments. IUBMB Life 2022; 75:390-410. [PMID: 35978491 DOI: 10.1002/iub.2665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
A review of the current treatment options for prostate cancer and the formation of resistance to these regimens has been compiled including primary, acquired, and cross-resistance. The diversification of the pathways involved and the escape routes the tumor is utilizing have been addressed. Whereas early stages of tumor can be cured, there is no treatment available after a point of no return has been reached, leaving palliative treatment as the only option. The major reasons for this outcome are the heterogeneity of tumors, both inter- and intra-individually and the nearly endless number of escape routes, which the tumor can select to overcome the effects of treatment. This means that more focus should be applied to the individualization of both diagnosis and therapy of prostate cancer. In addition to current treatment options, novel drugs and ongoing clinical trials have been addressed in this review.
Collapse
|
6
|
Ribelli G, Simonetti S, Iuliani M, Rossi E, Vincenzi B, Tonini G, Pantano F, Santini D. Osteoblasts Promote Prostate Cancer Cell Proliferation Through Androgen Receptor Independent Mechanisms. Front Oncol 2021; 11:789885. [PMID: 34966687 PMCID: PMC8711264 DOI: 10.3389/fonc.2021.789885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with metastatic prostate cancer frequently develop bone metastases that elicit significant skeletal morbidity and increased mortality. The high tropism of prostate cancer cells for bone and their tendency to induce the osteoblastic-like phenotype are a result of a complex interplay between tumor cells and osteoblasts. Although the role of osteoblasts in supporting prostate cancer cell proliferation has been reported by previous studies, their precise contribution in tumor growth remains to be fully elucidated. Here, we tried to dissect the molecular signaling underlining the interactions between castration-resistant prostate cancer (CRPC) cells and osteoblasts using in vitro co-culture models. Transcriptomic analysis showed that osteoblast-conditioned media (OCM) induced the overexpression of genes related to cell cycle in the CRPC cell line C4-2B but, surprisingly, reduced androgen receptor (AR) transcript levels. In-depth analysis of AR expression in C4-2B cells after OCM treatment showed an AR reduction at the mRNA (p = 0.0047), protein (p = 0.0247), and functional level (p = 0.0029) and, concomitantly, an increase of C4-2B cells in S-G2-M cell cycle phases (p = 0.0185). An extensive proteomic analysis revealed in OCM the presence of some molecules that reduced AR activation, and among these, Matrix metalloproteinase-1 (MMP-1) was the only one able to block AR function (0.1 ng/ml p = 0.006; 1 ng/ml p = 0.002; 10 ng/ml p = 0.0001) and, at the same time, enhance CRPC proliferation (1 ng/ml p = 0.009; 10 ng/ml p = 0.033). Although the increase of C4-2B cell growth induced by MMP-1 did not reach the proliferation levels observed after OCM treatment, the addition of Vorapaxar, an MMP-1 receptor inhibitor (Protease-activated receptor-1, PAR-1), significantly reduced C4-2B cell cycle (0.1 μM p = 0.014; 1 μM p = 0.0087). Overall, our results provide a novel AR-independent mechanism of CRPC proliferation and suggest that MMP-1/PAR-1 could be one of the potential pathways involved in this process.
Collapse
Affiliation(s)
- Giulia Ribelli
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sonia Simonetti
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Michele Iuliani
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Elisabetta Rossi
- Department of Immunology and Molecular Oncology, Istituto Oncologico Veneto (IOV) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
7
|
Crowley F, Sterpi M, Buckley C, Margetich L, Handa S, Dovey Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol 2021; 13:457-472. [PMID: 34235102 PMCID: PMC8256377 DOI: 10.2147/rru.s264722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy or ADT is one of the cornerstones of management of locally advanced or metastatic prostate cancer, alongside radiation therapy. However, despite early response, most advanced prostate cancers progress into an androgen unresponsive or castrate resistant state, which hitherto remains an incurable entity and the second leading cause of cancer-related mortality in men in the US. Recent advances have uncovered multiple complex and intermingled mechanisms underlying this transformation. While most of these mechanisms revolve around androgen receptor (AR) signaling, novel pathways which act independently of the androgen axis are also being discovered. The aim of this article is to review the pathophysiological mechanisms that help bypass the apoptotic effects of ADT to create castrate resistance. The article discusses castrate resistance mechanisms under two categories: 1. Direct AR dependent pathways such as amplification or gain of function mutations in AR, development of functional splice variants, posttranslational regulation, and pro-oncogenic modulation in the expression of coactivators vs corepressors of AR. 2. Ancillary pathways involving RAS/MAP kinase, TGF-beta/SMAD pathway, FGF signaling, JAK/STAT pathway, Wnt-Beta catenin and hedgehog signaling as well as the role of cell adhesion molecules and G-protein coupled receptors. miRNAs are also briefly discussed. Understanding the mechanisms involved in the development and progression of castration-resistant prostate cancer is paramount to the development of targeted agents to overcome these mechanisms. A number of targeted agents are currently in development. As we strive for more personalized treatment across oncology care, treatment regimens will need to be tailored based on the type of CRPC and the underlying mechanism of castration resistance.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Michelle Sterpi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Conor Buckley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Lauren Margetich
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
8
|
Noureddine LM, Trédan O, Hussein N, Badran B, Le Romancer M, Poulard C. Glucocorticoid Receptor: A Multifaceted Actor in Breast Cancer. Int J Mol Sci 2021; 22:ijms22094446. [PMID: 33923160 PMCID: PMC8123001 DOI: 10.3390/ijms22094446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women worldwide. Even though the role of estrogen receptor alpha (ERα) is extensively documented in the development of breast tumors, other members of the nuclear receptor family have emerged as important players. Synthetic glucocorticoids (GCs) such as dexamethasone (dex) are commonly used in BC for their antiemetic, anti-inflammatory, as well as energy and appetite stimulating properties, and to manage the side effects of chemotherapy. However, dex triggers different effects depending on the BC subtype. The glucocorticoid receptor (GR) is also an important marker in BC, as high GR expression is correlated with a poor and good prognosis in ERα-negative and ERα-positive BCs, respectively. Indeed, though it drives the expression of pro-tumorigenic genes in ERα-negative BCs and is involved in resistance to chemotherapy and metastasis formation, dex inhibits estrogen-mediated cell proliferation in ERα-positive BCs. Recently, a new natural ligand for GR called OCDO was identified. OCDO is a cholesterol metabolite with oncogenic properties, triggering mammary cell proliferation in vitro and in vivo. In this review, we summarize recent data on GR signaling and its involvement in tumoral breast tissue, via its different ligands.
Collapse
Affiliation(s)
- Lara Malik Noureddine
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Olivier Trédan
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Centre Leon Bérard, Oncology Department, F-69000 Lyon, France
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence: ; Tel.: +33-478-786-663; Fax: +33-478-782-720
| |
Collapse
|
9
|
MED19 alters AR occupancy and gene expression in prostate cancer cells, driving MAOA expression and growth under low androgen. PLoS Genet 2021; 17:e1008540. [PMID: 33513133 PMCID: PMC7875385 DOI: 10.1371/journal.pgen.1008540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a mainstay of prostate cancer treatment, given the dependence of prostate cells on androgen and the androgen receptor (AR). However, tumors become ADT-resistant, and there is a need to understand the mechanism. One possible mechanism is the upregulation of AR co-regulators, although only a handful have been definitively linked to disease. We previously identified the Mediator subunit MED19 as an AR co-regulator, and reported that MED19 depletion inhibits AR transcriptional activity and growth of androgen-insensitive LNCaP-abl cells. Therefore, we proposed that MED19 upregulation would promote AR activity and drive androgen-independent growth. Here, we show that stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation. To delineate the mechanism, we determined the MED19 and AR transcriptomes and cistromes in control and MED19-overexpressing LNCaP cells. We also examined genome-wide H3K27 acetylation. MED19 overexpression selectively alters AR occupancy, H3K27 acetylation, and gene expression. Under conditions of androgen deprivation, genes regulated by MED19 correspond to genes regulated by ELK1, a transcription factor that binds the AR N-terminus to induce select AR target gene expression and proliferation, and genomic sites occupied by MED19 and AR are enriched for motifs associated with ELK1. Strikingly, MED19 upregulates expression of monoamine oxidase A (MAOA), a factor that promotes prostate cancer growth. MAOA depletion reduces androgen-independent growth. MED19 and AR occupy the MAOA promoter, with MED19 overexpression enhancing AR occupancy and H3K27 acetylation. Furthermore, MED19 overexpression increases ELK1 occupancy at the MAOA promoter, and ELK1 depletion reduces MAOA expression and androgen-independent growth. This suggests that MED19 cooperates with ELK1 to regulate AR occupancy and H3K27 acetylation at MAOA, upregulating its expression and driving androgen independence in prostate cancer cells. This study provides important insight into the mechanisms of prostate cancer cell growth under low androgen, and underscores the importance of the MED19-MAOA axis in this process.
