1
|
Gao A, Qi Y, Luo Y, Hu X, Jiang R, Chang S, Zhou X, Liu L, Zhu L, Feng X, Jiang L, Zhong H. Mass spectrometric monitoring of redox transformation and arylation of tryptophan. Anal Chim Acta 2025; 1349:343822. [PMID: 40074454 DOI: 10.1016/j.aca.2025.343822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways. We described herein a mass spectrometric approach that can not only detect electron transfer-associated changes in masses and charges, but also identify electron-directed bond cleavages and radical-radical cross-coupling reactions in redox transformation of tryptophan. Photoactive TiO2 that is widely applied in cosmetic products is used as electron donor and receptor because of the capability to generate photoelectrons and holes. It was demonstrated tryptophan undergoes redox transformation through the removal of an electron from amino nitrogen atom by hole oxidization along with an electron capture in the indole ring. The back and forth electron-shuttle converts electric energy into chemical energy that enforces bond cleavages. Sodium-coupled electron transfer (SCET) was found in complementary with proton-coupled electron transfer in tryptophan. The movement of sodium ions avoids electric charge buildup caused by electron transfer. Various redox products were detected on both light irradiated TiO2 and skins, among which β-carboline shows extensive radical scavenging ability for diverse cross-coupling with indole derivatives. Light-independent redox products have been detected in vivo such as in mouse brain, indicating the presence of in vivo electron transfer-directed redox transformation. It has also been revealed that tryptophan can be arylated on Cα and Cβ atoms in response to the exposure of halogenated aromatics.
Collapse
Affiliation(s)
- Anji Gao
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yinghua Qi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yixiang Luo
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xiaoyuan Hu
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ruowei Jiang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Shao Chang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xin Zhou
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Linhui Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Luping Zhu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xue Feng
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ling Jiang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongying Zhong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
2
|
Chen Z, Li Y, Tan X, Nie S, Chen B, Mei X, Wu Z. Dysregulated tryptophan metabolism and AhR pathway contributed to CXCL10 upregulation in stable non-segmental vitiligo. J Dermatol Sci 2024; 115:33-41. [PMID: 38955622 DOI: 10.1016/j.jdermsci.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Tryptophan metabolism dysregulation has been observed in vitiligo. However, drawing a mechanistic linkage between this metabolic disturbance and vitiligo pathogenesis remains challenging. OBJECTIVE Aim to reveal the characterization of tryptophan metabolism in vitiligo and investigate the role of tryptophan metabolites in vitiligo pathophysiology. METHODS LC-MS/MS, dual-luciferase reporter assay, ELISA, qRT-PCR, small interfering RNA, western blotting, and immunohistochemistry were employed. RESULTS Kynurenine pathway activation and KYAT enzyme-associated deviation to kynurenic acid (KYNA) in the plasma of stable non-segmental vitiligo were determined. Using a public microarray dataset, we next validated the activation of kynurenine pathway was related with inflammatory-related genes expression in skin of vitiligo patients. Furthermore, we found that KYNA induced CXCL10 upregulation in keratinocytes via AhR activation. Moreover, the total activity of AhR agonist was increased while the AhR concentration per se was decreased in the plasma of vitiligo patients. Finally, higher KYAT, CXCL10, CYP1A1 and lower AhR expression in vitiligo lesional skin were observed by immunohistochemistry staining. CONCLUSION This study depicts the metabolic and genetic characterizations of tryptophan metabolism in vitiligo and proposes that KYNA, a tryptophan-derived AhR ligand, can enhance CXCL10 expression in keratinocytes.
Collapse
Affiliation(s)
- Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Nie
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Walczak K, Szalast K, Krasowska D. The biological interactions between kynurenine and AhR in melanocytes: in vitro studies. Amino Acids 2023:10.1007/s00726-023-03279-0. [PMID: 37245164 PMCID: PMC10371890 DOI: 10.1007/s00726-023-03279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Kynurenine (KYN), a tryptophan metabolite, is endogenously produced by the skin cells and is present in human sweat. The aim of this study was to determine the molecular mechanism of the antiproliferative activity of KYN on human epidermal melanocytes. KYN significantly inhibited the metabolic activity of HEMa cells by decreasing cyclin D1 and cyclin-dependent kinase 4 (CDK4) levels via the aryl hydrocarbon receptor (AhR) pathway. The results suggested that KYN might be involved in the regulation of physiological and pathological processes mediated by melanocytes.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Laboratory for Immunology of Skin Diseases, Chair and Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland.
| | - Karolina Szalast
- Department of Pharmacology, Chair of Pharmacology and Biology, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Dorota Krasowska
- Chair and Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, Staszica 11Ł, 20-081, Lublin, Poland
| |
Collapse
|
4
|
Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71:817-831. [PMID: 35748903 PMCID: PMC9307547 DOI: 10.1007/s00011-022-01598-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. Methods Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. Results Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. Conclusion It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.
