1
|
Xu Q, Chen X, Ma Z, Zhong H, Feng G, Gu S. Exosomal ETV4 Derived From M2 Macrophages Induces Growth, Glycolysis and Stemness in Hepatocellular Carcinoma by UpRegulating SULT2B1 Expression. Liver Int 2025; 45:e16197. [PMID: 39639836 DOI: 10.1111/liv.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND M2 macrophage-derived exosomes have been identified to modulate hepatocellular carcinoma (HCC) progression. E-twenty-six (ETS) variant transcription factor 4 (ETV4) shows protumoral effects in HCC. Here, we aimed to probe whether ETV4 performed oncogenic effects on HCC by macrophage-derived exosomes and its associated mechanism. METHODS Exosomes were isolated from macrophages and co-cultured with HCC cells. qRT-PCR and western blotting were utilised for the detection of mRNA and protein. Cell survival was evaluated using EdU assay and flow cytometry. Glycolysis was determined by measuring the glucose uptake, lactate production, and ATP levels. Cell stemness was assessed by sphere formation and flow cytometry. The interaction between ETV4 and SULT2B1 (sulfotransferase family 2B member 1) was determined by a dual-luciferase reporter and chromatin immunoprecipitation assays. In vivo assay was performed by establishing mouse xenograft models. RESULTS ETV4 was highly expressed in the exosomes of M2 macrophages and could be internalised by HCC cells. ETV4 derived from M2 macrophage exosomes promoted HCC cell proliferation, glycolysis and stemness in vitro, and enhanced HCC growth in nude mice. Mechanistically, ETV4 interacted with SULT2B1 and promoted it transcription. SULT2B1 silencing suppressed HCC cell proliferation, glycolysis and stemness. In addition, exosomal ETV4 derived from M2 macrophage performed its effects by modulating SULT2B1. CONCLUSION ETV4 derived from M2 macrophage exosomes promoted HCC cell proliferation, glycolysis and stemness by interacting with SULT2B1, suggesting a novel insight into developing exosome-based therapy for HCC.
Collapse
Affiliation(s)
- Qiaodong Xu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Xinyue Chen
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Zhiyan Ma
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Haibin Zhong
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Gengren Feng
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Songgang Gu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| |
Collapse
|
2
|
Yang L, Gui J, Sheng Y, Liu J, Wang C, Fang Z, Huang L, Tu Z, Zhu X, Huang K. Identification of TAP2 as a novel immune target in human cancers: insights from integrated bioinformatics and experimental approaches. Eur J Med Res 2025; 30:163. [PMID: 40075453 PMCID: PMC11905508 DOI: 10.1186/s40001-025-02360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Transporter 2, ATP binding cassette (ABC) subfamily B member (TAP2), encodes a protein within the ABC transporter superfamily. TAP2 plays a role in the progression of cancers, such as cervical, breast, and lung cancers. However, the relationship between TAP2 and cancer prognosis, immune cell infiltration, tumor microenvironment, and immunotherapy remains unexplored. Therefore, this study aims to investigate the effect of TAP2 expression on its role in predicting tumor prognosis and immunotherapy efficacy. METHODS Bioinformatics analyses such as Gene Set Enrichment Analysis, single-cell, and Connectivity Map analyses were used to comprehensively assess TAP2-related genomic alterations, prognostic value, enrichment pathways, single-cell expression patterns, and potential targeting inhibitors. In addition, molecular docking techniques were used to simulate drug binding to TAP2. WB and RT-qPCR were used to detect differences in TAP2 expression in glioma cell lines. The U251MG cell line was established with TAP2 overexpression. The effects of elevated TAP2 expression on GBM cell function was evaluated using various assays, including the Transwell migration, scratch, and clonal formation assays. RESULTS TAP2 exhibited aberrantly expression in tumor tissues with genomic alterations. TAP2 significantly correlates with poor prognosis across various cancers. It was also involved in immune-related pathways, immune infiltration, and immune checkpoint regulation, thereby influencing the tumor microenvironment and immune response to cancer. TAP2 was identified as a potential predictor of immunotherapy response and screened for potential targeted inhibitors for future therapeutic interventions. CONCLUSIONS Our findings suggest that TAP2 may serve as a promising prognostic marker and immune target in human cancers, warranting further investigation into its role in tumor immunity.
Collapse
MESH Headings
- Humans
- Computational Biology/methods
- Prognosis
- Tumor Microenvironment/immunology
- Gene Expression Regulation, Neoplastic
- Neoplasms/immunology
- Neoplasms/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Molecular Docking Simulation
- Immunotherapy/methods
- ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 3
Collapse
Affiliation(s)
- Lufei Yang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiawei Gui
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Yilei Sheng
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Junzhe Liu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chong Wang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhansheng Fang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Le Huang
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Zewei Tu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xingen Zhu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Kai Huang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Suliman M, Saleh RO, Chandra M, Rasool KH, Jabir M, Jawad SF, Hasan TF, Singh M, Singh M, Singh A. Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Med Oncol 2025; 42:91. [PMID: 40048034 DOI: 10.1007/s12032-025-02643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Macrophages are key tumor microenvironment (TME) regulators, exhibiting remarkable plasticity that enables them to either suppress or promote cancer progression. Emerging evidence highlights the critical role of macrophage-derived long non-coding RNAs (lncRNAs) in shaping tumor immunity, influencing macrophage polarization, immune evasion, angiogenesis, metastasis, and therapy resistance. This review comprehensively elucidates the functional roles of M1- and M2-associated lncRNAs, detailing their molecular mechanisms and impact on cancer pathogenesis. In summary, elucidating the roles of lncRNAs derived from macrophages in cancer progression offers new avenues for therapeutic strategies, significantly improving patient outcomes in the fight against the disease. Further research into the functional significance of these lncRNAs and the development of targeted therapies is essential to harness their potential fully in clinical applications. We further explore their potential as biomarkers for cancer prognosis and therapeutic targets for modulating macrophage activity to enhance anti-cancer immunity. Targeting macrophage-derived lncRNAs represents a promising avenue for precision oncology, offering novel strategies to reshape the TME and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Thikra F Hasan
- College of Health & Medical Technology, Uruk University, Baghdad, Iraq
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
4
|
Huang SH, Wang CC, Shen PC, Liu ZM, Chen SJ, Tien YC, Lu CC. Suramin enhances proliferation, migration, and tendon gene expression of human supraspinatus tenocytes. J Orthop Res 2025; 43:252-263. [PMID: 39358851 DOI: 10.1002/jor.25990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Rotator cuff tendinopathy is a common musculoskeletal disorder with limited pharmacological treatment strategies. This study aimed to investigate tenocytes' functional in vitro response from a ruptured supraspinatus tendon to suramin administration and to elucidate whether suramin can enhance tendon repair and modulate the inflammatory response to injury. Tenocytes were obtained from human supraspinatus tendons (n = 6). We investigated the effect of suramin on LPS-induced inflammatory responses and the underlying molecular mechanisms in THP-1 macrophages. Suramin enhanced the proliferation, cell viability, and migration of tenocytes. It also increased the protein expression of PCNA and Ki-67. Suramin-treated tenocytes exhibited increased expression of COL1A1, COL3A1, TNC, SCX, and VEGF. Suramin significantly reduced LPS-induced iNOS, COX2 synthesis, inflammatory cytokine TNF-α production, and inflammatory signaling by influencing the NF-κB pathways in THP-1 cells. Our results suggest that suramin holds great promise as a therapeutic option for treating rotator cuff tendinopathy.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Chien Wang
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Po-Chih Shen
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Miao Liu
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Jung Chen
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedic Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
An Y, Zhao F, Jia H, Meng S, Zhang Z, Li S, Zhao J. Inhibition of programmed cell death by melanoma cell subpopulations reveals mechanisms of melanoma metastasis and potential therapeutic targets. Discov Oncol 2025; 16:62. [PMID: 39832036 PMCID: PMC11747064 DOI: 10.1007/s12672-025-01789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Melanoma is an aggressive type of skin cancer that arises from melanocytes, the cells responsible for producing skin pigment. In contrast to non-melanoma skin cancers like basal cell carcinoma and squamous cell carcinoma, melanoma is more invasive. Melanoma was distinguished by its rapid progression, high metastatic potential, and significant resistance to conventional therapies. Although it accounted for a small proportion of skin cancer cases, melanoma accounts for the majority of deaths caused by skin cancer due to its ability to invade deep tissues, adapt to diverse microenvironments, and evade immune responses. These unique features highlighted the challenges of treating melanoma and underscored the importance of advanced tools, such as single-cell sequencing, to unravel its biology and develop personalized therapeutic strategies. Thus, we conducted a single-cell analysis of the cellular composition within melanoma tumor tissues and further subdivided melanoma cells into subpopulations. Through analyzing metabolic pathways, stemness genes, and transcription factors (TFs) among cells in different phases (G1, G2/M, and S) as well as between primary and metastatic foci cells, we investigated the specific mechanisms underlying melanoma metastasis. We also revisited the cellular stemness and temporal trajectories of melanoma cell subpopulations, identifying the core subpopulation as C0 SOD3 + Melanoma cells. Our findings revealed a close relationship between the pivotal C0 SOD3 + Melanoma cells subpopulation and oxidative pathways in metastatic tumor tissues. Additionally, we analyzed prognostically relevant differentially expressed genes (DEGs) within the C0 SOD3 + Melanoma cells subpopulation and built a predictive model associated with melanoma outcomes. We selected the gene IGF1 with the highest coefficient (coef) value for further analysis, and experimentally validated its essential function in the proliferation and invasive metastasis of melanoma. In immune infiltration analysis, we discovered the critical roles played by M1/M2 macrophages in melanoma progression and immune evasion. Furthermore, the development and progression of malignant melanoma were closely associated with various forms of programmed cell death (PCD), including apoptosis, autophagic cell death, ferroptosis, and pyroptosis. Melanoma cells often resisted cell death mechanisms, maintaining their growth by inhibiting apoptosis and evading autophagic cell death. Meanwhile, the induction of ferroptosis and pyroptosis was thought to trigger immune responses that helped suppress melanoma dissemination. A deeper understanding of the relationship between melanoma and PCD pathways provided a critical foundation for developing novel targeted therapies, with the potential to enhance melanoma treatment efficacy. These findings contributed to the development of novel prognostic models for melanoma and shed light on research directions concerning melanoma metastasis mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Yuepeng An
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hongling Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Siyu Meng
- Northeast International Hospital, Shenyang, 110180, China
| | - Ziwei Zhang
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Shuxiao Li
- Department of Burns and Plastic Reconstructive Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China.
- Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China.
| | - Jiusi Zhao
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
6
|
Li Y, Ji W, Wang C, Chang L, Zhang Q, Gao J, Wang T, Wu W. Poly l-Lactic Acid Nanofiber Membrane Effectively Inhibits Liver Cancer Cells Growth and Prevents Postoperative Residual Cancer Recurrence. ACS APPLIED MATERIALS & INTERFACES 2025; 17:689-700. [PMID: 39681510 PMCID: PMC11783531 DOI: 10.1021/acsami.4c18625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Electrospun nanocarrier systems, widely employed in the medical field, exhibit the capability to encapsulate multiple drugs and mitigate complications. Doxorubicin hydrochloride (DOX) represents a frequently utilized chemotherapeutic agent for liver cancer patients. Sodium bicarbonate (SB) serves to neutralize the acidic tumor microenvironment, while ibuprofen (IBU) attenuates inflammatory factor production. The combination of these three commonly used drugs facilitates antitumor efficacy and relapse prevention. Composite fibrous membranes were prepared by incorporating the antitumor drug DOX into MSN, which was then codispersed with IBU in a poly l-lactic acid (PLLA) electrospinning solution after acid sensitization using SB. The resulting membrane was characterized using transmission electron microscopy and scanning electron microscopy. The toxic effect of this fibrous membrane and its pro-apoptotic effect on tumor cells were evaluated, along with the expression of cell proliferation-related factors, immune/inflammatory factors, and apoptosis-related factors. Immunohistochemistry and HE staining confirmed its ability to inhibit recurrence of postoperative residual cancer without causing toxicity to vital organs. The PLLA-MSN@DOX-SB-IBU nanofibrous membrane not only mitigates the cardiotoxicity associated with DOX but also inhibits tumor cell proliferation and enhances the tumor microenvironment, demonstrating significant antitumor efficacy. Furthermore, it effectively prevents the recurrence of residual cancer postsurgery while exhibiting excellent biocompatibility. The PLLA-MSN@DOX-SB-IBU nanofibrous membrane demonstrates significant potential in impeding the progression of hepatocellular carcinoma and mitigating the recurrence of residual cancer following surgical intervention for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanxu Li
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Weiben Ji
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Chaoying Wang
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Lai Chang
- Taixing
People’s Hospital in Jiangsu Province, Tai Zhou, Jiang Su 225400, China
| | - Quan Zhang
- College
of Veterinary Medicine, Yangzhou University, Yang Zhou, Jiang Su 225009, China
| | - Jiefeng Gao
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yang Zhou, Jiang Su 225009, China
| | - Tao Wang
- College
of Veterinary Medicine, Yangzhou University, Yang Zhou, Jiang Su 225009, China
| | - Wei Wu
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| |
Collapse
|
7
|
Zhang Y, Wang W, Chen L, Wang H, Dong D, Zhu J, Guo Y, Zhou Y, Liu T, Fu W. Human adipose-derived multipotent stromal cells enriched with IL-10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift. Bioeng Transl Med 2025; 10:e10711. [PMID: 39801749 PMCID: PMC11711206 DOI: 10.1002/btm2.10711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate. In vitro experiments demonstrated that IL-10 modRNA-transfected hADSCs effectively modulated macrophage polarization towards an anti-inflammatory phenotype. In vivo experiments with a well-established murine model demonstrated that transplantation of hADSCsmodIL-10 on postoperative day 5 (POD5) significantly improved wound healing outcomes, including accelerated wound closure, enhanced re-epithelialization, promoted M2 polarization, improved collagen deposition, and increased neovascularization. This study concludes that IL-10 modRNA-enriched hADSCs offer a promising therapeutic approach for diabetic wound healing, with the timing of IL-10 administration playing a crucial role in its effectiveness. These cells modulate macrophage polarization and promote tissue repair, demonstrating their potential for improving the management of diabetic wounds.
Collapse
Affiliation(s)
- Yuxin Zhang
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Wei Wang
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Liang Chen
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Heng Wang
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Dong Dong
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Jingjing Zhu
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Yu Guo
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Yiqun Zhou
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Tianyi Liu
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Kotey SK, Tan X, Kinser AL, Liu L, Cheng Y. Host Long Noncoding RNAs as Key Players in Mycobacteria-Host Interactions. Microorganisms 2024; 12:2656. [PMID: 39770858 PMCID: PMC11728548 DOI: 10.3390/microorganisms12122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Mycobacterial infections, caused by various species within the Mycobacterium genus, remain one of the main challenges to global health across the world. Understanding the complex interplay between the host and mycobacterial pathogens is essential for developing effective diagnostic and therapeutic strategies. Host long noncoding RNAs (lncRNAs) have emerged as key regulators in cellular response to bacterial infections within host cells. This review provides an overview of the intricate relationship between mycobacterial infections and host lncRNAs in the context of Mycobacterium tuberculosis and non-tuberculous mycobacterium (NTM) infections. Accumulation of evidence indicates that host lncRNAs play a critical role in regulating cellular response to mycobacterial infection within host cells, such as macrophages, the primary host cells for mycobacterial intracellular survival. The expression of specific host lncRNAs has been implicated in the pathogenesis of mycobacterial infections, providing potential targets for the development of novel host-directed therapies and biomarkers for TB diagnosis. In summary, this review aims to highlight the current state of knowledge regarding the involvement of host lncRNAs in mycobacterial infections. It also emphasizes their potential application as novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Stephen K. Kotey
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Audrey L. Kinser
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
9
|
Lu X, Li L, Lin J, Wu X, Li W, Tan C, Huang J, Pu J. PAARH promotes M2 macrophage polarization and immune evasion of liver cancer cells through VEGF protein. Int J Biol Macromol 2024; 281:136580. [PMID: 39406326 DOI: 10.1016/j.ijbiomac.2024.136580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE This study aims to investigate the mechanism by which PAARH promotes M2 macrophage polarization and immune evasion of liver cancer cells through VEGF, in order to reveal its role in the progression of liver cancer. METHODS The expressions of PAARH, VEGF, and HIF-1α in liver cancer cells were detected using qRT-PCR and Western blot. Flow cytometry was utilized to analyze the polarization status of macrophages and assess the impact on immune evasion-related markers. The relationship between PAARH and VEGF in macrophage polarization was further explored. Additionally, a tumor-bearing mouse model was established to observe tumor growth. RESULTS The results show that PAARH is upregulated in liver cancer cells, and silencing PAARH significantly inhibits tumor malignancy progression. Under hypoxic conditions, overexpression of PAARH significantly increases VEGF expression, and PAARH regulates M2 macrophage polarization through VEGF. Overexpression of PAARH significantly promotes M2 macrophage polarization, increases levels of PD-L1 and Th2 immune response markers, and enhances cell proliferation, migration, and invasion; it also suppresses M1 macrophage polarization, decreases levels of PD-L2 and Th1 immune response markers, and inhibits cell apoptosis. Silencing VEGF reverses these effects. Silencing PAARH or overexpressing VEGF weakens the malignant phenotype of the cells and immune evasion. Results from the tumor-bearing mouse model indicate that silencing PAARH significantly reduces tumor size and weight, while overexpressing VEGF significantly increases tumor volume and weight. CONCLUSION PAARH enhances the immune evasion capability of liver cancer cells by upregulating VEGF to promote M2 macrophage polarization, suggesting that PAARH may serve as a new therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Xianzhe Lu
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China
| | - Li Li
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China; Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical11 University for Nationalities, Baise, 533000, Guangxi, China
| | - Jiajie Lin
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China
| | - Xianjian Wu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Wenchuan Li
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Chuan Tan
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Junling Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China.
| | - Jian Pu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
10
|
Lin Y, Huang Y, Zheng Y, Chen W, Zhang Y, Yang Y, Huang W. Taurine Inhibits Lung Metastasis in Triple-Negative Breast Cancer by Modulating Macrophage Polarization Through PTEN-PI3K/Akt/mTOR Pathway. J Immunother 2024; 47:369-377. [PMID: 38630910 DOI: 10.1097/cji.0000000000000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
SUMMARY Taurine (Tau) has been found to inhibit triple-negative breast cancer (TNBC) invasion and metastasis. However, its effect on tumor-promoting macrophages and tumor suppressor macrophages in breast cancer progression remains unknown. In this study, we investigated the effects of Tau on macrophage polarization and its role in TNBC cell growth, invasion, and metastasis. We induced human THP-1 monocytes to differentiate into M2 macrophages through exogenous addition of interleukin-4. We used the TNBC cell lines MDA-MB-231 and BT-549 cultured in a conditioned medium from M2 macrophages to investigate the effect of Tau on tumor growth and invasion. We analyzed macrophage subset distribution, M1 and M2 macrophage-associated markers, and mRNA expression by quantitative polymerase chain reaction. We also detected the PTEN-PI3K/Akt/mTOR signaling pathway that mediates M1 macrophage to suppress tumor invasion using western blotting. Our results showed that Tau inhibits breast cancer metastasis to the lungs in vivo and cell invasion by altering the polarization of tumor-associated macrophage in vitro. In addition, Tau can up-regulate PTEN expression, suppress the PI3K-Akt signaling pathway, and promote the M1 polarization of macrophages, which ultimately inhibits the metastasis of TNBC cells. Our findings suggest that Tau inhibits the activation of the PI3K-Akt-mTOR signaling pathway by up-regulating PTEN , promotes the proportion of M1 macrophages in tumor-associated macrophage, and suppresses the invasion and metastasis of TNBC. This provides a potential therapeutic approach to influence cancer progression and metastasis.