Collapse
|
10
|
Stallcup MR, Poulard C. Gene-Specific Actions of Transcriptional Coregulators Facilitate Physiological Plasticity: Evidence for a Physiological Coregulator Code. Trends Biochem Sci 2020; 45:497-510. [PMID: 32413325 DOI: 10.1016/j.tibs.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/14/2023]
Abstract
The actions of transcriptional coregulators are highly gene-specific, that is, each coregulator is required only for a subset of the genes regulated by a specific transcription factor. These coregulator-specific gene subsets often represent selected physiological responses among multiple pathways targeted by a transcription factor. Regulating the activity of a coregulator via post-translational modifications would thus affect only a subset of the transcription factor's physiological actions. Using the context of transcriptional regulation by steroid hormone receptors, this review focuses on gene-specific actions of coregulators and evidence linking individual coregulators with specific physiological pathways. Such evidence suggests that there is a 'physiological coregulator code', which represents a fertile area for future research with important clinical implications.
Collapse
Affiliation(s)
- Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089-9176, USA.
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
11
|
Zhao J, Zhang Y, Liu XS, Zhu FM, Xie F, Jiang CY, Zhang ZY, Gao YL, Wang YC, Li B, Xia SJ, Han BM. RNA-binding protein Musashi2 stabilizing androgen receptor drives prostate cancer progression. Cancer Sci 2020; 111:369-382. [PMID: 31833612 PMCID: PMC7004550 DOI: 10.1111/cas.14280] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
The androgen receptor (AR) pathway is critical for prostate cancer carcinogenesis and development; however, after 18‐24 months of AR blocking therapy, patients invariably progress to castration‐resistant prostate cancer (CRPC), which remains an urgent problem to be solved. Therefore, finding key molecules that interact with AR as novel strategies to treat prostate cancer and even CRPC is desperately needed. In the current study, we focused on the regulation of RNA‐binding proteins (RBPs) associated with AR and determined that the mRNA and protein levels of AR were highly correlated with Musashi2 (MSI2) levels. MSI2 was upregulated in prostate cancer specimens and significantly correlated with advanced tumor grades. Downregulation of MSI2 in both androgen sensitive and insensitive prostate cancer cells inhibited tumor formation in vivo and decreased cell growth in vitro, which could be reversed by AR overexpression. Mechanistically, MSI2 directly bound to the 3′‐untranslated region (UTR) of AR mRNA to increase its stability and, thus, enhanced its transcriptional activity. Our findings illustrate a previously unknown regulatory mechanism in prostate cancer cell proliferation regulated by the MSI2‐AR axis and provide novel evidence towards a strategy against prostate cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Sheng Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Ming Zhu
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xie
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Ye Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,First Clinical Medical College of Nanjing Medical University, Jiangsu, China
| | - Ying-Li Gao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Chuan Wang
- Department of Urology, Weifang Traditional Chinese Medicine Hospital, Shandong, China
| | - Bin Li
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Bagamasbad PD, Espina JEC, Knoedler JR, Subramani A, Harden AJ, Denver RJ. Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One 2019; 14:e0220378. [PMID: 31348800 PMCID: PMC6660079 DOI: 10.1371/journal.pone.0220378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 12/04/2022] Open
Abstract
The hippocampus is a well-known target of thyroid hormone (TH; e.g., 3,5,3'-triiodothyronine-T3) and glucocorticoid (GC; e.g., corticosterone-CORT) action. Despite evidence that TH and GC play critical roles in neural development and function, few studies have identified genes and patterns of gene regulation influenced by the interaction of these hormones at a genome-wide scale. In this study we investigated gene regulation by T3, CORT, and T3 + CORT in the mouse hippocampus-derived cell line HT-22. We treated cells with T3, CORT, or T3 + CORT for 4 hr before cell harvest and RNA isolation for microarray analysis. We identified 9 genes regulated by T3, 432 genes by CORT, and 412 genes by T3 + CORT. Among the 432 CORT-regulated genes, there were 203 genes that exhibited an altered CORT response in the presence of T3, suggesting that T3 plays a significant role in modulating CORT-regulated genes. We also found 80 genes synergistically induced, and 73 genes synergistically repressed by T3 + CORT treatment. We performed in silico analysis using publicly available mouse neuronal chromatin immunoprecipitation-sequencing datasets and identified a considerable number of synergistically regulated genes with TH receptor and GC receptor peaks mapping within 1 kb of chromatin marks indicative of hormone-responsive enhancer regions. Functional annotation clustering of synergistically regulated genes reveal the relevance of proteasomal-dependent degradation, neuroprotective effect of growth hormones, and neuroinflammatory responses as key pathways to how TH and GC may coordinately influence learning and memory. Taken together, our transcriptome data represents a promising exploratory dataset for further study of common molecular mechanisms behind synergistic TH and GC gene regulation, and identify specific genes and their role in processes mediated by cross-talk between the thyroid and stress axes in a mammalian hippocampal model system.
Collapse
Affiliation(s)
- Pia D. Bagamasbad
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Jose Ezekiel C. Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Joseph R. Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ariel J. Harden
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
13
|
Ricci M, Frantellizzi V, Bulzonetti N, De Vincentis G. Reversibility of castration resistance status after Radium-223 dichloride treatment: clinical evidence and review of the literature. Int J Radiat Biol 2019; 95:554-561. [PMID: 30557063 DOI: 10.1080/09553002.2019.1558301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the history of prostate cancer, some of the patients progressed to castration-resistant prostate cancer (CRPC) stage and, although new drugs and treatment protocols have been introduced, CRPC presents poor prognosis. This review is focused on biological mechanisms, underlying CRPC described in scientific literature in order to explain the reversion of resistance to castration. We present the case of a 73-year-old man, affected by bone metastatic CRPC, early treated with Radium-223 with a complete response. After 15 months from Radium-223 treatment, prostate-specific antigen increased with radiological progression. Androgen deprivation therapy was again performed and was effective, despite previous CRPC condition and no known mechanisms that may explain the reversion of this condition. Therefore, to our knowledge, he is the unique described case of the reversion of resistance to castration. Nevertheless, promising aspects may be lack of intrametastatic production of androgen or the suppression of bypass androgen receptor signaling pathways. Furthermore, the cytotoxic action of Radium-223 on cancer stem cell (CSC), due to surrounding clones with high-bone turnover, or the immune response that underlying the abscopal effect, may also modulate the reversion of CRPC after Radium-223. If confirmed by multicenter trials, the reversion of CRPC may impact on the management of prostate cancer.
Collapse
Affiliation(s)
- Maria Ricci
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy
| | - Viviana Frantellizzi
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy.,b PhD Program: Angio-Cardio-Thoracic Pathophisiology and Imaging , "Sapienza" University of Rome , Rome , Italy
| | - Nadia Bulzonetti
- c Department of Radiotherapy , Policlinico Umberto I, Sapienza University of Rome , Rome , Italy
| | - Giuseppe De Vincentis
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
14
|
Poulard C, Baulu E, Lee BH, Pufall MA, Stallcup MR. Increasing G9a automethylation sensitizes B acute lymphoblastic leukemia cells to glucocorticoid-induced death. Cell Death Dis 2018; 9:1038. [PMID: 30305606 PMCID: PMC6180122 DOI: 10.1038/s41419-018-1110-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Synthetic glucocorticoids (GCs) are used to treat lymphoid cancers, but many patients develop resistance to treatment, especially to GC. By identifying genes that influence sensitivity to GC-induced cell death, we found that histone methyltransferases G9a and G9a-like protein (GLP), two glucocorticoid receptor (GR) coactivators, are required for GC-induced cell death in acute lymphoblastic leukemia (B-ALL) cell line Nalm6. We previously established in a few selected genes that automethylated G9a and GLP recruit heterochromatin protein 1γ (HP1γ) as another required coactivator. Here, we used a genome-wide analysis to show that HP1γ is selectively required for GC-regulated expression of the great majority of GR target genes that require G9a and GLP. To further address the importance of G9a and GLP methylation in this process and in cell physiology, we found that JIB-04, a selective JmjC family lysine demethylase inhibitor, increased G9a methylation and thereby increased G9a binding to HP1γ. This led to increased expression of GR target genes regulated by G9a, GLP and HP1γ and enhanced Nalm6 cell death. Finally, the KDM4 lysine demethylase subfamily demethylates G9a in vitro, in contrast to other KDM enzymes tested. Thus, inhibiting G9a/GLP demethylation potentially represents a novel method to restore sensitivity of treatment-resistant B-ALL tumors to GC-induced cell death.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Estelle Baulu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brian H Lee
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Miles A Pufall
- Department of Biochemistry, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
15
|
Cai Z, Chen W, Zhang J, Li H. Androgen receptor: what we know and what we expect in castration-resistant prostate cancer. Int Urol Nephrol 2018; 50:1753-1764. [PMID: 30128923 DOI: 10.1007/s11255-018-1964-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022]
Abstract
Androgen deprivation therapy is an important therapy for prostate cancer (PCa) in aging men. Under the background of castration, it is inevitable that prostate cancer will develop into castration-resistant prostate cancer (CRPC), which has a high mortality rate, after 2-3 years. Androgen receptor (AR) plays a key role in PCa development and is essential to CRPC. More recent research studies have reported that the development of CRPC is largely due to altered mechanisms related to AR, so it is important for us to understand the roles of AR and detailed AR-related mechanisms in CRPC. The multiple AR-related mechanisms promoting the development of CRPC are as follows: (1) enhanced transformation and increased synthesis of intratumoral androgen; (2) AR overexpression, which enables CRPC to be hypersensitive to low levels of androgen; (3) AR cofactors, which enhanced AR transactivation; (4) AR-spliced variants, which mediated downstream gene expression without androgen; (5) the interaction between the AR pathway and classic tumor-related pathways; and» (6) AR mutations, which reduced AR specificity and enhanced AR transcription.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Weijie Chen
- Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine University, Shanghai, China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
16
|
Huang Y, Jiang X, Liang X, Jiang G. Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett 2018; 15:6063-6076. [PMID: 29616091 PMCID: PMC5876469 DOI: 10.3892/ol.2018.8123] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
With increases in the mortality rate and number of patients with prostate cancer (PCa), PCa, particularly the advanced and metastatic disease, has been the focus of a number of studies globally. Over the past seven decades, androgen deprivation therapy has been the primary therapeutic option for patients with advanced PCa; however, the majority of patients developed a poor prognosis stage of castration resistant prostate cancer (CRPC), which eventually led to mortality. Due to CRPC being incurable, laboratory investigations and clinical studies focusing on CRPC have been conducted worldwide. Clarification of the molecular pathways that may lead to CRPC is important for discovering novel therapeutic strategies to delay or reverse the progression of disease. A sustained androgen receptor (AR) signal is still regarded as the main cause of CRPC. Increasing number of studies have proposed different potential mechanisms that cause CRPC, and this has led to the development of novel agents targeting the AR-dependent pathway or AR-independent signaling. In the present review, the major underlying mechanisms causing CRPC, including several major categories of AR-dependent mechanisms, AR bypass signaling, AR-independent mechanisms and other important hypotheses (including the functions of autophagy, PCa stem cell and microRNAs in CRPC progression), are summarized with retrospective pre-clinical or clinical trials to guide future research and therapy.