Collapse
|
5
|
Duan Y, Liu J, Wang F, Duan Z. Increasing the bioactivity of kynurenine by ultraviolet irradiation via resonance energy transfer in vitro. Anal Biochem 2022; 645:114605. [PMID: 35181297 DOI: 10.1016/j.ab.2022.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/01/2022]
Abstract
Kynurenine (Kyn) is involved in a variety of physiological/pathological reactions via activating aryl hydrocarbon receptor (Ahr). However, how to activate Ahr by Kyn under physiological/pathological conditions is still unclear. Here, we presented that Kyn (8 μM, a concentration less than the dose of Kyn-induced Ahr activation) significantly induced the nuclear transfer of Ahr and the expression of cytochrome P450 1A1 (CYP1A1, a classic biomarker for Ahr activation) when co-administered with ultraviolet (UV) irradiation in 95D cells, which were transfected transiently with siRNA against indoleamine 2,3-dioxygenase 1 (IDO 1) and cultured in cell medium supplemented with bovine serum containing bovine serum albumin (BSA), in vitro. Additionally, we found that the fluorescence intensity of BSA was attenuated by Kyn (2, 4, 6, 8, 10, 12 and 14 μM) mainly through quenching the fluorescence of tryptophan (Trp) residues in the pattern of dynamic quenching related to molecular diffusion. More important, resonance energy transfer from excited-state BSA to Kyn was confirmed, leading to the generation "energetic" Kyn that might be ability of hyperactivity according to the theory of photochemical reaction. These data indicate that UV irradiation is contributable for Kyn to function, and present a novel pattern of altering the activity of biomolecules to some degree.
Collapse
Affiliation(s)
- Yunqing Duan
- Department of Chemistry, College of Arts and Sciences, Shanxi Agricultural University, 1 Mingxian South Road, Taigu, Shanxi, 030801, PR China.
| | - Junfang Liu
- Department of Chemistry, College of Arts and Sciences, Shanxi Agricultural University, 1 Mingxian South Road, Taigu, Shanxi, 030801, PR China.
| | - Fuxiang Wang
- Department of Chemistry, College of Arts and Sciences, Shanxi Agricultural University, 1 Mingxian South Road, Taigu, Shanxi, 030801, PR China
| | - Zhiqing Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, PR China; Doctoral Research Center, Linfen People's Hospital, Binhe West Road, Yaodu District, Linfen, Shanxi, 041000, PR China.
| |
Collapse
|
6
|
Ferreira Branquinho MS, Silva MBB, Castilho GA, Cavalcante J, Barros SBDM, Clara RO, Maria-Engler SS, Campa A. Kynurenine inhibits melanogenesis in human melanocyte-keratinocyte co-cultures and in a reconstructed 3D skin model. Exp Dermatol 2021; 31:427-432. [PMID: 34710259 DOI: 10.1111/exd.14486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
Kynurenine (KYN), the most abundant metabolite of tryptophan, is classically associated with immune tolerance and tumor immune escape. In the last years, KYN is in the spotlight in other biological processes. Here, we showed that KYN inhibited tyrosinase expression and melanin content in primary human melanocyte and keratinocyte co-cultures. Furthermore, KYN decreased melanosome content in a 3D human skin reconstruction model. In these experiments, we used tyrosine + NH4 Cl to induce pigmentation. We compared the inhibitory effect of KYN on melanogenesis with the already known inhibitory effect promoted by IFN-γ. Since increased KYN production depends on the IFN-γ-inducible enzyme indoleamine-2,3-dioxygenase (IDO), we propose that part of the effect of IFN-γ on melanogenesis involves KYN production. From that, we tested if, during melanogenesis, changes in tryptophan metabolism would occur. For this purpose, we measured tryptophan, KYN and downstream products along with pigmentation. There were no significant changes in Trp metabolism, except for the high consumption of kynurenic acid. Our data identify the skin as a potential target for the action of KYN relevant for skin physiology and pigmentation. The results are discussed concerning the high production of KYN in skin inflammatory disorders and cancer.