Collapse
Affiliation(s)
- Yufeng Lin
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongtong Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifan Zheng
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanting Chen
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongcheng Zhang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongxia Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Yu M, Yu H, Wang H, Xu X, Sun Z, Chen W, Yu M, Liu C, Jiang M, Zhang X. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol 2024; 65:100. [PMID: 39239752 PMCID: PMC11387121 DOI: 10.3892/ijo.2024.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) tissue is rich in dendritic cells, T cells, B cells, macrophages, natural killer cells and cellular stroma. Together they form the tumor microenvironment (TME), which is also rich in numerous cytokines. Tumor‑associated macrophages (TAMs) are involved in the regulation of tumor development. TAMs in HCC receive stimuli in different directions, polarize in different directions and release different cytokines to regulate the development of HCC. TAMs are mostly divided into two cell phenotypes: M1 and M2. M1 TAMs secrete pro‑inflammatory mediators, and M2 TAMs secrete a variety of anti‑inflammatory and pro‑tumorigenic substances. The TAM polarization in HCC tumors is M2. Both direct and indirect methods for TAMs to regulate the development of HCC are discussed. TAMs indirectly support HCC development by promoting peripheral angiogenesis and regulating the immune microenvironment of the TME. In terms of the direct regulation between TAMs and HCC cells, the present review mainly focuses on the molecular mechanism. TAMs are involved in both the proliferation and apoptosis of HCC cells to regulate the quantitative changes of HCC, and stimulate the related invasive migratory ability and cell stemness of HCC cells. The present review aims to identify immunotherapeutic options based on the mechanisms of TAMs in the TME of HCC.
Collapse
Affiliation(s)
- Mingkai Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Haixia Yu
- Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoya Xu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Zhaoqing Sun
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Wenshuai Chen
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Miaomiao Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Mingchun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
12
|
Helal IM, Kamal MA, Abd El-Aziz MK, El Tayebi HM. Epigenetic tuning of tumour-associated macrophages (TAMs): a potential approach in hepatocellular carcinoma (HCC) immunotherapy. Expert Rev Mol Med 2024; 26:e18. [PMID: 39320855 PMCID: PMC11440614 DOI: 10.1017/erm.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 09/26/2024]
Abstract
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Collapse
Affiliation(s)
- Israa M. Helal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Monica A. Kamal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Mostafa K. Abd El-Aziz
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| |
Collapse
|
13
|
Uttam V, Kapoor HS, Rana MK, Yadav R, Prakash H, Jain M, Tuli HS, Jain A. Immune-Related Long Non-Coding RNA Signature Determines Prognosis and Immunotherapeutic Coherence in Esophageal Cancer. Cancer Inform 2024; 23:11769351241276757. [PMID: 39282627 PMCID: PMC11401149 DOI: 10.1177/11769351241276757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives Aim of this study was to explore the immune-related lncRNAs having prognostic role and establishing risk score model for better prognosis and immunotherapeutic coherence for esophageal cancer (EC) patients. Methods To determine the role of immune-related lncRNAs in EC, we analyzed the RNA-seq expression data of 162 EC patients and 11 non-cancerous individuals and their clinically relevant information from the cancer genome atlas (TCGA) database. Bioinformatic and statistical analysis such as Differential expression analysis, co-expression analysis, Kaplan Meier survival analysis, Cox proportional hazards model, ROC analysis of risk model was employed. Results Utilizing a cutoff criterion (log2FC > 1 + log2FC < -1 and FDR < 0.01), we identified 3737 RNAs were significantly differentially expressed in EC patients. Among these, 2222 genes were classified as significantly differentially expressed mRNAs (demRNAs), and 966 were significantly differentially expressed lncRNAs (delncRNA). Through Pearson correlation analysis between differentially expressed lncRNAs and immune related-mRNAs, we identified 12 immune-related lncRNAs as prognostic signatures for EC. Notably, through Kaplan-Meier analysis on these lncRNAs, we found the low-risk group patients showed significantly improved survival compared to the high-risk group. Moreover, this prognostic signature has consistent performance across training, testing and entire validation cohort sets. Using ESTIMATE and CIBERSORT algorithm we further observed significant enriched infiltration of naive B cells, regulatory T cells resting CD4+ memory T cells, and, plasma cells in the low-risk group compared to high-risk EC patients group. On the contrary, tumor-associated M2 macrophages were highly enriched in high-risk patients. Additionally, we confirmed immune-related biological functions and pathways such as inflammatory, cytokines, chemokines response and natural killer cell-mediated cytotoxicity, toll-like receptor signaling pathways, JAK-STAT signaling pathways, chemokine signaling pathways significantly associated with identified IRlncRNA signature and their co-expressed immune genes. Furthermore, we assessed the predictive potential of the lncRNA signature in immune checkpoint inhibitors; we found that programed cell death ligand 1 (PD-L1; P-value = .048), programed cell death ligand 2 (PD-L2; P-value = .002), and T cell immunoglobulin and mucin-domain containing-3 (TIM-3; P-value = .045) expression levels were significantly higher in low-risk patients compared to high-risk patients. Conclusion We believe this study will contribute to better prognosis prediction and targeted treatment of EC in the future.
Collapse
Affiliation(s)
- Vivek Uttam
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| | | | - Manjit Kaur Rana
- Department of Pathology/Lab Medicine, AIIMS, Bathinda, Punjab, India
| | - Ritu Yadav
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| | | | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Ghudda, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| |
Collapse
|
14
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Li D, Zhang T, Guo Y, Bi C, Liu M, Wang G. Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis 2024; 15:498. [PMID: 38997297 PMCID: PMC11245522 DOI: 10.1038/s41419-024-06888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The tumor microenvironment is a complex space comprised of normal, cancer and immune cells. The macrophages are considered as the most abundant immune cells in tumor microenvironment and their function in tumorigenesis is interesting. Macrophages can be present as M1 and M2 polarization that show anti-cancer and oncogenic activities, respectively. Tumor-associated macrophages (TAMs) mainly have M2 polarization and they increase tumorigenesis due to secretion of factors, cytokines and affecting molecular pathways. Hepatocellular carcinoma (HCC) is among predominant tumors of liver that in spite of understanding its pathogenesis, the role of tumor microenvironment in its progression still requires more attention. The presence of TAMs in HCC causes an increase in growth and invasion of HCC cells and one of the reasons is induction of glycolysis that such metabolic reprogramming makes HCC distinct from normal cells and promotes its malignancy. Since M2 polarization of TAMs stimulates tumorigenesis in HCC, molecular networks regulating M2 to M1 conversion have been highlighted and moreover, drugs and compounds with the ability of targeting TAMs and suppressing their M2 phenotypes or at least their tumorigenesis activity have been utilized. TAMs increase aggressive behavior and biological functions of HCC cells that can result in development of therapy resistance. Macrophages can provide cell-cell communication in HCC by secreting exosomes having various types of biomolecules that transfer among cells and change their activity. Finally, non-coding RNA transcripts can mainly affect polarization of TAMs in HCC.