Collapse
Affiliation(s)
- Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xue Liang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
17
|
Ramalingam S, Ramamurthy VP, Njar VCO. Dissecting major signaling pathways in prostate cancer development and progression: Mechanisms and novel therapeutic targets. J Steroid Biochem Mol Biol 2017; 166:16-27. [PMID: 27481707 PMCID: PMC7371258 DOI: 10.1016/j.jsbmb.2016.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed non-cutaneous malignancy and leading cause of cancer mortality in men. At the initial stages, prostate cancer is dependent upon androgens for their growth and hence effectively combated by androgen deprivation therapy (ADT). However, most patients eventually recur with an androgen deprivation-resistant phenotype, referred to as castration-resistant prostate cancer (CRPC), a more aggressive form for which there is no effective therapy presently available. The current review is an attempt to cover and establish an understanding of some major signaling pathways implicated in prostate cancer development and castration-resistance, besides addressing therapeutic strategies that targets the key signaling mechanisms.
Collapse
Affiliation(s)
- Senthilmurugan Ramalingam
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
18
|
Feigerlova E, Demarquet L, Melhem H, Ghemrawi R, Battaglia-Hsu SF, Ewu E, Alberto JM, Helle D, Weryha G, Guéant JL. Methyl donor deficiency impairs bone development via peroxisome proliferator-activated receptor-γ coactivator-1α-dependent vitamin D receptor pathway. FASEB J 2016; 30:3598-3612. [PMID: 27435264 DOI: 10.1096/fj.201600332r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/05/2016] [Indexed: 11/11/2022]
Abstract
Deficiency in methyl donor (folate and vitamin B12) and in vitamin D is independently associated with altered bone development. Previously, methyl donor deficiency (MDD) was shown to weaken the activity of nuclear receptor coactivator, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), for nuclear signaling in rat pups, including estrogen receptor-α and estrogen-related receptor-α; its effect on vitamin D receptor (VDR) signaling, however, is unknown. We studied bone development under MDD in rat pups and used human MG-63 preosteoblast cells to better understand the associated molecular mechanism. In young rats, MDD decreased total body bone mineral density, reduced tibia length, and impaired growth plate maturation, and in preosteoblasts, MDD slowed cellular proliferation. Mechanistic studies revealed decreased expression of VDR, estrogen receptor-α, PGC1α, arginine methyltransferase 1, and sirtuin 1 in both rat proximal diaphysis of femur and in MG-63, as well as decreased nuclear VDR-PGC1α interaction in MG-63 cells. The weaker VDR-PGC1α interaction could be attributed to the reduced protein expression, imbalanced PGC1α methylation/acetylation, and nuclear VDR sequestration by heat shock protein 90 (HSP90). These together compromised bone development, which is reflected by lowered bone alkaline phosphatase and increased proadipogenic peroxisome proliferator-activated receptor-γ, adiponectin, and estrogen-related receptor-α expression. Of interest, under MDD, the bone development effects of 1,25-dihydroxyvitamin D3 were ineffectual and these could be rescued by the addition of S-adenosylmethionine, which restored expression of arginine methyltransferase 1, PGC1α, adiponectin, and HSP90. In conclusion, MDD inactivates vitamin D signaling via both disruption of VDR-PGC1α interaction and sequestration of nuclear VDR attributable to HSP90 overexpression. These data suggest that vitamin D treatment may be ineffective under MDD.-Feigerlova, E., Demarquet, L., Melhem, H., Ghemrawi, R., Battaglia-Hsu, S.-F., Ewu, E., Alberto, J.-M., Helle, D., Weryha, G., Guéant, J.-L. Methyl donor deficiency impairs bone development via peroxisome proliferator-activated receptor-γ coactivator-1α-dependent vitamin D receptor pathway.
Collapse
Affiliation(s)
- Eva Feigerlova
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France; Division of Endocrinology, Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Lea Demarquet
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France
| | - Hassan Melhem
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France
| | - Rose Ghemrawi
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France
| | - Shyue-Fang Battaglia-Hsu
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France
| | - Essi Ewu
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France
| | - Jean-Marc Alberto
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France
| | - Deborah Helle
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France
| | - Georges Weryha
- Division of Endocrinology, Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Jean-Louis Guéant
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Faculty of Medicine, University of Lorraine, Vandœuvre les Nancy, France;
| |
Collapse
|
19
|
Armstrong CM, Gao AC. Adaptive pathways and emerging strategies overcoming treatment resistance in castration resistant prostate cancer. Asian J Urol 2016. [PMID: 28642838 PMCID: PMC5477778 DOI: 10.1016/j.ajur.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The therapies available for prostate cancer patients whom progress from hormone-sensitive to castration resistant prostate cancer include both systemic drugs, including docetaxel and cabazitaxel, and drugs that inhibit androgen signaling such as enzalutamide and abiraterone. Unfortunately, it is estimated that up to 30% of patients have primary resistance to these treatments and over time even those who initially respond to therapy will eventually develop resistance and their disease will continue to progress regardless of the presence of the drug. Determining the mechanisms involved in the development of resistance to these therapies has been the area of intense study and several adaptive pathways have been uncovered. Androgen receptor (AR) mutations, expression of AR-V7 (or other constitutively active androgen receptor variants), intracrine androgen production and overexpression of androgen synthesis enzymes such as Aldo-Keto Reductase Family 1, Member C3 (AKR1C3) are among the many mechanisms associated with resistance to anti-androgens. In regards to the taxanes, one of the key contributors to drug resistance is increased drug efflux through ATP Binding Cassette Subfamily B Member 1 (ABCB1). Targeting these resistance mechanisms using different strategies has led to various levels of success in overcoming resistance to current therapies. For instance, targeting AR-V7 with niclosamide or AKR1C3 with indomethacin can improve enzalutamide and abiraterone treatment. ABCB1 transport activity can be inhibited by the dietary constituent apigenin and antiandrogens such as bicalutamide which in turn improves response to docetaxel. A more thorough understanding of how drug resistance develops will lead to improved treatment strategies. This review will cover the current knowledge of resistance mechanisms to castration resistant prostate cancer therapies and methods that have been identified which may improve treatment response.