Collapse
Affiliation(s)
| | - Maysa Braga Barros Silva
- Faculty of Pharmaceutical Sciences, Department of Clinical Chemistry and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriela Ansanelo Castilho
- Faculty of Pharmaceutical Sciences, Department of Clinical Chemistry and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Jacqueline Cavalcante
- Faculty of Pharmaceutical Sciences, Department of Clinical Chemistry and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Silvia Berlanga de Moraes Barros
- Skin Lab, Faculty of Pharmaceutical Sciences, Department of Clinical Chemistry and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Renan Orsati Clara
- Faculty of Pharmaceutical Sciences, Department of Clinical Chemistry and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- Skin Lab, Faculty of Pharmaceutical Sciences, Department of Clinical Chemistry and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Campa
- Faculty of Pharmaceutical Sciences, Department of Clinical Chemistry and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Walczak K, Kazimierczak P, Szalast K, Plech T. UVB Radiation and Selected Tryptophan-Derived AhR Ligands-Potential Biological Interactions in Melanoma Cells. Int J Mol Sci 2021; 22:ijms22147500. [PMID: 34299117 PMCID: PMC8307169 DOI: 10.3390/ijms22147500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive UV exposure is considered the major environmental factor in melanoma progression. Human skin is constantly exposed to selected tryptophan-derived aryl hydrocarbon receptor (AhR) ligands, including kynurenine (KYN) and kynurenic acid (KYNA), as they are endogenously produced and present in various tissues and body fluids. Importantly, recent studies confirmed the biological activity of KYN and KYNA toward melanoma cells in vitro. Thus, in this study, the potential biological interactions between UVB and tryptophan metabolites KYN and KYNA were studied in melanoma A375, SK-MEL-3, and RPMI-7951 cells. It was shown that UVB enhanced the antiproliferative activity of KYN and KYNA in melanoma cells. Importantly, selected tryptophan-derived AhR ligands did not affect the invasiveness of A375 and RPMI-7951 cells; however, the stimulatory effect was observed in SK-MEL-3 cells exposed to UVB. Thus, the effect of tryptophan metabolites on metabolic activity, cell cycle regulation, and cell death in SK-MEL-3 cells exposed to UVB was assessed. In conclusion, taking into account that both UVB radiation and tryptophan-derived AhR ligands may have a crucial effect on skin cancer formation and progression, these results may have a significant impact, revealing the potential biological interactions in melanoma cells in vitro.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
- Correspondence: ; Tel.: +48-814-486-774
| | - Paulina Kazimierczak
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20093 Lublin, Poland;
| | - Karolina Szalast
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| |
Collapse
|
8
|
Morita M, Iizuka-Ohashi M, Watanabe M, Narita T, Kato C, Kakibuchi D, Kitano F, Ouchi Y, Sakaguchi K, Taguchi T. Oxidative stress induces EGFR inhibition-related skin cell death. J Clin Biochem Nutr 2021; 68:235-242. [PMID: 34025026 PMCID: PMC8129980 DOI: 10.3164/jcbn.20-112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Cutaneous side effects are often observed in patients treated with chemotherapeutic agents, including those treated with epidermal growth factor receptor (EGFR) inhibitors. These side effects are not fatal but often require dose reduction of chemotherapies. The mechanisms of epidermal growth factor receptor inhibition-related dermatologic toxicities are unclear, and prophylactic approaches are not well-established. To explore the mechanisms of the cutaneous side effects induced by epidermal growth factor receptor inhibition, we analyzed the metabolome using human keratinocyte cells. We first demonstrated that afatinib and lapatinib induced apoptosis in HaCaT cells. Using liquid chromatography-mass spectrometry, we detected 676 and 482 metabolites and compounds in the cells and media, respectively. We observed diverse metabolic alterations, including glycolysis, TCA metabolism, and polyamine metabolism, and also found a change in glutathione metabolites after epidermal growth factor receptor inhibition, which led to the accumulation of reactive oxygen species. Supplementation of N-acetyl cysteine partly rescued the afatinib-induced apoptosis, suggesting that reactive oxygen species are involved in the cytotoxicity of skin cells. We observed epidermal growth factor receptor inhibitor-associated comprehensive metabolic changes in human keratinocyte cells, suggesting that oxidative stress evokes cutaneous side effects induced by EGFR inhibition.