Collapse
Affiliation(s)
- Deming Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Ting Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ye Guo
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Cong Bi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, PR China.
| | - Gang Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
16
|
Luo H, Jing H, Chen W. An extensive overview of the role of lncRNAs generated from immune cells in the etiology of cancer. Int Immunopharmacol 2024; 133:112063. [PMID: 38677091 DOI: 10.1016/j.intimp.2024.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the control of critical tumor-suppressor and oncogenic pathways in cancer. These types of non-coding RNAs could affect both immune and cancer cells. The thorough analysis of lncRNAs derived from immune cells and the incorporation of new findings significantly advance our understanding of the complex role of lncRNAs in the context of cancer. This work highlights the promise of lncRNAs for translational therapeutic approaches while also establishing a solid foundation for comprehending the complex link between lncRNAs and cancer through a coherent narrative. The main findings of this article are that types of lncRNAs derived from immune cells, such as MM2P and MALAT1, can affect the behaviors of cancer cells, like invasion, angiogenesis, and proliferation. As research in this area grows, the therapeutic potential of targeting these lncRNAs offers promising opportunities for expanding our understanding of cancer biology and developing cutting-edge, precision-based therapies for cancer therapy.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China.
| | - Hailiang Jing
- Department of Integrative Medicine, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China
| | - Wei Chen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
17
|
Li W, Zhang H, You Z, Guo B. LncRNAs in Immune and Stromal Cells Remodel Phenotype of Cancer Cell and Tumor Microenvironment. J Inflamm Res 2024; 17:3173-3185. [PMID: 38774447 PMCID: PMC11108079 DOI: 10.2147/jir.s460730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Emerging studies suggest that long non-coding RNAs (lncRNAs) participate in the mutual regulation of cells in tumor microenvironment, thereby affecting the anti-tumor immune activity of immune cells. Additionally, the intracellular pathways mediated by lncRNAs can affect the expression of immune checkpoints or change the cell functions, including cytokines secretion, of immune and stromal cells in tumor microenvironment, which further influences cancer patients' prognosis and treatment response. With the in-depth research, lncRNAs have shown great potency as a new immunotherapy target and predict immunotherapy response. The research on lncRNAs provides us with a new insight into developing new immunotherapy drugs and predicting the outcome of immunotherapy. With development of RNA sequencing technology, amounts of lncRNAs were found to be dysregulated in immune and stromal cells rather than tumor cells. These lncRNAs function through ceRNA network or regulating transcript factor activity, thus leading abnormal differentiation and activation of immune and stromal cells. Here, we review the function of lncRNAs in the immune microenvironment and focus on the alteration of lncRNAs in immune and stromal cells, and discuss how these alterations affect tumor growth, metastasis and treatment response.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Clinical Oncology, Qianjiang Hospital Affiliated to Renmin Hospital of Wuhan University, Qianjiang, Hubei, People’s Republic of China
- Department of Clinical Oncology, Qianjiang Central Hospital of Hubei Province, Qianjiang, Hubei, People’s Republic of China
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zuo You
- Department of Traditional Chinese Medicine, Xianfeng County People’s Hospital, Enshi, Hubei, People’s Republic of China
| | - Baozhu Guo
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
18
|
Quaranta V, Ballarò C, Giannelli G. Macrophages Orchestrate the Liver Tumor Microenvironment. Cancers (Basel) 2024; 16:1772. [PMID: 38730724 PMCID: PMC11083142 DOI: 10.3390/cancers16091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Liver cancer is one of the leading causes of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma are the most common types, and despite numerous advances, therapeutic options still remain poor for these cancer patients. Tumor development and progression strictly depend on a supportive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immune cells population within a tumorigenic liver; they sustain cancer cells' growth and invasiveness, and their presence is correlated with a poor prognosis. Furthermore, TAM cross-talk with cells and components of the TME promotes immunosuppression, a desmoplastic response, and angiogenesis. In this review, we summarize the latest advances in understanding TAM heterogeneity and function, with a particular focus on TAM modulation of the TME. We also discuss the potential of targeting macrophage subpopulations and how this is now being exploited in current clinical trials for the treatment of liver cancer.
Collapse
Affiliation(s)
- Valeria Quaranta
- National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy (G.G.)
| | | | | |
Collapse
|
19
|
Valverde A, Naqvi RA, Naqvi AR. Non-coding RNA LINC01010 regulates macrophage polarization and innate immune functions by modulating NFκB signaling pathway. J Cell Physiol 2024; 239:e31225. [PMID: 38403999 PMCID: PMC11096022 DOI: 10.1002/jcp.31225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Innate immune response is regulated by tissue resident or infiltrating immune cells such as macrophages (Mφ) that play critical role in tissue development, homeostasis, and repair of damaged tissue. However, the epigenetic mechanisms that regulate Mφ plasticity and innate immune functions are not well understood. Long non-coding RNA (lncRNA) are among the most abundant class of transcriptome but their function in myeloid cell biology is less explored. In this study, we deciphered the regulatory role of previously uncharacterized lncRNAs in Mφ polarization and innate immune responses. Two lncRNAs showed notable changes in their levels during M1 and M2 Mφ differentiation. Our findings indicate that LINC01010 expression increased and AC007032 expression decreased significantly. LINC01010 exhibit myeloid cell-specificity, while AC007032.1 is ubiquitous and expressed in both myeloid and lymphoid (T cells, B cells and NK cells) cells. Expression of these lncRNAs is dysregulated in periodontal disease (PD), a microbial biofilm-induced immune disease, and responsive to lipopolysaccharide (LPS) from different oral and non-oral bacteria. Knockdown of LINC01010 but not AC007032.1 reduced the surface expression of Mφ differentiation markers CD206 and CD68, and M1Mφ polarization markers MHCII and CD32. Furthermore, LINC01010 RNAi attenuated bacterial phagocytosis, antigen processing and cytokine secretion suggesting its key function in innate immunity. Mechanistically, LINC01010 knockdown Mφ treated with Escherichia coli LPS exhibit significantly reduced expression of multiple nuclear factor kappa B pathway genes. Together, our data highlight functional role of a PD-associated lncRNA LINC01010 in shaping macrophage differentiation, polarization, and innate immune activation.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
| | - Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
20
|
Kang J, Hua P, Wu X, Wang B. Exosomes: efficient macrophage-related immunomodulators in chronic lung diseases. Front Cell Dev Biol 2024; 12:1271684. [PMID: 38655063 PMCID: PMC11035777 DOI: 10.3389/fcell.2024.1271684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Macrophages, the predominant immune cells in the lungs, play a pivotal role in maintaining the delicate balance of the pulmonary immune microenvironment. However, in chronic inflammatory lung diseases and lung cancer, macrophage phenotypes undergo distinct transitions, with M1-predominant macrophages promoting inflammatory damage and M2-predominant macrophages fostering cancer progression. Exosomes, as critical mediators of intercellular signaling and substance exchange, participate in pathological reshaping of macrophages during development of pulmonary inflammatory diseases and lung cancer. Specifically, in inflammatory lung diseases, exosomes promote the pro-inflammatory phenotype of macrophages, suppress the anti-inflammatory phenotype, and subsequently, exosomes released by reshaped macrophages further exacerbate inflammatory damage. In cancer, exosomes promote pro-tumor tumor-associated macrophages (TAMs); inhibit anti-tumor TAMs; and exosomes released by TAMs further enhance tumor proliferation, metastasis, and resistance to chemotherapy. Simultaneously, exosomes exhibit a dual role, holding the potential to transmit immune-modulating molecules and load therapeutic agents and offering prospects for restoring immune dysregulation in macrophages during chronic inflammatory lung diseases and lung cancer. In chronic inflammatory lung diseases, this is manifested by exosomes reshaping anti-inflammatory macrophages, inhibiting pro-inflammatory macrophages, and alleviating inflammatory damage post-reshaping. In lung cancer, exosomes reshape anti-tumor macrophages, inhibit pro-tumor macrophages, and reshaped macrophages secrete exosomes that suppress lung cancer development. Looking ahead, efficient and targeted exosome-based therapies may emerge as a promising direction for treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Jianxiong Kang
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peiyan Hua
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaojing Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bin Wang
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Huang Q, Zhong X, Li J, Hu R, Yi J, Sun J, Xu Y, Zhou X. Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomed Pharmacother 2024; 173:116409. [PMID: 38460375 DOI: 10.1016/j.biopha.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant liver cancer characterized by aggressive progression, unfavorable prognosis, and an increasing global health burden. Therapies that precisely target immunological checkpoints and immune cells have gained significant attention as possible therapeutics in recent years. In truth, the efficacy of immunotherapy is heavily contingent upon the tumor microenvironment (TME). Recent studies have indicated that exosomes serve as a sophisticated means of communication among biomolecules, executing an essential part in the TME of immune suppression. Exosomal non-coding RNAs (ncRNAs) can induce the activation of tumor cells and immunosuppressive immune cells that suppress the immune system, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), CD+8 T cells, regulatory T cells (Tregs), and regulatory B cells (Bregs). This cell-cell crosstalk triggered by exosomal ncRNAs promotes tumor proliferation and metastasis, angiogenesis, malignant phenotype transformation, and drug resistance. Hence, it is imperative to comprehend how exosomal ncRNAs regulate tumor cells or immune cells within the TME to devise more comprehensive and productive immunotherapy programs. This study discusses the features of exosomal ncRNAs in HCC and how the activation of the exosomes redefines the tumor's immunosuppressive microenvironment, hence facilitating the advancement of HCC. Furthermore, we also explored the potential of exosomal ncRNAs as a viable biological target or natural vehicle for HCC therapy.
Collapse
Affiliation(s)
- Qi Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jing Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Rui Hu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jinyu Yi
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China.