Collapse
Affiliation(s)
| | - Allen C Gao
- Department of Urology, University of California, Davis, Sacramento, CA, USA.,Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA.,VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
20
|
Huang HY, Chiu TL, Chang HF, Hsu HR, Pang CY, Liew HK, Wang MJ. Epigenetic regulation contributes to urocortin-enhanced midbrain dopaminergic neuron differentiation. Stem Cells 2016; 33:1601-17. [PMID: 25641682 DOI: 10.1002/stem.1949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023]
Abstract
The production of midbrain dopaminergic (mDA) neurons requires precise extrinsic inductive signals and intrinsic transcriptional cascade at a specific time point in development. Urocortin (UCN) is a peptide of the corticotropin-releasing hormone family that mediates various responses to stress. UCN was first cloned from adult rat midbrain. However, the contribution of UCN to the development of mDA neurons is poorly understood. Here, we show that UCN is endogenously expressed in the developing ventral midbrain (VM) and its receptors are exhibited in Nurr1(+) postmitotic mDA precursors and TH(+) neurons, suggesting possible roles in regulating their terminal differentiation. UCN treatment increased DA cell numbers in rat VM precursor cultures by promoting the conversion of Nurr1(+) precursors into DA neurons. Furthermore, neutralization of secreted UCN with anti-UCN antibody resulted in a reduction in the number of DA neurons. UCN induced an abundance of acetylated histone H3 and enhanced late DA regulator Nurr1, Foxa2, and Pitx3 expressions. Using pharmacological and RNA interference approaches, we further demonstrated that histone deacetylase (HDAC) inhibition and late transcriptional factors upregulation contribute to UCN-mediated DA neuron differentiation. Chromatin immunoprecipitation analyses revealed that UCN promoted histone acetylation of chromatin surrounding the TH promoter by directly inhibiting HDAC and releasing of methyl CpG binding protein 2-CoREST-HDAC1 repressor complex from the promoter, ultimately leading to an increase in Nurr1/coactivators-mediated transcription of TH gene. Moreover, UCN treatment in vivo also resulted in increased DA neuron differentiation. These findings suggest that UCN might contribute to regulate late mDA neuron differentiation during VM development.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of Medical Research, Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 2016; 4:365-80. [PMID: 26814148 PMCID: PMC4708226 DOI: 10.3978/j.issn.2223-4683.2015.05.02] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite advances in prostate cancer diagnosis and management, morbidity from prostate cancer remains high. Approximately 20% of men present with advanced or metastatic disease, while 29,000 men continue to die of prostate cancer each year. Androgen deprivation therapy (ADT) has been the standard of care for initial management of advanced or metastatic prostate cancer since Huggins and Hodges first introduced the concept of androgen-dependence in 1972, but progression to castration-resistant prostate cancer (CRPC) occurs within 2-3 years of initiation of ADT. CRPC, previously defined as hormone-refractory prostate cancer, is now understood to still be androgen dependent. Multiple mechanisms of resistance help contribute to the progression to castration resistant disease, and the androgen receptor (AR) remains an important driver in this progression. These mechanisms include AR amplification and hypersensitivity, AR mutations leading to promiscuity, mutations in coactivators/corepressors, androgen-independent AR activation, and intratumoral and alternative androgen production. More recently, identification of AR variants (ARVs) has been established as another mechanism of progression to CRPC. Docetaxel chemotherapy has historically been the first-line treatment for CRPC, but in recent years, newer agents have been introduced that target some of these mechanisms of resistance, thereby providing additional survival benefit. These include AR signaling inhibitors such as enzalutamide (Xtandi, ENZA, MDV-3100) and CYP17A1 inhibitors such as abiraterone acetate (Zytiga). Ultimately, these agents will also fail to suppress CRPC. While some of the mechanisms by which these agents fail are unique, many share similarities to the mechanisms contributing to CRPC progression. Understanding these mechanisms of resistance to ADT and currently approved CRPC treatments will help guide future research into targeted therapies.
Collapse
Affiliation(s)
| | - Joy C Yang
- Department of Urology, University of California, Davis, CA, USA
| | - Allen C Gao
- Department of Urology, University of California, Davis, CA, USA
| | | |
Collapse
|
22
|
Chandrasekar T, Yang JC, Gao AC, Evans CP. Targeting molecular resistance in castration-resistant prostate cancer. BMC Med 2015; 13:206. [PMID: 26329698 PMCID: PMC4556222 DOI: 10.1186/s12916-015-0457-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple mechanisms of resistance contribute to the inevitable progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). Currently approved therapies for CRPC include systemic chemotherapy (docetaxel and cabazitaxel) and agents targeting the resistance pathways leading to CRPC, including enzalutamide and abiraterone. While there is significant survival benefit, primary and secondary resistance to these therapies develops rapidly. Up to one-third of patients have primary resistance to enzalutamide and abiraterone; the remaining patients eventually progress on treatment. Understanding the mechanisms of resistance resulting in progression as well as identifying new targetable pathways remains the focus of current prostate cancer research. We review current knowledge of mechanisms of resistance to the currently approved treatments, development of adjunctive therapies, and identification of new pathways being targeted for therapeutic purposes.
Collapse
Affiliation(s)
| | - Joy C Yang
- Department of Urology, University of California, Davis, USA.
| | - Allen C Gao
- Department of Urology, University of California, Davis, USA.
| | - Christopher P Evans
- Department of Urology, University of California, Davis, USA. .,, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
23
|
Bhat M, Noolu B, Qadri SSYH, Ismail A. Vitamin D deficiency decreases adiposity in rats and causes altered expression of uncoupling proteins and steroid receptor coactivator3. J Steroid Biochem Mol Biol 2014; 144 Pt B:304-12. [PMID: 25132457 DOI: 10.1016/j.jsbmb.2014.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/01/2014] [Accepted: 08/08/2014] [Indexed: 12/15/2022]
Abstract
The vitamin D endocrine system is functional in the adipose tissue, as demonstrated in vitro, in cultured adipocytes, and in vivo in mutant mice that developed altered lipid metabolism and fat storage in the absence of either 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or the vitamin D receptor. The aim of the present study was to examine the role of vitamin D and calcium on body adiposity in a diet-induced vitamin D deficient rat model. Vitamin D-deficient rats gained less weight and had lower amounts of visceral fat. Consistent with reduced adipose tissue mass, the vitamin D-deficient rats had low circulating levels of leptin, which reflects body fat stores. Expression of vitamin D and calcium sensing receptors, and that of genes involved in adipogenesis such as peroxisome proliferator-activated receptor, fatty acid synthase and leptin were significantly reduced in white adipose tissue of deficient rats compared to vitamin D-sufficient rats. Furthermore, the expression of uncoupling proteins (Ucp1 and Ucp2) was elevated in the white adipose tissue of the deficient rat indicative of higher energy expenditure, thereby leading to a lean phenotype. Expression of the p160 steroid receptor coactivator3 (SRC3), a key regulator of adipogenesis in white adipose tissue was decreased in vitamin D-deficient state. Interestingly, most of the changes observed in vitamin D deficient rats were corrected by calcium supplementation alone. Our data demonstrates that dietary vitamin D and calcium regulate adipose tissue function and metabolism.
Collapse
Affiliation(s)
| | - Bindu Noolu
- Department of Endocrinology and Metabolism, Hyderabad, India
| | - Syed S Y H Qadri
- Department of Pathology, National Institute of Nutrition, Hyderabad, India
| | - Ayesha Ismail
- Department of Endocrinology and Metabolism, Hyderabad, India.
| |
Collapse
|
24
|
Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proc Natl Acad Sci U S A 2014; 111:4007-12. [PMID: 24591583 DOI: 10.1073/pnas.1400522111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligand activation and DNA-binding dictate the outcome of glucocorticoid receptor (GR)-mediated transcriptional regulation by inducing diverse receptor conformations that interact differentially with coregulators. GR recruits many coregulators via the well-characterized AF2 interaction surface in the GR ligand-binding domain, but Lin11, Isl-1, Mec-3 (LIM) domain coregulator Hic-5 (TGFB1I1) binds to the relatively uncharacterized tau2 activation domain in the hinge region of GR. Requirement of hydrogen peroxide-inducible clone-5 (Hic-5) for glucocorticoid-regulated gene expression was defined by Hic-5 depletion and global gene-expression analysis. Hic-5 depletion selectively affected both activation and repression of GR target genes, and Hic-5 served as an on/off switch for glucocorticoid regulation of many genes. For some hormone-induced genes, Hic-5 facilitated recruitment of Mediator complex. In contrast, many genes were not regulated by glucocorticoid until Hic-5 was depleted. On these genes Hic-5 prevented GR occupancy and chromatin remodeling and thereby inhibited their hormone-dependent regulation. Transcription factor binding to genomic sites is highly variable among different cell types; Hic-5 represents an alternative mechanism for regulating transcription factor-binding site selection that could apply both within a given cell type and among different cell types. Thus, Hic-5 is a versatile coregulator that acts by multiple gene-specific mechanisms that influence genomic occupancy of GR as well transcription complex assembly.
Collapse
|
25
|
Sharma Y, Chilamakuri CSR, Bakke M, Lenhard B. Computational characterization of modes of transcriptional regulation of nuclear receptor genes. PLoS One 2014; 9:e88880. [PMID: 24551185 PMCID: PMC3923872 DOI: 10.1371/journal.pone.0088880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Background Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent. Methodology/Principal Findings In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq) and histone modification (ChIP-seq) data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We further examine the combinatorial patterns of histone maps associated with dynamic functional elements in order to explore the regulatory landscape of the gene family. The results show that our proposed classification capturing long-range regulation is strongly indicative of the functional roles of the nuclear receptors compared to existing classifications. Conclusions/Significanc We present a new classification for nuclear receptor gene family capturing whether a nuclear receptor is a possible target of long-range regulation or not. We compare our classification to existing structural (mechanism of action) and homology-based classifications. Our results show that understanding long-range regulation of nuclear receptors can provide key insight into their functional roles as well as evolutionary history; and this strongly merits further study.
Collapse
Affiliation(s)
- Yogita Sharma
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, and MRC Clinical Sciences Centre, London, United Kingdom
- Department of Informatics, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
26
|
Indyk JA, Candido-Vitto C, Wolf IM, Venkataraman S, Munoz R, Saladino RA, Witchel SF, Defranco DB. Reduced glucocorticoid receptor protein expression in children with critical illness. Horm Res Paediatr 2013; 79:169-78. [PMID: 23548248 DOI: 10.1159/000348290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The diagnostic criteria for critical illness-related corticoid insufficiency (CIRCI) are not well established, particularly for children. In addition to alterations in adrenal function, cellular resistance to glucocorticoid action could contribute to CIRCI due to alterations in the functioning of the intracellular receptor protein for corticosteroids, the glucocorticoid receptor (GR). METHODS We have therefore undertaken a pilot, prospective study to assess whether cellular GR activity can be measured in peripheral blood mononuclear cells (PBMCs) from critically ill children. RESULTS Total and cytoplasmic, but not nuclear GR levels were significantly lower in PBMCs from critically ill children (i.e. sepsis/septic shock and traumatic brain injury) compared to healthy controls . While total cortisol concentrations did not differ between test groups, salivary and serum-free cortisol concentrations were significantly greater in both groups of children with critical illness. Cortisol-binding globulin levels were significantly lower in patients with sepsis/septic shock. CONCLUSIONS The lower total and cytoplasmic receptor levels in critically ill children suggest that the GR-mediated response to exogenous glucocorticoid therapy may be limited. However, the nuclear transport of GR in critically ill patients suggests that residual receptors in these patients retain functionality and may be accessible to therapeutic treatments that maximize their activity.