Collapse
Affiliation(s)
- Midori Morita
- Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Mahiro Iizuka-Ohashi
- Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Motoki Watanabe
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Takumi Narita
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Chikage Kato
- Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Daichi Kakibuchi
- Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Fuyuki Kitano
- Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Yoshimi Ouchi
- Department of Surgery, Saiseikai Shiga Hospital, 2-4-1 Ohashi, Ritto, Shiga, Japan
| | - Koichi Sakaguchi
- Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Tetsuya Taguchi
- Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
9
|
The efficacy of in vivo administration of Apremilast on mesenchymal stem cells derived from psoriatic patients. Inflamm Res 2020; 70:79-87. [DOI: 10.1007/s00011-020-01412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
|
10
|
Effect of IFN-γ on the kynurenine/tryptophan ratio in monolayer-cultured keratinocytes and a 3D reconstructed human epidermis model. J Dermatol Sci 2020; 99:177-184. [DOI: 10.1016/j.jdermsci.2020.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
|
11
|
Fujii K, Yamamoto Y, Mizutani Y, Saito K, Seishima M. Indoleamine 2,3-Dioxygenase 2 Deficiency Exacerbates Imiquimod-Induced Psoriasis-Like Skin Inflammation. Int J Mol Sci 2020; 21:E5515. [PMID: 32752186 PMCID: PMC7432009 DOI: 10.3390/ijms21155515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme known to suppress immune responses, and several reports have showed that it is associated with psoriasis. IDO2 is an isoform of IDO1, recently identified as a catalytic enzyme in the tryptophan-kynurenine pathway, which is expressed in dendritic cells and monocytes. The expression of IDO2 in immune cells suggests that IDO2 may contribute to immune functions. However, the role of IDO2 in the pathogenesis of psoriasis remains unclear. In this study, to elucidate the role of IDO2 in psoriasis, we assessed imiquimod (IMQ)-induced psoriasis-like dermatitis in IDO2 knockout (KO) mice. Skin inflammation, evaluated by scoring erythema, scaling, and ear thickness, was significantly worse in the IDO2 KO mice than in the wild-type (WT) mice. The mRNA expression levels of TNF-α, IL-23p19, and IL-17A, key cytokines involved in the development of psoriasis, were also increased in the IDO2 KO mice. Furthermore, immunohistochemistry revealed that the number of Ki67-positive cells in the epidermis and CD4-, CD8-, and IL-17-positive lymphocytes infiltrating the dermis were significantly increased in the IDO2 KO mice. These results suggest that IDO2 might decrease IL-17 expression, thereby resulting in the suppression of skin inflammation in IMQ-induced psoriasis-like dermatitis.
Collapse
Affiliation(s)
- Kento Fujii
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan; (Y.Y.); (K.S.)
| | - Yoko Mizutani
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan; (Y.Y.); (K.S.)
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| |
Collapse
|
12
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
13
|
Dolivo DM, Larson SA, Dominko T. Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis. Cell Mol Life Sci 2018; 75:3663-3681. [PMID: 30027295 PMCID: PMC11105268 DOI: 10.1007/s00018-018-2880-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-β signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.
Collapse
Affiliation(s)
- David M Dolivo
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Sara A Larson
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Tanja Dominko
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
14
|
Baumgartner R, Forteza MJ, Ketelhuth DFJ. The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine 2017; 122:154148. [PMID: 28899580 DOI: 10.1016/j.cyto.2017.09.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 12/20/2022]
Abstract
The kynurenine pathway (KP) is the major metabolic route of tryptophan (Trp) metabolism. Indoleamine 2,3-dioxygenase (IDO1), the enzyme responsible for the first and rate-limiting step in the pathway, as well as other enzymes in the pathway, have been shown to be highly regulated by cytokines. Hence, the KP has been implicated in several pathologic conditions, including infectious diseases, psychiatric disorders, malignancies, and autoimmune and chronic inflammatory diseases. Additionally, recent studies have linked the KP with atherosclerosis, suggesting that Trp metabolism could play an essential role in the maintenance of immune homeostasis in the vascular wall. This review summarizes experimental and clinical evidence of the interplay between cytokines and the KP and the potential role of the KP in cardiovascular diseases.