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| |
Collapse
|
22
|
Afra F, Eftekhar SP, Farid AS, Ala M. Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:215-240. [PMID: 39461753 DOI: 10.1016/bs.pmbts.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
With the rapid advancement in immunotherapy, cancer immune resistance has become more evident, which demands new treatment approaches to achieve greater efficacy. Non-coding RNAs (ncRNAs) are a heterogeneous group of RNAs that are not translated to proteins but instead regulate different stages of gene expression. Recent studies have increasingly supported the critical role of ncRNAs in immune cell-cancer cell cross-talk, and numerous ncRNAs have been implicated in the immune evasion of cancer cells. Cancer cells take advantage of ncRNAs to modulate several signaling pathways and upregulate the expression of immune checkpoints and anti-inflammatory mediators, thereby dampening the anti-tumor response of M1 macrophages, dendritic cells, cytotoxic T cells, and natural killer cells or potentiating the immunosuppressive properties of M2 macrophages, regulatory T cells, and myeloid-derived suppressive cells. Upregulation of immunosuppressive ncRNAs or downregulation of immunogenic ncNRAs is a major driver of resistance to immune checkpoint inhibitors, cancer vaccines, and other means of cancer immunotherapy, making ncRNAs ideal targets for treatment. In addition, ncRNAs released by cancer cells have been demonstrated to possess prognostic values for patients who undergo cancer immunotherapy. Future clinical trials are urged to consider the potential of ncRNAs in cancer immunotherapy.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Dai L, Pan D, Jin J, Lv W. A novel immune-related lncRNA signature predicts the prognosis and immune landscape in ccRCC. Aging (Albany NY) 2024; 16:5149-5162. [PMID: 38484738 PMCID: PMC11006461 DOI: 10.18632/aging.205633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND As one of the most common tumors, the pathogenesis and progression of clear cell renal cell carcinoma (ccRCC) in the immune microenvironment are still unknown. METHODS The differentially expressed immune-related lncRNA (DEirlncRNA) was screened through co-expression analysis and the limma package of R, which based on the ccRCC project of the TCGA database. Then, we designed the risk model by irlncRNA pairs. In RCC patients, we have compared the area under the curve, calculated the Akaike Information Criterion (AIC) value of the 5-year receiver operating characteristic curve, determined the cut-off point, and established the optimal model for distinguishing the high-risk group from the low-risk group. We used the model for immune system assessment, immune point detection and drug sensitivity analysis after verifying the feasibility of the above model through clinical features. RESULTS In our study, 1541 irlncRNAs were included. 739 irlncRNAs were identified as DEirlncRNAs to construct irlncRNA pairs. Then, 38 candidate DEirlncRNA pairs were included in the best risk assessment model through improved LASSO regression analysis. As a result, we found that in addition to age and gender, T stage, M stage, N stage, grade and clinical stage are significantly related to risk. Moreover, univariate and multivariate Cox regression analysis results reveals that in addition to gender, age, grade, clinical stage and risk score are independent prognostic factors. The results show that patients in the high-risk group are positively correlated with tumor infiltrating immune cells when the above model is applied to the immune system. But they are negatively correlated with endothelial cells, macrophages M2, mast cell activation, and neutrophils. In addition, the risk model was positively correlated with overexpressed genes (CTLA, LAG3 and SETD2, P<0.05). Finally, risk models can also play as an important role in predicting the sensitivity of targeted drugs. CONCLUSIONS The new risk model may be a new method to predict the prognosis and immune status of ccRCC.
Collapse
Affiliation(s)
- Longlong Dai
- Department of Urology, Yongjia People’s Hospital, Wenzhou 325100, China
| | - Daen Pan
- Department of Urology, Yongjia People’s Hospital, Wenzhou 325100, China
| | - Jiafei Jin
- Department of Urology, Yongjia People’s Hospital, Wenzhou 325100, China
| | - Wenhui Lv
- Department of Urology, Yongjia People’s Hospital, Wenzhou 325100, China
| |
Collapse
|
24
|
Ma H, Yao W, Peng B, Liu X, Chen J, Lin Y, Di T, Li P, He X. Mercury-containing preparations attenuate neutrophil extracellular trap formation in mice and humans through inhibiting the ERK1/2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117421. [PMID: 37979820 DOI: 10.1016/j.jep.2023.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neutrophil extracellular trap (NET) formation plays a crucial role in wound healing disorders, including chronic skin ulcers and diabetic foot ulcers (DFUs). Over the years, traditional Chinese topical medications, such as Cinnabar (composed of HgS and soluble mercury salt) and hydrargyria oxydum rubrum (containing HgO and soluble mercury salt), have been utilized for treating these ailments. Nevertheless, the fundamental processes remain mostly ambiguous. AIM OF THE STUDY This study sought to investigate the potential effects of topical mercury-containing preparations on the process of NET formation. MATERIALS AND METHODS Neutrophils isolated from healthy individuals and mouse models of type 1 and type 2 diabetes were cultured with phorbol 12-myristate 13-acetate (PMA), both with and without the mercury-containing preparations (MCP). The formation of NETs was monitored using confocal and scanning electron microscopes. Immunofluorescence and fluorescent probes were employed to assess the levels of citrulline histone H3 (Cit-H3) and intracellular reactive oxygen species (ROS), respectively. The impact of MCP extracts on cytokine expression, peptidylarginine deiminase 4 (PAD4), and myeloperoxidase (MPO) was measured through Luminex and ELISA assays. Phagocytosis of human neutrophils was analyzed using Flow Cytometry. Finally, the phosphorylation levels of ERK were detected by western blotting. RESULTS Treatment with MCP led to a reduction in PAD4, Cit-H3, and MPO expressions in neutrophils, consequently inhibiting PMA-induced NET formation. MCP treatment also dampened ERK1/2 activation in neutrophils. Furthermore, MCP exhibited inhibitory effects on the secretion of the cytokine IL-8 and ROS production while enhancing neutrophil phagocytosis. CONCLUSION Our findings suggest that MCP can mitigate the release of NETs, likely by suppressing the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Wentao Yao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Bing Peng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Jia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China.
| | - Xiujuan He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China.
| |
Collapse
|
25
|
Wang Y, Lu X, Lu J, Hernigou P, Jin F. The role of macrophage polarization in tendon healing and therapeutic strategies: Insights from animal models. Front Bioeng Biotechnol 2024; 12:1366398. [PMID: 38486869 PMCID: PMC10937537 DOI: 10.3389/fbioe.2024.1366398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Tendon injuries, a common musculoskeletal issue, usually result in adhesions to the surrounding tissue, that will impact functional recovery. Macrophages, particularly through their M1 and M2 polarizations, play a pivotal role in the inflammatory and healing phases of tendon repair. In this review, we explore the role of macrophage polarization in tendon healing, focusing on insights from animal models. The review delves into the complex interplay of macrophages in tendon pathology, detailing how various macrophage phenotypes contribute to both healing and adhesion formation. It also explores the potential of modulating macrophage activity to enhance tendon repair and minimize adhesions. With advancements in understanding macrophage behavior and the development of innovative biomaterials, this review highlights promising therapeutic strategies for tendon injuries.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, China
- Shanghai Technology Innovation Center of Orthopedic Biomaterials, Shanghai, China
| | - Jianxi Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, China
- Shanghai Technology Innovation Center of Orthopedic Biomaterials, Shanghai, China
| | - Philippe Hernigou
- University Paris East, Orthopedic Hospital Geoffroy Saint Hilaire, Paris, France
| | - Fangchun Jin
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Shin JJ, Park J, Shin HS, Arab I, Suk K, Lee WH. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:2670. [PMID: 38473915 DOI: 10.3390/ijms25052670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
27
|
Xie S, Li X, Yan J, Yu H, Chen S, Chen K. Knockdown of liver cancer cell-secreted exosomal PSMA5 controls macrophage polarization to restrain cancer progression by blocking JAK2/STAT3 signaling. Immun Inflamm Dis 2024; 12:e1146. [PMID: 38415977 PMCID: PMC10836037 DOI: 10.1002/iid3.1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 02/29/2024] Open
Abstract
INTRODUCTION Tumor-associated macrophages, a major component of the tumor microenvironment, undergo polarization into M2 macrophages (M2), and thereby exert an immunosuppressive effect to induce cancer metastasis. This study strives to uncover a molecular mechanism underlying this event in hepatocellular carcinoma (HCC). METHODS Proteasome subunit alpha 5 (PSMA5) expression in liver hepatocellular carcinoma (LIHC) tissues and its association with LIHC patients were predicted using StarBase. PSMA5 level in human HCC cells was manipulated via transfection. Exosomes were isolated from HCC cells, and internalized into macrophages which were cocultured with HCC cells. Exosome internalization was observed after fluorescence labeling. HCC cell migration and invasion were evaluated by wound healing and Transwell assays. Xenograft assay was performed to investigate the role of PSMA5 in in vitro tumorigenesis. M2 polarization was assessed by enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. PSMA5 expression in exosomes and Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) activation in macrophages and tumors were detected by Western blot analysis. RESULTS High PSMA5 expression was observed in LIHC tissues and associated with compromised survival of LIHC patients. PSMA5 knockdown inhibited HCC cell migration and invasion. PSMA5 knockdown in HCC cells downregulated PSMA5 level in exosomes from these HCC cells. HCC cell-isolated exosomes were successfully internalized into macrophages, and facilitated M2 polarization and JAK2/STAT3 pathway activation. HCC cell-secreted exosomal PSMA5 knockdown inhibited the exosome-induced effect on macrophages, and attenuated the promotion induced by exosome-treated macrophages on HCC cell migration/invasion and tumorigenesis along with in vivo M2 polarization and JAK2/STAT3 pathway activation. CONCLUSION HCC cell-secreted exosomal PSMA5 knockdown hinders M2 polarization to suppress cancer progression by restraining JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Shujie Xie
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Xiang Li
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Jia Yan
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Hua Yu
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Shuhuai Chen
- Department of Hepatobiliary and Pancreatic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| | - Kana Chen
- Department of Plastic SurgeryNingbo No.2 HospitalNingboZhejiangChina
| |
Collapse
|
28
|
He X, Wang B, Deng W, Cao J, Tan Z, Li X, Guan F. Impaired bisecting GlcNAc reprogrammed M1 polarization of macrophage. Cell Commun Signal 2024; 22:73. [PMID: 38279161 PMCID: PMC10811823 DOI: 10.1186/s12964-023-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/09/2023] [Indexed: 01/28/2024] Open
Abstract
The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Bowen Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Wenli Deng
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jinhua Cao
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
29
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
30
|
Jia D, He Y, Zhang Y. Long Non-coding RNAs Regulating Macrophage Polarization in Liver Cancer. Curr Pharm Des 2024; 30:2120-2128. [PMID: 38859791 DOI: 10.2174/0113816128311861240523075218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
Primary liver cancer is the second leading cause of cancer-related death worldwide. At present, liver cancer is often in an advanced stage once diagnosed, and treatment effects are generally poor. Therefore, there is an urgent need for other powerful treatments. Macrophages are an important component of the tumor microenvironment, and macrophage polarization is crucial to tumor proliferation and differentiation. Regulatory interactions between macrophage subtypes, such as M1 and M2, lead to a number of clinical outcomes, including tumor progression and metastasis. So, it is important to study the drivers of this process. Long non-coding RNA has been widely proven to be of great value in the early diagnosis and treatment of tumors. Many studies have shown that long non-coding RNA participates in macrophage polarization through its ability to drive M1 or M2 polarization, thereby participating in the occurrence and development of liver cancer. In this article, we systematically elaborated on the long non-coding RNAs involved in the polarization of liver cancer macrophages, hoping to provide a new idea for the early diagnosis and treatment of liver cancer. Liver cancer- related studies were retrieved from PubMed. Based on our identification of lncRNA and macrophage polarization as powerful therapies for liver cancer, we analyzed research articles in the PubMed system in the last ten years on the crosstalk between lncRNA and macrophage polarization. By targeting M1/M2 macrophage polarization, lncRNA may promote or suppress liver cancer, and the references are determined primarily by the article's impact factor. Consequently, the specific mechanism of action between lncRNA and M1/M2 macrophage polarization was explored, along with the role of their crosstalk in the occurrence, proliferation, and metastasis of liver cancer. LncRNA is bidirectionally expressed in liver cancer and can target macrophage polarization to regulate tumor behavior. LncRNA mainly functions as ceRNA and can participate in the crosstalk between liver cancer cells and macrophages through extracellular vesicles. LncRNA can potentially participate in the immunotherapy of liver cancer by targeting macrophages and becoming a new biomolecular marker of liver cancer.