Collapse
Affiliation(s)
- Justin A Indyk
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Burd CJ, Archer TK. Chromatin architecture defines the glucocorticoid response. Mol Cell Endocrinol 2013; 380:25-31. [PMID: 23545159 PMCID: PMC3762934 DOI: 10.1016/j.mce.2013.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 01/10/2023]
Abstract
The glucocorticoid receptor (GR) functions to regulate a wide group of physiological processes through hormone inducible interaction with genomic loci and subsequent manipulation of the transcriptional output of target genes. Despite expression in a wide variety of tissues, the GR has diverse roles that are regulated tightly in a cell type specific manner. With the advent of whole genome approaches, the details of that diversity and the mechanisms regulating them are beginning to be elucidated. This review aims describe the recent advances detailing the role chromatin structure plays in dictating GR specificity.
Collapse
Affiliation(s)
- Craig J Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States.
| | | |
Collapse
|
28
|
Hahm JB, Privalsky ML. Research resource: identification of novel coregulators specific for thyroid hormone receptor-β2. Mol Endocrinol 2013; 27:840-59. [PMID: 23558175 DOI: 10.1210/me.2012-1117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone receptors (TRs) are expressed as a series of interrelated isoforms that perform distinct biological roles. The TRβ2 isoform is found predominantly in the hypothalamus, pituitary, retina, and cochlea and displays unique transcriptional properties relative to the other TR isoforms. To more fully understand the isoform-specific biological and molecular properties of TRβ2, we have identified a series of previously unrecognized proteins that selectively interact with TRβ2 compared with the more widely expressed TRβ1. Several of these proteins preferentially enhance the transcriptional activity of TRβ2 when coexpressed in cells and are likely to represent novel, isoform-specific coactivators. Additional proteins were also identified in our screen that bind equally to TRβ1 and TRβ2 and may function as isoform-independent auxiliary proteins for these and/or other nuclear receptors. We propose that a combination of isoform-specific recruitment and tissue-specific expression of these newly identified coregulator candidates serves to customize TR function for different biological purposes in different cell types.
Collapse
Affiliation(s)
- Johnnie B Hahm
- Department of Microbiology, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
29
|
Khurana S, Chakraborty S, Zhao X, Liu Y, Guan D, Lam M, Huang W, Yang S, Kao HY. Identification of a novel LXXLL motif in α-actinin 4-spliced isoform that is critical for its interaction with estrogen receptor α and co-activators. J Biol Chem 2012; 287:35418-35429. [PMID: 22908231 DOI: 10.1074/jbc.m112.401364] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Actinins (ACTNs) are a family of proteins cross-linking actin filaments that maintain cytoskeletal organization and cell motility. Recently, it has also become clear that ACTN4 can function in the nucleus. In this report, we found that ACTN4 (full length) and its spliced isoform ACTN4 (Iso) possess an unusual LXXLL nuclear receptor interacting motif. Both ACTN4 (full length) and ACTN4 (Iso) potentiate basal transcription activity and directly interact with estrogen receptor α, although ACTN4 (Iso) binds ERα more strongly. We have also found that both ACTN4 (full length) and ACTN4 (Iso) interact with the ligand-independent and the ligand-dependent activation domains of estrogen receptor α. Although ACTN4 (Iso) interacts efficiently with transcriptional co-activators such as p300/CBP-associated factor (PCAF) and steroid receptor co-activator 1 (SRC-1), the full length ACTN4 protein either does not or does so weakly. More importantly, the flanking sequences of the LXXLL motif are important not only for interacting with nuclear receptors but also for the association with co-activators. Taken together, we have identified a novel extended LXXLL motif that is critical for interactions with both receptors and co-activators. This motif functions more efficiently in a spliced isoform of ACTN4 than it does in the full-length protein.
Collapse
Affiliation(s)
- Simran Khurana
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Sharmistha Chakraborty
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Xuan Zhao
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Yu Liu
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Dongyin Guan
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Minh Lam
- Comprehensive Cancer Center, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Wei Huang
- Center for Proteomics and Department of Pharmacology, School of Medicine, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Sichun Yang
- Center for Proteomics and Department of Pharmacology, School of Medicine, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Hung-Ying Kao
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106.
| |
Collapse
|
30
|
Sampson N, Ruiz C, Zenzmaier C, Bubendorf L, Berger P. PAGE4 positivity is associated with attenuated AR signaling and predicts patient survival in hormone-naive prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1443-54. [PMID: 22885105 DOI: 10.1016/j.ajpath.2012.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/30/2012] [Accepted: 06/26/2012] [Indexed: 11/27/2022]
Abstract
Aberrant activation of the androgen receptor (AR) plays a key role during prostate cancer (PCa) development and progression to castration-resistant prostate cancer (CR-PCa) after androgen deprivation therapy, the mainstay systemic treatment for PCa. New strategies to abrogate AR activity and biomarkers that predict aggressive tumor behavior are essential for improved therapeutic intervention. PCa tissue microarrays herein reveal that prostate-associated gene 4 (PAGE4), an X-linked cancer/testis antigen, is highly up-regulated in the epithelium of preneoplastic lesions compared with benign epithelium, but subsequently decreases with tumor progression. We show that AR signaling is attenuated in PAGE4-expressing cells both in vitro and in vivo, most likely via impaired androgen-induced AR nuclear translocation and subsequently reduced AR protein stabilization and phosphorylation at serines 81 and 213. Consistently, epithelial PAGE4 protein levels inversely correlated with AR activation status in hormone-naive and CR-PCa clinical specimens. Moreover, PAGE4 impaired the development of CR-PCa xenografts, and strong PAGE4 immunoreactivity independently predicted favorable patient survival in hormone-naive PCa. Collectively, these data suggest that dysregulation of epithelial PAGE4 modulates AR signaling, thereby promoting progression to advanced lethal PCa and highlight the potential value of PAGE4 as a prognostic and therapeutic target.
Collapse
Affiliation(s)
- Natalie Sampson
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
31
|
Diez D, Goto S, Fahy JV, Erle DJ, Woodruff PG, Wheelock ÅM, Wheelock CE. Network analysis identifies a putative role for the PPAR and type 1 interferon pathways in glucocorticoid actions in asthmatics. BMC Med Genomics 2012; 5:27. [PMID: 22713245 PMCID: PMC3408345 DOI: 10.1186/1755-8794-5-27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Asthma is a chronic inflammatory airway disease influenced by genetic and environmental factors that affects ~300 million people worldwide, leading to ~250,000 deaths annually. Glucocorticoids (GCs) are well-known therapeutics that are used extensively to suppress airway inflammation in asthmatics. The airway epithelium plays an important role in the initiation and modulation of the inflammatory response. While the role of GCs in disease management is well understood, few studies have examined the holistic effects on the airway epithelium. METHODS Gene expression data were used to generate a co-transcriptional network, which was interrogated to identify modules of functionally related genes. In parallel, expression data were mapped to the human protein-protein interaction (PPI) network in order to identify modules with differentially expressed genes. A common pathways approach was applied to highlight genes and pathways functionally relevant and significantly altered following GC treatment. RESULTS Co-transcriptional network analysis identified pathways involved in inflammatory processes in the epithelium of asthmatics, including the Toll-like receptor (TLR) and PPAR signaling pathways. Analysis of the PPI network identified RXRA, PPARGC1A, STAT1 and IRF9, among others genes, as differentially expressed. Common pathways analysis highlighted TLR and PPAR signaling pathways, providing a link between general inflammatory processes and the actions of GCs. Promoter analysis identified genes regulated by the glucocorticoid receptor (GCR) and PPAR pathways as well as highlighted the interferon pathway as a target of GCs. CONCLUSIONS Network analyses identified known genes and pathways associated with inflammatory processes in the airway epithelium of asthmatics. This workflow illustrated a hypothesis generating experimental design that integrated multiple analysis methods to produce a weight-of-evidence based approach upon which future focused studies can be designed. In this case, results suggested a mechanism whereby GCs repress TLR-mediated interferon production via upregulation of the PPAR signaling pathway. These results highlight the role of interferons in asthma and their potential as targets of future therapeutic efforts.