Collapse
Affiliation(s)
- Roland Baumgartner
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Maria J Forteza
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
15
|
Sadok I, Gamian A, Staniszewska MM. Chromatographic analysis of tryptophan metabolites. J Sep Sci 2017; 40:3020-3045. [PMID: 28590049 PMCID: PMC5575536 DOI: 10.1002/jssc.201700184] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate-limiting enzymes indoleamine 2,3-dioxygenase, or tryptophan 2,3-dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary ResearchThe John Paul II Catholic University of LublinLublinPoland
| | - Andrzej Gamian
- Laboratory of Medical MicrobiologyHirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
- Department of Medical BiochemistryWroclaw Medical UniversityWroclawPoland
| | - Magdalena Maria Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary ResearchThe John Paul II Catholic University of LublinLublinPoland
- Laboratory of Medical MicrobiologyHirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| |
Collapse
|
16
|
Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System. Sci Rep 2016; 6:35391. [PMID: 27762282 PMCID: PMC5071856 DOI: 10.1038/srep35391] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/28/2016] [Indexed: 02/05/2023] Open
Abstract
Sirtuin proteins have a variety of intracellular targets, thereby regulating multiple biological pathways including neurodegeneration. However, relatively little is currently known about the role or expression of the 7 mammalian sirtuins in the central nervous system. Western blotting, PCR and ELISA are the main techniques currently used to measure sirtuin levels. To achieve sufficient sensitivity and selectivity in a multiplex-format, a targeted mass spectrometric assay was developed and validated for the quantification of all seven mammalian sirtuins (SIRT1-7). Quantification of all peptides was by multiple reaction monitoring (MRM) using three mass transitions per protein-specific peptide, two specific peptides for each sirtuin and a stable isotope labelled internal standard. The assay was applied to a variety of samples including cultured brain cells, mammalian brain tissue, CSF and plasma. All sirtuin peptides were detected in the human brain, with SIRT2 being the most abundant. Sirtuins were also detected in human CSF and plasma, and guinea pig and mouse tissues. In conclusion, we have successfully applied MRM mass spectrometry for the detection and quantification of sirtuin proteins in the central nervous system, paving the way for more quantitative and functional studies.
Collapse
|
17
|
Llamas-Velasco M, Bonay P, José Concha-Garzón M, Corvo-Villén L, Vara A, Cibrián D, Sanguino-Pascual A, Sánchez-Madrid F, de la Fuente H, Daudén E. Immune cells from patients with psoriasis are defective in inducing indoleamine 2,3-dioxygenase expression in response to inflammatory stimuli. Br J Dermatol 2016; 176:695-704. [PMID: 27258822 DOI: 10.1111/bjd.14779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO) is an inducible enzyme that suppresses the immune response. The role of IDO as a negative regulator of inflammatory responses has been documented in several experimental autoimmune diseases. OBJECTIVES To explore the regulation of IDO by immune cells in psoriasis and its relation with disease severity. METHODS The expression and activity of IDO were assessed by reverse-transcriptase polymerase chain reaction, flow cytometry and high-performance liquid chromatography in peripheral blood of patients with moderate-to-severe plaque-type psoriasis. The ability of immune cells to express IDO in response to inflammatory stimuli was studied. The functional role of IDO expression was evaluated in a regulatory T cell (Treg) differentiation assay, using cocultures of immature monocyte-derived dendritic cells with autologous peripheral CD4+ T cells. RESULTS Analysis of the kynurenine-to-tryptophan ratio in serum samples indicated higher IDO activity in patients with psoriasis than in healthy controls. However, correlation studies showed lower IDO activity in those patients with higher Psoriasis Area and Severity Index (PASI). Although myeloid dendritic cells from patients with psoriasis expressed higher levels of IDO than those from healthy controls, these cells did not upregulate IDO in response to a combination of tumour necrosis factor-α, interleukin (IL)-1β and IL-6 cytokines. The defective expression of IDO correlated with PASI. Immature monocyte-derived dendritic cells from patients with psoriasis also expressed low levels of IDO and induced CD4+ Treg differentiation poorly. CONCLUSIONS Immune cells from patients with psoriasis have a defect in upregulating IDO in response to inflammation associated with the severity of psoriasis.