Collapse
Affiliation(s)
- Dengke Jia
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yaping He
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yawu Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Hepato-Biliary-Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou 730000, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| |
Collapse
|
31
|
Ye H, Yu W, Li Y, Bao X, Ni Y, Chen X, Sun Y, Chen A, Zhou W, Li J. AIM2 fosters lung adenocarcinoma immune escape by modulating PD-L1 expression in tumor-associated macrophages via JAK/STAT3. Hum Vaccin Immunother 2023; 19:2269790. [PMID: 37877820 PMCID: PMC10601527 DOI: 10.1080/21645515.2023.2269790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023] Open
Abstract
This work was devised to discuss the effect of AIM2 on the immunosuppression of LUAD tumors, as well as its molecular mechanism. An allograft mouse model was built. Mouse macrophages were isolated and collected. The infiltration level of Mø and expression of M1 Mø, M2 Mø markers, and PD-L1 were assayed by IHC and flow cytometry. Expression levels of M1 Mø and M2 Mø marker genes and PD-L1 were detected by qPCR. The expression of proteins linked with JAK/STAT3 was tested by western blot. CD8+T cells and NK cells were activated in vitro and co-cultured with mouse macrophages, and their cytotoxicity was detected by LDH method. The proportion of CD206+PD-L1+ cells and the activation and proliferation of CD8+T cells were assayed by flow cytometry. Multicolor immunofluorescence was utilized to assay the co-localization of proteins. AIM2 demonstrated a high expression in LUAD, exhibiting a conspicuous positive correlation with the expression of the M2 Mø markers as well as PD-L1. Expression of M1 markers was upregulated after knockdown of AIM2, while M2 markers expression and PD-L1 were downregulated, and the colocalization of proteins linked with PD-L1 and M2 Mø was decreased. The infiltration and cytotoxicity of CD8+T cells and NK cells increased after silencing AIM2. After the knockdown of AIM2, which was enriched in the JAK/STAT3 pathway, the phosphorylation levels of JAK1, JAK2, and STAT3 were reduced, the immune infiltration level of CD8+T cells increased, and the co-localization level of PD-L1 and PD-1 dropped. The activity and proliferation level of CD8+T cells were increased with the reduced PD-1 expression. AIM2 fosters M2 Mø polarization and PD-L1 expression via the JAK/STAT3 pathway. Moreover, AIM2 promotes the immune escape of LUAD via the PD-1/PD-L1 axis. Our work may blaze a trail for the clinical treatment of LUAD.
Collapse
Affiliation(s)
- Hua Ye
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Yu
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yunlei Li
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqiong Bao
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yangyang Ni
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangxiang Chen
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yangjie Sun
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ali Chen
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weilong Zhou
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jifa Li
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Arab I, Park J, Shin JJ, Shin HS, Suk K, Lee WH. Macrophage lncRNAs in cancer development: Long-awaited therapeutic targets. Biochem Pharmacol 2023; 218:115890. [PMID: 37884197 DOI: 10.1016/j.bcp.2023.115890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
In the tumor microenvironment, the interplay among macrophages, cancer cells, and endothelial cells is multifaceted. Tumor-associated macrophages (TAMs), which often exhibit an M2 phenotype, contribute to tumor growth and angiogenesis, while cancer cells and endothelial cells reciprocally influence macrophage behavior. This complex interrelationship highlights the importance of targeting these interactions for the development of novel cancer therapies aimed at disrupting tumor progression and angiogenesis. Accumulating evidence underscores the indispensable involvement of lncRNAs in shaping macrophage functionality and contributing to the development of cancer. Animal studies have further validated the therapeutic potential of manipulating macrophage lncRNA activity to ameliorate disease severity and reduce morbidity rates. This review provides a survey of our current understanding of macrophage-associated lncRNAs, with a specific emphasis on their molecular targets and their regulatory impact on cancer progression. These lncRNAs predominantly govern macrophage polarization, favoring the dominance of M2 macrophages or TAMs. Exosomes or extracellular vesicles mediate lncRNA transfer between macrophages and cancer cells, affecting cellular functions of each other. Moreover, this review presents therapeutic strategies targeting cancer-associated lncRNAs. The insights and findings presented in this review pertaining to macrophage lncRNAs can offer valuable information for the development of treatments against cancer.
Collapse
Affiliation(s)
- Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
33
|
Lu Y, Chen Q, Zhu S, Gong X. Hypoxia promotes immune escape of pancreatic cancer cells by lncRNA NNT-AS1/METTL3-HuR-mediated ITGB1 m 6A modification. Exp Cell Res 2023; 432:113764. [PMID: 37659467 DOI: 10.1016/j.yexcr.2023.113764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Pancreatic cancer (PC) cell immune escape is a crucial element in PC malignant development. Some previous studies have reported that LncRNA NNT-AS1 played a carcinogenic role in various tumors. However, the effect of lncRNA NNT-AS1 in PC cell immune escape remains unclear. To evaluate PC cell immune escape, PC cells were co-cultured with CD8+ T cells under a hypoxic condition. PC cell proliferation and migration were evaluated using the colony formation assay and transwell assay. CD8+ T cell proliferation and aoptosis were measured using the carboxy fluorescein diacetate succinimidyl ester (CFSE) assay and flow cytometry. The secretion of antitumor cytokines was assessed using enzyme-linked immunosorbent assay (ELISA). The molecular interactions were analyzed using chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), or dual-luciferase reporter gene assays. A tumor xenograft model was established to evaluate the effects of lncRNA NNT-AS1 on PC in vivo. It was found that lncRNA NNT-AS1 was highly expressed in PC, and its silencing inhibited hypoxia-induced PC cell growth and immune escape in vivo and in vitro. Mechanically, HIF-1α transcriptionally activated NNT-AS1 expression and NNT-AS1 increased ITGB1 stability and expression in a METTL3-HuR dependent manner. ITGB1 overexpression reversed the inhibitory effects of NNT-AS1 knockdown on hypoxia-induced PC cell immune escape. In conclusion, Hypoxia promoted PC cell immune escape through lncRNA NNT-AS1/METTL3-HuR-mediated m6A modification to increase ITGB1 expression, which provided a theoretical foundation and a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Yebin Lu
- Pancreas Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Qizhen Chen
- Pancreas Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Shuai Zhu
- Pancreas Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xuejun Gong
- Pancreas Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
34
|
Huang J, Wu Q, Geller DA, Yan Y. Macrophage metabolism, phenotype, function, and therapy in hepatocellular carcinoma (HCC). J Transl Med 2023; 21:815. [PMID: 37968714 PMCID: PMC10652641 DOI: 10.1186/s12967-023-04716-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
The pivotal role of the tumor microenvironment (TME) in the initiation and advancement of hepatocellular carcinoma (HCC) is widely acknowledged, as it fosters the proliferation and metastasis of HCC cells. Within the intricate TME of HCC, tumor-associated macrophages (TAMs) represent a significant constituent of non-malignant cells. TAMs engage in direct communication with cancer cells in HCC, while also exerting influence on other immune cells to adopt a tumor-supportive phenotype that facilitates tumor progression. Among the multifaceted mechanisms at play, the metabolic reprogramming of both tumor cells and macrophages leads to phenotypic alterations and functional modifications in macrophages. This comprehensive review elucidates the intricate interplay between cellular metabolism and macrophage phenotype/polarization, while also providing an overview of the associated signaling molecules and potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Jingquan Huang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - David A Geller
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
35
|
Zhang R, Li Q, Yu X, Hou Y, Yan L, Gao Y, Ji L, Zhang X, Fang M, Huang L, Yu Z, Gao Y, Li M. Integrating bulk and single-cell RNA sequencing data to establish necroptosis-related lncRNA risk model and analyze the immune microenvironment in hepatocellular carcinoma. Heliyon 2023; 9:e22083. [PMID: 38034714 PMCID: PMC10685373 DOI: 10.1016/j.heliyon.2023.e22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Background The increasing evidence suggests that necroptosis mediates many behaviors of tumors, as well as the regulation of the tumor microenvironment. Long non-coding RNAs (lncRNAs) are involved in a variety of regulatory processes during tumor development and are significantly associated with patient prognosis. It suggests that necroptosis-related lncRNAs (NRlncRNAs) may serve as biomarkers for the prognosis of hepatocellular carcinoma (HCC). Methods lncRNA expression profiles of HCC were obtained from TCGA database. LncRNAs associated with necroptosis were extracted using correlation analysis. Prognostic models were constructed based on least absolute shrinkage and selection operator algorithm (LASSO) and multivariate Cox regression analysis. The differences of tumor microenvironment between high-risk and low-risk groups were further analyzed. Single-cell RNA sequencing data of HCC was performed to assess the enrichment of necroptosis-related genes in immune cell subsets. Finally, real-time RT-PCR was used to detect the prognosis-related lncRNAs expression in different HCC cell lines. Results We constructed a prognostic signature based on 8 NRlncRNAs, which also showed good predictive accuracy. The model showed that the prognosis of patients with high-risk score was significantly worse than that of patients with low-risk score (P < 0.05). Combined with the clinical characteristics and risk score of HCC, Nomogram was drawn for reference in clinical practice. In addition, immune cell infiltration analysis and single cell RNA sequencing analysis showed that a low level of immune infiltration was observed in patients at high risk and that there was a significant correlation between NRlncRNAs and macrophages. The results of RT-qPCR also showed that 8 necroptosis-related lncRNAs were highly expressed in HCC cell lines and human liver cancer tissues. Conclusion This prognostic signature based on the necroptosis-related lncRNAs may provide meaningful clinical insights for the prognosis and immunotherapy responses in patients with HCC.