Collapse
Affiliation(s)
- Diego Diez
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Laboratory of Bioinformatics and Genomics, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Susumu Goto
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - David J Erle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Lung Biology Center, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Ranhotra HS. The interplay between retinoic acid receptor-related orphan receptors and human diseases. J Recept Signal Transduct Res 2012; 32:181-9. [PMID: 22686165 DOI: 10.3109/10799893.2012.692120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The retinoic acid receptor-related orphan receptors (RORs) are an important subfamily of transcriptional regulators of the nuclear receptors superfamily. Their discovery over a decade ago by gene cloning strategy have revealed three major isoforms of these orphan receptors in animals. Generation and analyses of isoform-specific ROR null mice have provided revealed-vital roles for the RORs in animals. The RORs undoubtedly participate in a host of biological functions such a metabolism, immunity, development and differentiation, angiogenesis, circadian clock, xenobiotic/drug metabolism and other tissue physiologies for optimal animal survival. Moreover, intense work in the last one decade also revealed a host of human diseases being modulated by the RORs. A number of diseases, such as cancer, autoimmune diseases, inflammation, osteoporosis, metabolic syndrome etc., strongly support the involvement of RORs in their onset and progression. By involving in such diseases, the RORs are indeed a critical factor for optimal cell function and are being intensely investigated as novel targets for drug interventions in the treatment of various diseases. This review focuses on the current knowledge and status about RORs in a number of human disease conditions.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Orphan Nuclear Receptors Laboratory, Department of Biochemistry, St. Edmund's College, Shillong, Meghalaya, India.
| |
Collapse
|
33
|
Wardell SE, Kazmin D, McDonnell DP. Research resource: Transcriptional profiling in a cellular model of breast cancer reveals functional and mechanistic differences between clinically relevant SERM and between SERM/estrogen complexes. Mol Endocrinol 2012; 26:1235-48. [PMID: 22570330 DOI: 10.1210/me.2012-1031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Exploitation of the relationship between estrogen receptor (ER) structure and activity has led to the development of 1) selective ER modulators (SERM), compounds whose relative agonist/antagonist activities differ between target tissues; 2) selective ER degraders (SERD), compounds that induce a conformational change in the receptor that targets it for proteasomal degradation; and 3) tissue-selective estrogen complexes (TSEC), drugs in which a SERM and an ER agonist are combined to yield a blended activity that results in distinct clinical profiles. In this study, we have performed a comprehensive head-to-head analysis of the transcriptional activity of these different classes of ERM in a cellular model of breast cancer. Not surprisingly, these studies highlighted important functional differences and similarities among the existing SERM, selective ER degraders, and TSEC. Of particular importance was the identification of genes that were regulated by various TSEC combinations but not by an estrogen or SERM alone. Cumulatively, the findings of this analysis are informative with respect to the mechanisms by which ER is engaged by different enhancers/promoters and highlights how promoter context influences the pharmacological activity of ER ligands.
Collapse
Affiliation(s)
- Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Box 3813, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
34
|
Abstract
Steroid hormone receptors initiate a genetic program tightly regulated by the chromatin environment of the responsive regions. Using the glucocorticoid receptor (GR) as a model factor for transcriptional initiation, we classified chromatin structure through formaldehyde-assisted isolation of regulatory elements (FAIRE). We looked at dynamic changes in FAIRE signals during GR activation specifically at regions of receptor interaction. We found a distribution of GR-responsive regions with diverse responses to activation and chromatin modulation. The majority of GR binding regions demonstrate increases in FAIRE signal in response to ligand. However, the majority GR-responsive regions shared a similar FAIRE signal in the basal chromatin state, suggesting a common chromatin structure for GR recruitment. Supporting this notion, global FAIRE sequencing (seq) data indicated an enrichment of signal surrounding the GR binding site prior to activation. Brg-1 knockdown showed response element-specific effects of ATPase-dependent chromatin remodeling. FAIRE induction was universally decreased by Brg-1 depletion, but to varying degrees in a target specific manner. Taken together, these data suggest classes of nuclear receptor response regions that react to activation through different chromatin regulatory events and identify a chromatin structure that classifies the majority of response elements tested.
Collapse
|
35
|
Ables ET, Laws KM, Drummond-Barbosa D. Control of adult stem cells in vivo by a dynamic physiological environment: diet-dependent systemic factors in Drosophila and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:657-74. [PMID: 23799567 DOI: 10.1002/wdev.48] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult stem cells are inextricably linked to whole-body physiology and nutrient availability through complex systemic signaling networks. A full understanding of how stem cells sense and respond to dietary fluctuations will require identifying key systemic mediators, as well as elucidating how they are regulated and integrated with local and intrinsic factors across multiple tissues. Studies focused on the Drosophila germline have generated valuable insights into how stem cells are controlled by diet-dependent pathways, and increasing evidence suggests that diverse adult stem cell populations respond to nutrients through similar mechanisms. Systemic signals, including nutrients themselves and diet-regulated hormones such as Insulin/Insulin-like growth factor or steroid hormones, can directly or indirectly affect stem cell behavior by modifying local cell-cell communication or intrinsic factors. The physiological regulation of stem cells in response to nutritional status not only is a fascinating biological problem, but also has clinical implications, as research in this field holds the key to noninvasive approaches for manipulating stem cells in vivo. In addition, given the known associations between diet, stem cells, and cancer risk, this research may inspire novel anticancer therapies.
Collapse
Affiliation(s)
- Elizabeth T Ables
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
36
|
Buchanan G, Need EF, Barrett JM, Bianco-Miotto T, Thompson VC, Butler LM, Marshall VR, Tilley WD, Coetzee GA. Corepressor effect on androgen receptor activity varies with the length of the CAG encoded polyglutamine repeat and is dependent on receptor/corepressor ratio in prostate cancer cells. Mol Cell Endocrinol 2011; 342:20-31. [PMID: 21664238 PMCID: PMC3314496 DOI: 10.1016/j.mce.2011.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023]
Abstract
The response of prostate cells to androgens reflects a combination of androgen receptor (AR) transactivation and transrepression, but how these two processes differ mechanistically and influence prostate cancer risk and disease outcome remain elusive. Given recent interest in targeting AR transrepressive processes, a better understanding of AR/corepressor interaction and responses is warranted. Here, we used transactivation and interaction assays with wild-type and mutant ARs, and deletion AR fragments, to dissect the relationship between AR and the corepressor, silencing mediator for retinoic acid and thyroid hormone receptors (SMRT). We additionally tested how these processes are influenced by AR agonist and antagonist ligands, as well as by variation in the polyglutamine tract in the AR amino terminal domain (NTD), which is encoded by a polymorphic CAG repeat in the gene. SMRT was recruited to the AR ligand binding domain by agonist ligand, and as determined by the effect of strategic mutations in activation function 2 (AF-2), requires a precise conformation of that domain. A distinct region of SMRT also mediated interaction with the AR-NTD via the transactivation unit 5 (TAU5; residues 315-538) region. The degree to which SMRT was able to repress AR increased from 17% to 56% as the AR polyglutamine repeat length was increased from 9 to 42 residues, but critically this effect could be abolished by increasing the SMRT:AR molar ratio. These data suggest that the extent to which the CAG encoded polyglutamine repeat influences AR activity represents a balance between corepressor and coactivator occupancy of the same ligand-dependent and independent AR interaction surfaces. Changes in the homeostatic relationship of AR to these molecules, including SMRT, may explain the variable penetrance of the CAG repeat and the loss of AR signaling flexibility in prostate cancer progression.