Collapse
Affiliation(s)
- M Llamas-Velasco
- Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Dermatology Department, Instituto de Investigación Sanitaria Princesa, Diego de Leon 62, 28006, Madrid, Spain
| | - P Bonay
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autonoma de Madrid, Madrid, Spain
| | - M José Concha-Garzón
- Dermatology Department, Instituto de Investigación Sanitaria Princesa, Diego de Leon 62, 28006, Madrid, Spain
| | - L Corvo-Villén
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autonoma de Madrid, Madrid, Spain
| | - A Vara
- Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Immunology Department, Instituto de Investigación Sanitaria Princesa, Diego de Leon 62, 28006, Madrid, Spain
| | - D Cibrián
- Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Immunology Department, Instituto de Investigación Sanitaria Princesa, Diego de Leon 62, 28006, Madrid, Spain
| | - A Sanguino-Pascual
- Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Immunology Department, Instituto de Investigación Sanitaria Princesa, Diego de Leon 62, 28006, Madrid, Spain
| | - F Sánchez-Madrid
- Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Immunology Department, Instituto de Investigación Sanitaria Princesa, Diego de Leon 62, 28006, Madrid, Spain
| | - H de la Fuente
- Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Immunology Department, Instituto de Investigación Sanitaria Princesa, Diego de Leon 62, 28006, Madrid, Spain
| | - E Daudén
- Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Dermatology Department, Instituto de Investigación Sanitaria Princesa, Diego de Leon 62, 28006, Madrid, Spain
| |
Collapse
|
18
|
Braidy N, Rossez H, Lim CK, Jugder BE, Brew BJ, Guillemin GJ. Characterization of the Kynurenine Pathway in CD8 + Human Primary Monocyte-Derived Dendritic Cells. Neurotox Res 2016; 30:620-632. [PMID: 27510585 DOI: 10.1007/s12640-016-9657-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/06/2016] [Accepted: 07/29/2016] [Indexed: 12/27/2022]
Abstract
The kynurenine (KYN) pathway (KP) is a major degradative pathway of the amino acid, L-tryptophan (TRP), that ultimately leads to the anabolism of the essential pyridine nucleotide, nicotinamide adenine dinucleotide. TRP catabolism results in the production of several important metabolites, including the major immune tolerance-inducing metabolite KYN, and the neurotoxin and excitotoxin quinolinic acid. Dendritic cells (DCs) have been shown to mediate immunoregulatory roles that mediated by TRP catabolism. However, characterization of the KP in human DCs has so far only been partly delineated. It is critical to understand which KP enzymes are expressed and which KP metabolites are produced to be able to understand their regulatory effects on the immune response. In this study, we characterized the KP in human monocyte-derived DCs (MDDCs) in comparison with the human primary macrophages using RT-PCR, high-pressure gas chromatography, mass spectrometry, and immunocytochemistry. Our results show that the KP is entirely expressed in human MDDC. Following activation of the KP using interferon gamma, MDDCs can mediate apoptosis of T h cells in vitro. Understanding the molecular mechanisms regulating KP metabolism in MDDCs may provide renewed insight for the development of novel therapeutics aimed at modulating immunological effects and peripheral tolerance.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Helene Rossez
- St Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Chai K Lim
- Neuropharmacology Group, MND and Neurodegenerative Diseases Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Bruce J Brew
- St Vincent's Centre for Applied Medical Research, Sydney, Australia.,Department of Neurology and HIV Medicine, St Vincent's Hospital, Sydney, Australia
| | - Gilles J Guillemin
- Neuropharmacology Group, MND and Neurodegenerative Diseases Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
19
|
Mutz CN, Schwentner R, Kauer MO, Katschnig AM, Kromp F, Aryee DNT, Erhardt S, Goiny M, Alonso J, Fuchs D, Kovar H. EWS-FLI1 impairs aryl hydrocarbon receptor activation by blocking tryptophan breakdown via the kynurenine pathway. FEBS Lett 2016; 590:2063-75. [PMID: 27282934 PMCID: PMC4988508 DOI: 10.1002/1873-3468.12243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 01/14/2023]
Abstract
Ewing sarcoma (ES) is an aggressive pediatric tumor driven by the fusion protein EWS-FLI1. We report that EWS-FLI1 suppresses TDO2-mediated tryptophan (TRP) breakdown in ES cells. Gene expression and metabolite analyses reveal an EWS-FLI1-dependent regulation of TRP metabolism. TRP consumption increased in the absence of EWS-FLI1, resulting in kynurenine and kynurenic acid accumulation, both aryl hydrocarbon receptor (AHR) ligands. Activated AHR binds to the promoter region of target genes. We demonstrate that EWS-FLI1 knockdown results in AHR nuclear translocation and activation. Our data suggest that EWS-FLI1 suppresses autocrine AHR signaling by inhibiting TDO2-catalyzed TRP breakdown.
Collapse
Affiliation(s)
- Cornelia N Mutz
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Raphaela Schwentner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Maximilian O Kauer
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Anna M Katschnig
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Florian Kromp
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Dave N T Aryee
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Austria
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Michel Goiny
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, ISCIII, Ctra, Madrid, Spain
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter Innsbruck Medical University, Center for Chemistry and Biomedicine, Austria
| | - Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Austria
| |
Collapse
|