Collapse
Affiliation(s)
- Rongjie Zhang
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Qian Li
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Xiaoxiao Yu
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Yiwen Hou
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Liang Yan
- General Surgery Department of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Yating Gao
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Longshan Ji
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Xin Zhang
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Miao Fang
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Lingying Huang
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Yueqiu Gao
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, China
| | - Man Li
- Laboratory of cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
36
|
Han L, Wang Z, Li C, Fan M, Wang Y, Sun G, Dai G. Functional identification and prediction of lncRNAs in esophageal cancer. Comput Biol Med 2023; 165:107205. [PMID: 37611425 DOI: 10.1016/j.compbiomed.2023.107205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 08/25/2023]
Abstract
Esophageal cancer is a highly lethal malignancy with poor prognosis, and the identification of molecular biomarkers is crucial for improving diagnosis and treatment. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the development and progression of esophageal cancer. However, due to the time cost of biological experiments, only a small number of lncRNAs related to esophageal cancer have been discovered. Currently, computational methods have emerged as powerful tools for identifying and characterizing lncRNAs, as well as predicting their potential functions. Therefore, this article proposes a transformer-based method for identifying esophageal cancer-related lncRNAs. Experimental results show that the AUC and AUPR of this method are superior to other comparison methods, with an AUC of 0.87 and an AUPR of 0.83, and the identified lncRNA targets are closely associated with esophageal cancer. We focus on the role of esophageal cancer-related lncRNAs in the immune microenvironment, and fully explore the functions of the target genes regulated by lncRNAs. Enrichment analysis shows that the predicted target genes are related to multiple pathways involved in the occurrence, development, and prognosis of esophageal cancer. This not only demonstrates the effectiveness of the method but also indicates the accuracy of the prediction results.
Collapse
Affiliation(s)
- Lu Han
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Zhikuan Wang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Congyong Li
- Medical School of Chinese PLA, Beijing, China; Sixth Health Care Department, The Second Medical Center of PLA General Hospital, Beijing, China
| | - Mengjiao Fan
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Yanrong Wang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Guanghai Dai
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
37
|
Purnama A, Lukman K, Rudiman R, Prasetyo D, Fuadah Y, Nugraha P, Candrawinata VS. The prognostic value of COX-2 in predicting metastasis of patients with colorectal cancer: A systematic review and meta analysis. Heliyon 2023; 9:e21051. [PMID: 37876424 PMCID: PMC10590949 DOI: 10.1016/j.heliyon.2023.e21051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction COX-2 is overexpressed in colorectal tumour tissue relative to the healthy colonic mucosa, thus we investigated the prognostic significance of COX-2 in determining the metastasis of patients with colorectal cancer. Methods PubMed, EMBASE, and Cochrane Library were searched using the following terms colorectal cancer, colon cancer, rectal cancer, colorectal carcinoma, Cyclooxygenase-2, and prognosis to identify articles providing information on the prognostic importance of COX-2 in adult patients with metastatic colorectal cancer. Review papers, non-research letters, comments, case reports, animal studies, original research with sample sizes of fewer than 20, case reports and series, non-English language articles, and pediatric studies (those under the age of 17) were excluded. The Newcastle Ottawa Scale (NOS) was used to assess the credibility of the included studies. The full texts were evaluated and this study complied with the terms of the local protocol and the Helsinki Declaration. Results Eight relevant studies were included in this review involving 937 patients. The meta-analysis revealed that COX-2 expression is associated with lymph node invasion (RR 1.85 [1.21, 2.83], P = 0.005, I2 = 88 %) and liver metastasis (RR 4.90 [1.12, 21.57], P = 0.04, I2 = 42 %), but not with venous dissemination (RR 1.48 [0.72, 3.03], P = 0.28, I2 = 87 %). Conclusion COX-2 expression is associated with lymph node invasion in colorectal cancer but further studies are required to determine the prognostic significance of COX-2 expression in determining metastasis status for colorectal cancer patients.
Collapse
Affiliation(s)
- Andriana Purnama
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Kiki Lukman
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Reno Rudiman
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Dwi Prasetyo
- Division of Pediatric Gastroenterology, Department of Pediatric, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Yoni Fuadah
- Department of Forensic and Medicolegal, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Prapanca Nugraha
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | | |
Collapse
|
38
|
Peng W, Xie Y, Liu Y, Xu J, Yuan F, Li C, Qin T, Lu H, Duan C, Hu J. Targeted delivery of CD163 + macrophage-derived small extracellular vesicles via RGD peptides promote vascular regeneration and stabilization after spinal cord injury. J Control Release 2023; 361:750-765. [PMID: 37586563 DOI: 10.1016/j.jconrel.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Targeted delivery of small extracellular vesicles (sEVs) with low immunogenicity and fewer undesirable side effects are needed for spinal cord injury (SCI) therapy. Here, we show that RGD (Arg-Gly-Asp) peptide-decorated CD163+ macrophage-derived sEVs can deliver TGF-β to the neovascular endothelial cells of the injured site and improve neurological function after SCI. CD163+ macrophages are M2 macrophages that express TGF-β and are reported to promote angiogenesis and vascular stabilization in various diseases. Enriched TGF-β EVs were crucial in angiogenesis and tissue repair. However, TGF-β also boosts the formation of fibrous or glial scars, detrimental to neurological recovery. Our results found RGD-modified CD163+ sEVs accumulated in the injured region and were taken up by neovascular endothelial cells. Furthermore, RGD-CD163+ sEVs promoted vascular regeneration and stabilization in vitro and in vivo, resulting in substantial functional recovery post-SCI. These data suggest that RGD-CD163+ sEVs may be a potential strategy for treating SCI.