Collapse
Affiliation(s)
- Grant Buchanan
- Department of Preventive Medicine, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Winbush A, Weeks JC. Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev 2011; 6:15. [PMID: 21521537 PMCID: PMC3098771 DOI: 10.1186/1749-8104-6-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metamorphosis of Drosophila melanogaster is accompanied by elimination of obsolete neurons via programmed cell death (PCD). Metamorphosis is regulated by ecdysteroids, including 20-hydroxyecdysone (20E), but the roles and modes of action of hormones in regulating neuronal PCD are incompletely understood. RESULTS We used targeted expression of GFP to track the fate of a larval motoneuron, RP2, in ventral ganglia. RP2s in abdominal neuromeres two through seven (A2 to A7) exhibited fragmented DNA by 15 hours after puparium formation (h-APF) and were missing by 20 h-APF. RP2 death began shortly after the 'prepupal pulse' of ecdysteroids, during which time RP2s expressed ecdysteroid receptors (EcRs). Genetic manipulations showed that RP2 death required the function of EcR-B isoforms, the death-activating gene, reaper (but not hid), and the apoptosome component, Dark. PCD was blocked by expression of the caspase inhibitor p35 but unaffected by manipulating Diap1. In contrast, aCC motoneurons in neuromeres A2 to A7, and RP2s in neuromere A1, expressed EcRs during the prepupal pulse but survived into the pupal stage under all conditions tested. To test the hypothesis that ecdysteroids trigger RP2's death directly, we placed abdominal GFP-expressing neurons in cell culture immediately prior to the prepupal pulse, with or without 20E. 20E induced significant PCD in putative RP2s, but not in control neurons, as assessed by morphological criteria and propidium iodide staining. CONCLUSIONS These findings suggest that the rise of ecdysteroids during the prepupal pulse acts directly, via EcR-B isoforms, to activate PCD in RP2 motoneurons in abdominal neuromeres A2 to A7, while sparing RP2s in A1. Genetic manipulations suggest that RP2's death requires Reaper function, apoptosome assembly and Diap1-independent caspase activation. RP2s offer a valuable 'single cell' approach to the molecular understanding of neuronal death during insect metamorphosis and, potentially, of neurodegeneration in other contexts.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, Institute of Neuroscience, University of Oregon Eugene, OR, 97403-1254, USA
| | | |
Collapse
|
38
|
Wu Z, Li Y, Li X, Ti D, Zhao Y, Si Y, Mei Q, Zhao P, Fu X, Han W. LRP16 integrates into NF-κB transcriptional complex and is required for its functional activation. PLoS One 2011; 6:e18157. [PMID: 21483817 PMCID: PMC3069058 DOI: 10.1371/journal.pone.0018157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 02/23/2011] [Indexed: 12/30/2022] Open
Abstract
Background Nuclear factor κB (NF-κB)-mediated pathways have been widely implicated in cell survival, development and tumor progression. Although the molecular events of determining NF-κB translocation from cytoplasm to nucleus have been extensively documented, the regulatory mechanisms of NF-κB activity inside the nucleus are still poorly understood. Being a special member of macro domain proteins, LRP16 was previously identified as a coactivator of both estrogen receptor and androgen receptor, and as an interactor of NF-κB coactivator UXT. Here, we investigated the regulatory role of LRP16 on NF-κB activation. Methodology GST pull-down and coimmunoprecipitation (CoIP) assays assessed protein-protein interactions. The functional activity of NF-κB was assessed by luciferase assays, changes in expression of its target genes, and its DNA binding ability. Annexin V staining and flow cytometry analysis were used to evaluate cell apoptosis. Immunohistochemical staining of LRP16 and enzyme-linked immunosorbent assay-based evaluation of active NF-κB were performed on primary human gastric carcinoma samples. Results We demonstrate that LRP16 integrates into NF-κB transcriptional complex through associating with its p65 component. RNA interference knockdown of the endogenous LRP16 in cells leads to impaired NF-κB activity and significantly attenuated NF-κB-dependent gene expression. Mechanistic analysis revealed that knockdown of LRP16 did not affect tumor necrosis factor α (TNF-α)-induced nuclear translocation of NF-κB, but blunted the formation or stabilization of functional NF-κB/p300/CREB-binding protein transcription complex in the nucleus. In addition, knockdown of LRP16 also sensitizes cells to apoptosis induced by TNF-α. Finally, a positive link between LRP16 expression intensity in nuclei of tumor cells and NF-κB activity was preliminarily established in human gastric carcinoma specimens. Conclusions Our findings not only indicate that LRP16 is a crucial regulator for NF-κB activation inside the nucleus, but also suggest that LRP16 may be an important contributor to the aberrant activation of NF-κB in tumors.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yazhuo Li
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Xiaolei Li
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Dongdong Ti
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yali Zhao
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yiling Si
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Qian Mei
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Po Zhao
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell 2011; 7:581-92. [PMID: 21040900 DOI: 10.1016/j.stem.2010.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 08/12/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022]
Abstract
Steroid hormones are known systemic regulators of multiple normal and cancerous tissues; however, whether or how they impact the fate and function of adult stem cells is unclear. In the Drosophila ovary, insulin signals modulate the proliferation and self-renewal of germline stem cells (GSCs), yet despite evidence that additional systemic factors control GSC activity, these have remained largely unknown. Here, we report that ecdysone, a steroid hormone structurally related to mammalian sex steroids, directly regulates adult GSC proliferation and self-renewal independently of insulin signaling. Ecdysone controls GSCs through a functional interaction with the chromatin remodeling factors ISWI, an intrinsic epigenetic factor required for GSC fate and activity, and Nurf301, the largest subunit of the ISWI-containing NURF chromatin remodeling complex. Our findings support a link between systemic steroid hormones and the intrinsic chromatin remodeling machinery as a potential mechanism to promote broad transcriptional programs required for adult stem cell self-renewal.
Collapse
|
40
|
Taubert S, Ward JD, Yamamoto KR. Nuclear hormone receptors in nematodes: evolution and function. Mol Cell Endocrinol 2011; 334:49-55. [PMID: 20438802 PMCID: PMC3042524 DOI: 10.1016/j.mce.2010.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/18/2010] [Accepted: 04/24/2010] [Indexed: 11/16/2022]
Abstract
Nuclear hormone receptors (NHRs) are proteins that regulate gene expression in response to developmental, environmental, and nutritional signals. The activity of some NHRs is selectively and reversibly modulated by small molecular weight compounds. However, for others - termed "orphan" receptors - no such ligands have (yet) been identified, and at least some NHRs may lack natural ligands. NHRs exhibit a stereotyped architecture, with conserved N-terminal DNA-binding domains (DBDs) and more variable C-terminal ligand-binding domains (LBDs). NHRs control the transcription of remarkably diverse and specific gene networks, apparently by integrating multiple regulatory inputs that interact with distinct receptor surfaces; these inputs include small molecule ligands, transcriptional coregulators, and response elements, the genomic sites to which the receptors bind. NHRs comprise an ancient superfamily found in all metazoans, and recent findings have revealed NHR-like regulatory factors in fungi. Here, we consider NHR function and evolution in nematodes, roundworms that inhabit terrestrial, marine, and freshwater habitats; we focus in particular on the well-established experimental organism Caenorhabditis elegans. Interestingly, the C. elegans genome encodes a massively expanded NHR family; we speculate that some of the multiple physiological activities governed by individual mammalian NHRs may be distributed among multiple members of the C. elegans family, potentially focusing and simplifying functional analyses. Accordingly, investigations of relevant NHR cofactors, ligands, and response elements might also prove to be simpler; moreover, the abbreviated intergenic regions of the C. elegans genome will facilitate the assignment of response elements to target genes. Finally, the growing interest in medically relevant nematodes is providing novel insights into the function and evolution of NHRs.
Collapse
Affiliation(s)
- Stefan Taubert
- Department of Medical Genetics, University of British Columbia; Centre for Molecular Medicine and Therapeutics; and Child & Family Research Institute, Vancouver, BC, Canada
| | - Jordan D. Ward
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Corresponding author: UCSF, 600 16 St, GH-S574, San Francisco CA 94143-2280; Phone: +1 (415) 476-8445;
| |
Collapse
|
41
|
Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 2010; 72:247-72. [PMID: 20148675 DOI: 10.1146/annurev-physiol-021909-135917] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Pharmacology, and Center for Molecular Design, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
42
|
Abstract
Resistance to glucocorticoids (GCs) is a major clinical problem in the treatment of acute lymphoblastic leukemia (ALL), but the underlying mechanisms are not well understood. Although mutations in the glucocorticoid receptor (GR) gene can give rise to therapy resistance in vitro, acquired somatic mutations in the GR are rarely encountered in patients. Here we report that the protein encoded by the BTG1 gene, which is frequently deleted in (pediatric) ALL, is a key determinant of GC responsiveness. Using RNA interference, we show that loss of BTG1 expression causes GC resistance both by decimating GR expression and by controlling GR-mediated transcription. Conversely, reexpression of BTG1 restores GC sensitivity by potentiating GC-induced GR expression, a phenomenon known as GR autoinduction. In addition, the arginine methyltransferase PRMT1, a BTG1-binding partner and transcriptional coactivator, is recruited to the GR gene promoter in a BTG1-dependent manner. These results implicate the BTG1/PRMT1 complex in GR-mediated gene expression and reveal that deregulation of a nuclear receptor coactivator complex can give rise to GC resistance. Further characterization of this complex as part of the GR regulatory circuitry could offer novel opportunities for improving the efficacy of GC-based therapies in ALL and other hematologic malignancies.
Collapse
|
43
|
Chikanishi T, Fujiki R, Hashiba W, Sekine H, Yokoyama A, Kato S. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes. Biochem Biophys Res Commun 2010; 394:865-70. [PMID: 20206135 DOI: 10.1016/j.bbrc.2010.02.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/29/2022]
Abstract
O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1alpha and -1beta genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1alpha gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1alpha gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.
Collapse
Affiliation(s)
- Toshihiro Chikanishi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Paakinaho V, Makkonen H, Jääskeläinen T, Palvimo JJ. Glucocorticoid receptor activates poised FKBP51 locus through long-distance interactions. Mol Endocrinol 2010; 24:511-25. [PMID: 20093418 DOI: 10.1210/me.2009-0443] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have identified FKBP51 (FK506-binding protein 51) as a sensitive biomarker of corticosteroid responsiveness in vivo. In this work, we have elucidated the molecular mechanisms underlying the induction of FKBP51 by the glucocorticoid receptor (GR) in human A549 lung cancer cells showing robust accumulation of FKBP51 mRNA in response to dexamethasone exposure. Our quantitative chromatin immunoprecipitation scans and enhancer activity analyses indicate that activation of the FKBP51 locus by glucocorticoids in vivo is triggered by the loading of GR to enhancers at about 34 kb 5' and about 87 kb 3' of the transcription start site. Interestingly, the region encompassing these enhancers is bordered by CCCTC-binding factor- and cohesin-binding sites. Dexamethasone treatment also decreased the histone density at several regions of the gene, which was paralleled with the occupancy of SWI/SNF chromatin remodeling complexes within the locus. Moreover, silencing of BRM subunit of the SWI/SNF complex blunted the glucocorticoid induction of the locus. The proximal promoter region along with the major intronic enhancer at approximately 87 kb, at which the GR binding peaked, had elevated levels of histone 3 acetylation and H3K4 trimethylation, whereas H3K36 trimethylation more generally marked the gene body and reflected the occupancy of RNA polymerase II. The occurrence of these active chromatin marks within the FKBP51 locus before glucocorticoid exposure suggests that it is poised for transcription in A549 cells. Taken together, these results indicate that the holo-GR is capable of activating transcription and evoking changes in chromatin structure through distant-acting enhancers.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
45
|
Lu S, Archer MC. Sp1 coordinately regulates de novo lipogenesis and proliferation in cancer cells. Int J Cancer 2010; 126:416-25. [PMID: 19621387 DOI: 10.1002/ijc.24761] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cancers express high levels of fatty acid synthase (FAS) from which they derive fatty acids for membrane biosynthesis to sustain cell proliferation. How cancer cells coordinate de novo lipogenesis and proliferation has not been investigated. Transcription factors Sp1, Sp3 and Sp4 are overexpressed in a variety of cancers and regulate gene expression by interacting with GC-rich Sp1 binding sites. Genes encoding FAS and cell cycle proteins such as CDC25A contain Sp1 binding sites in their promoters. We demonstrate by RNA interference that Sp1, Sp3 and Sp4 all play a role in regulating CDC25A expression and proliferation in human breast cancer cells. Only Sp1, however, also regulates FAS. Furthermore, mithramycin, which blocks Sp1 binding sites, decreased proliferation, inhibited CDC25A and FAS expression and reduced binding of Sp1 to the promoters of these genes as assessed by ChIP assays. Conversely, 17beta-estradiol (E(2)) increased proliferation and CDC25A and FAS expression along with increased binding of Sp1 to the promoters of the 2 genes. In addition, we showed that the expression of sterol regulatory element-binding protein-1c (SREBP-1c), the only transcription factor that has been shown to regulate genes of lipogenic enzymes in cancer cells, is also regulated by Sp1. Finally, we demonstrated that Sp1 plays a role in sustaining proliferation and FAS expression in colon as well as prostate cancer cells. Overall, these observations suggest that Sp1 coordinately regulates de novo lipogenesis and proliferation in cancer cells.
Collapse
Affiliation(s)
- Suying Lu
- Department of Nutritional Sciences, University of Toronto, ON, Canada
| | | |
Collapse
|
46
|
Scarpin KM, Graham JD, Mote PA, Clarke CL. Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression. NUCLEAR RECEPTOR SIGNALING 2009; 7:e009. [PMID: 20087430 PMCID: PMC2807635 DOI: 10.1621/nrs.07009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/11/2009] [Indexed: 12/22/2022]
Abstract
Progesterone is a critical regulator of normal female reproductive function, with diverse tissue-specific effects in the human. The effects of progesterone are mediated by its nuclear receptor (PR) that is expressed as two isoforms, PRA and PRB, which are virtually identical except that PRA lacks 164 amino acids that are present at the N-terminus of PRB. Considerable in vitro evidence suggests that the two PRs are functionally distinct and in animals, tissue-specific distribution patterns of PRA and PRB may account for some of the diversity of progesterone effects. In the human, PRA and PRB are equivalently expressed in most target cells, suggesting that alternative mechanisms control the diversity of progesterone actions. PR mediates the effects of progesterone by association with a range of coregulatory proteins and binding to specific target sequences in progesterone-regulated gene promoters. Ligand activation of PR results in redistribution into discrete subnuclear foci that are detectable by immunofluorescence, probably representing aggregates of multiple transcriptionally active PR-coregulator complexes. PR foci are aberrant in cancers, suggesting that the coregulator composition and number of complexes is altered. A large family of coregulators is now described and the range of proteins known to bind PR exceeds the complement required for transcriptional activation, suggesting that in the human, tissue-specific coregulator expression may modulate progesterone response. In this review, we examine the role of nuclear localization of PR, coregulator association and tissue-specific expression in modulating progesterone action in the human.
Collapse
Affiliation(s)
- Katherine M Scarpin
- Westmead Institute for Cancer Research, Westmead Millennium Institute, University of Sydney Western Clinical School, Westmead, NSW, Australia
| | | | | | | |
Collapse
|
47
|
Walters E, Rider V, Abdou NI, Greenwell C, Svojanovsky S, Smith P, Kimler BF. Estradiol targets T cell signaling pathways in human systemic lupus. Clin Immunol 2009; 133:428-36. [PMID: 19793680 DOI: 10.1016/j.clim.2009.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/24/2009] [Accepted: 09/08/2009] [Indexed: 01/19/2023]
Abstract
The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/- estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-alpha signaling. Measurement of interferon-alpha pathway target gene expression revealed significant differences (p= 0.043) in DRIP150 (+/- estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r= 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.
Collapse
Affiliation(s)
- Emily Walters
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Aghajanova L, Velarde MC, Giudice LC. The progesterone receptor coactivator Hic-5 is involved in the pathophysiology of endometriosis. Endocrinology 2009; 150:3863-70. [PMID: 19389829 PMCID: PMC2717860 DOI: 10.1210/en.2009-0008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/15/2009] [Indexed: 11/19/2022]
Abstract
Endometriosis is an estrogen-dependent disorder primarily associated with pelvic pain and infertility in up to 10% of women of reproductive age. Recent studies suggest that resistance to progesterone action may contribute to the development and pathophysiology of this disorder. In this study we examined the in vivo and in vitro expression and function of one progesterone receptor (PR) coactivator, Hic-5, in human endometrium and endometrial stromal fibroblasts (hESFs) from 29 women with and 30 (control) women without endometriosis. Hic-5 was highly expressed in stromal, but not epithelial, cells in women without endometriosis, in a cycle-dependent manner. In contrast, Hic-5 expression was not regulated during the menstrual cycle in hESFs from women with endometriosis and was significantly reduced in hESFs from women with vs. without disease. Hic-5 mRNA expression throughout the cycle in endometrium from control women, but not those with endometriosis, correlated with expression of PR. Hic-5 mRNA in hESFs was significantly up-regulated in control but not endometriosis hESFs after treatment in vitro with 8-bromoadenosine-cAMP for 96 h but only modestly after 14 d of progesterone treatment. Hic-5 silencing did not influence cAMP-regulated gene expression but affected genes regulated solely by progesterone (e.g. DKK1 and calcitonin). Together the data suggest that the proposed progesterone resistance in endometrium from women with endometriosis derives, in part, from impaired expression of the PR coactivator, Hic-5, in endometrial tissue and cultured endometrial stromal fibroblasts.
Collapse
Affiliation(s)
- Lusine Aghajanova
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
49
|
Adams BD, Cowee DM, White BA. The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol 2009; 23:1215-30. [PMID: 19423651 PMCID: PMC2718747 DOI: 10.1210/me.2009-0062] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/29/2009] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor (EGF) receptor (EGFR)/MAPK signaling can induce a switch in MCF-7 breast cancer cells, from an estrogen receptor (ER)alpha-positive, Luminal-A phenotype, to an ERalpha-negative, Basal-like phenotype. Although mechanisms for this switch remain obscure, Basal-like cancers are typically high grade and confer a poorer clinical prognosis. We previously reported that miR-206 and ERalpha repress each other's expression in MCF-7 cells in a double-negative feedback loop. We show herein that miR-206 coordinately targets mRNAs encoding the coactivator proteins steroid receptor coactivator (SRC)-1 and SRC-3, and the transcription factor GATA-3, all of which contribute to estrogenic signaling and a Luminal-A phenotype. Overexpression of miR-206 repressed estrogen-mediated responses in MCF-7 cells, even in the presence of ERalpha encoded by an mRNA lacking a 3'-untranslated region, suggesting miR-206 affects estrogen signaling by targeting mRNAs encoding ERalpha-associated coregulatory proteins. Furthermore, EGF treatments enhanced miR-206 levels in MCF-7 cells and ERalpha-negative, EGFR-positive MDA-MB-231 cells, whereas EGFR small interfering RNA, or PD153035, an EGFR inhibitor, or U0126, a MAPK kinase inhibitor, significantly reduced miR-206 levels in MDA-MB-231 cells. Blocking EGF-induced enhancement of miR-206 with antagomiR-206 abrogated the EGF-inhibitory effect on ERalpha, SRC-1, and SRC-3 levels, and on estrogen response element-luciferase activity, indicating that EGFR signaling represses estrogenic responses in MCF-7 cells by enhancing miR-206 activity. Elevated miR-206 levels in MCF-7 cells ultimately resulted in reduced cell proliferation, enhanced apoptosis, and reduced expression of multiple estrogen-responsive genes. In conclusion, miR-206 contributes to EGFR-mediated abrogation of estrogenic responses in MCF-7 cells, contributes to a Luminal-A- to Basal-like phenotypic switch, and may be a measure of EGFR response within Basal-like breast tumors.
Collapse
Affiliation(s)
- Brian D Adams
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3505, USA
| | | | | |
Collapse
|
50
|
Wu SC, Zhang Y. Minireview: role of protein methylation and demethylation in nuclear hormone signaling. Mol Endocrinol 2009; 23:1323-34. [PMID: 19407220 DOI: 10.1210/me.2009-0131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear hormone receptors (NRs) are transcription factors responsible for mediating the biological effects of hormones during development, metabolism, and homeostasis. Induction of NR target genes is accomplished through the assembly of hormone-bound NR complexes at target promoters and coincides with changes in histone modifications that promote transcription. Some coactivators and corepressors of NR can enhance or inhibit NR function by covalently modifying histones. One such modification is methylation, which plays important roles in transcriptional regulation. Histone methylation is catalyzed by histone methyltransferases and reversed by histone demethylases. Recent studies have uncovered the importance of these enzymes in the regulation of NR target genes. In addition to histones, these enzymes have nonhistone substrates and can methylate and demethylate NRs and coregulatory proteins in order to modulate their function. This review discusses recent progress in our understanding of the role of methylation and demethylation of histones, NRs, and their coregulators in NR-mediated transcription.
Collapse
Affiliation(s)
- Susan C Wu
- Howard Hughes Medical Institute, Department of Biochemistry, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | |
Collapse
|