Collapse
Affiliation(s)
- Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Spine Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
39
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Wang X, Wang L, Liu W, Liu X, Jia X, Feng X, Li F, Zhu R, Yu J, Zhang H, Wu H, Wu J, Wang C, Yu B, Yu X. Dose-related immunomodulatory effects of recombinant TRAIL in the tumor immune microenvironment. J Exp Clin Cancer Res 2023; 42:216. [PMID: 37605148 PMCID: PMC10464183 DOI: 10.1186/s13046-023-02795-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND In addition to specifically inducing tumor cell apoptosis, recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has also been reported to influence the cancer immune microenvironment; however, its underlying effects and mechanisms remain unclear. Investigating the immunomodulatory effects and mechanisms of recombinant TRAIL in the tumor microenvironment (TME) may provide an important perspective and facilitate the exploration of novel TRAIL strategies for tumor therapy. METHODS Immunocompetent mice with different tumors were treated with three doses of recombinant TRAIL, and then the tumors were collected for immunological detection and mechanistic investigation. Methodological approaches include flow cytometry analysis and single-cell sequencing. RESULTS In an immunocompetent mouse model, recombinant soluble mouse TRAIL (smTRAIL) had dose-related immunomodulatory effects. The optimal dose of smTRAIL (2 mg/kg) activated innate immune cells and CD8+ T cells, whereas higher doses of smTRAIL (8 mg/kg) promoted the formation of a tumor-promoting immune microenvironment to counteract the apoptotic effects on tumor cells. The higher doses of smTRAIL treatment promoted M2-like macrophage recruitment and polarization and increased the production of protumor inflammatory cytokines, such as IL-10, which deepened the suppression of natural killer (NK) cells and CD8+ T cells in the tumor microenvironment. By constructing an HU-HSC-NPG.GM3 humanized immune system mouse model, we further verified the immunomodulatory effects induced by recombinant soluble human TRAIL (shTRAIL) and found that combinational administration of shTRAIL and trabectedin, a macrophage-targeting drug, could remodel the tumor immune microenvironment, further enhance antitumor immunity, and strikingly improve antitumor effects. CONCLUSION Our results highlight the immunomodulatory role of recombinant TRAIL and suggest promising therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Xupu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyuan Jia
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Rui Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiahao Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
41
|
Zhang YC, Zhang YT, Wang Y, Zhao Y, He LJ. What role does PDL1 play in EMT changes in tumors and fibrosis? Front Immunol 2023; 14:1226038. [PMID: 37649487 PMCID: PMC10463740 DOI: 10.3389/fimmu.2023.1226038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Yun-Chao Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Li-Jie He
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
42
|
Zhan DT, Xian HC. Exploring the regulatory role of lncRNA in cancer immunity. Front Oncol 2023; 13:1191913. [PMID: 37637063 PMCID: PMC10448763 DOI: 10.3389/fonc.2023.1191913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Imbalanced immune homeostasis in cancer microenvironment is a hallmark of cancer. Increasing evidence demonstrated that long non-coding RNAs (lncRNAs) have emerged as key regulatory molecules in directly blocking the cancer immunity cycle, apart from activating negative regulatory pathways for restraining tumor immunity. lncRNAs reshape the tumor microenvironment via the recruitment and activation of innate and adaptive lymphoid cells. In this review, we summarized the versatile mechanisms of lncRNAs implicated in cancer immunity cycle, including the inhibition of antitumor T cell activation, blockade of effector T cell recruitment, disruption of T cell homing, recruitment of immunosuppressive cells, and inducing an imbalance between antitumor effector cells (cytotoxic T lymphocytes, M1 macrophages, and T helper type 1 cells) versus immunosuppressive cells (M2 macrophages, T helper type 2 cells, myeloid derived suppressor cells, and regulatory T cells) that infiltrate in the tumor. As such, we would highlight the potential of lncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Dan-ting Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Hong-chun Xian
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Xia J, Liu Y, Ma Y, Yang F, Ruan Y, Xu JF, Pi J. Advances of Long Non-Coding RNAs as Potential Biomarkers for Tuberculosis: New Hope for Diagnosis? Pharmaceutics 2023; 15:2096. [PMID: 37631310 PMCID: PMC10458399 DOI: 10.3390/pharmaceutics15082096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
44
|
Liu Y, Lyu Y, Zhu L, Wang H. Role of TRP Channels in Liver-Related Diseases. Int J Mol Sci 2023; 24:12509. [PMID: 37569884 PMCID: PMC10420300 DOI: 10.3390/ijms241512509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The liver plays a crucial role in preserving the homeostasis of an entire organism by metabolizing both endogenous and exogenous substances, a process that relies on the harmonious interactions of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells (KCs), and vascular endothelial cells (ECs). The disruption of the liver's normal structure and function by diverse pathogenic factors imposes a significant healthcare burden. At present, most of the treatments for liver disease are palliative in nature, rather than curative or restorative. Transient receptor potential (TRP) channels, which are extensively expressed in the liver, play a crucial role in regulating intracellular cation concentration and serve as the origin or intermediary stage of certain signaling pathways that contribute to liver diseases. This review provides an overview of recent developments in liver disease research, as well as an examination of the expression and function of TRP channels in various liver cell types. Furthermore, we elucidate the molecular mechanism by which TRP channels mediate liver injury, liver fibrosis, and hepatocellular carcinoma (HCC). Ultimately, the present discourse delves into the current state of research and extant issues pertaining to the targeting of TRP channels in the treatment of liver diseases and other ailments. Despite the numerous obstacles encountered, TRP channels persist as an extremely important target for forthcoming clinical interventions aimed at treating liver diseases.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Lijuan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| |
Collapse
|
45
|
Chen W, Zhang Q, Dai X, Chen X, Zhang C, Bai R, Chen Y, Zhang K, Duan X, Qiao Y, Zhao J, Tian F, Liu K, Dong Z, Lu J. PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription. Oncogene 2023; 42:2456-2470. [PMID: 37400530 DOI: 10.1038/s41388-023-02762-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Colorectal cancer (CRC) is a highly aggressive cancer in which metastasis plays a key role. However, the mechanisms underlying metastasis have not been fully elucidated. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a regulator of mitochondrial function, has been reported as a complicated factor in cancer. In this study, we found that PGC-1α was highly expressed in CRC tissues and was positively correlated with lymph node and liver metastasis. Subsequently, PGC-1α knockdown was shown to inhibit CRC growth and metastasis in both in vitro and in vivo studies. Transcriptomic analysis revealed that PGC-1α regulated ATP-binding cassette transporter 1 (ABCA1) mediated cholesterol efflux. Mechanistically, PGC-1α interacted with YY1 to promote ABCA1 transcription, resulting in cholesterol efflux, which subsequently promoted CRC metastasis through epithelial-to-mesenchymal transition (EMT). In addition, the study identified the natural compound isoliquiritigenin (ISL) as an inhibitor that targeted ABCA1 and significantly reduced CRC metastasis induced by PGC-1α. Overall, this study sheds light on how PGC-1α promotes CRC metastasis by regulating ABCA1-mediated cholesterol efflux, providing a basis for further research to inhibit CRC metastasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Chengjuan Zhang
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China.
| |
Collapse
|
46
|
Ge WJ, Huang H, Wang T, Zeng WH, Guo M, Ren CR, Fan TY, Liu F, Zeng X. Long non-coding RNAs in hepatocellular carcinoma. Pathol Res Pract 2023; 248:154604. [PMID: 37302276 DOI: 10.1016/j.prp.2023.154604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.
Collapse
Affiliation(s)
- Wen-Jun Ge
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Huan Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Hong Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chen-Ran Ren
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting-Yu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fang Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
47
|
Lin YR, Zheng FT, Xiong BJ, Chen ZH, Chen ST, Fang CN, Yu CX, Yang J. Koumine alleviates rheumatoid arthritis by regulating macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116474. [PMID: 37031823 DOI: 10.1016/j.jep.2023.116474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The imbalance between M1-and M2-polarized macrophages is one of the major pathophysiological changes in RA. Therefore, targeted macrophage polarization may be an effective therapy for RA. Koumine, an alkaloid monomer with the highest content and low toxicity in Gelsemium elegans Benth., has the effect of treating RA by playing an immunomodulatory role by influencing various immune cells. However, whether koumine affects macrophage polarization in RA and the associated molecular mechanisms remain unknown. AIM OF THE STUDY To investigate the mechanism of the anti-RA effect of koumine on macrophage polarization. MATERIALS AND METHODS The effect of koumine on macrophage polarization was investigated in vivo and in vitro. We first explored the effects of koumine on AIA rats and detected the levels of M1/M2 macrophage polarization markers in the spleen by western blotting. Then, we explored the regulatory effect of koumine on M1/M2 macrophage polarization and the effect on the PI3K/AKT signaling pathway in vitro. Finally, we verified the effects of koumine on macrophage polarization in CIA mice. RESULTS We found that koumine alleviated symptoms, including relieving pain, reducing joint redness and swelling in AIA rats and restoring the M1/M2 macrophage balance in vivo. Interestingly, koumine had an inhibitory effect on both M1 and M2 macrophage polarization in vitro, but it had a stronger inhibitory effect on M1 macrophage. In a mixed polarization experiment, koumine mainly inhibited M1 macrophage polarization and had an inhibitory effect on the PI3K/AKT signaling pathway. Finally, we found that koumine had therapeutic effects on CIA mice, regulated macrophage polarization and inhibited the PI3K/AKT signaling pathway. CONCLUSIONS Our results reveal that koumine regulates macrophage polarization through the PI3K/AKT signaling pathway. This may be one of the important mechanisms of its anti-RA effect, which provides a theoretical and scientific basis for the possible clinical application of koumine.
Collapse
Affiliation(s)
- Ya-Rong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Feng-Ting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Bo-Jun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ze-Hong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| | - Shi-Ting Chen
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Chao-Nan Fang
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
48
|
Li L, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmacother 2023; 161:114504. [PMID: 37002579 DOI: 10.1016/j.biopha.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Macrophages are potent immune effector cells in innate immunity and exert dual-effects in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) make up a significant portion of TME immune cells. Similar to M1/M2 macrophages, TAMs are also highly plastic, and their functions are regulated by cytokines, chemokines and other factors in the TME. The metabolic changes in TAMs are significantly associated with polarization towards a protumour or antitumour phenotype. The metabolites generated via TAM metabolic reprogramming in turn promote tumor progression and immune tolerance. In this review, we explore the metabolic reprogramming of TAMs in terms of energy, amino acid and fatty acid metabolism and the potential roles of these changes in immune suppression.
Collapse
Affiliation(s)
- Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
49
|
Hu Q, Li Y, Li D, Yuan Y, Wang K, Yao L, Cheng Z, Han T. Amino acid metabolism regulated by lncRNAs: the propellant behind cancer metabolic reprogramming. Cell Commun Signal 2023; 21:87. [PMID: 37127605 PMCID: PMC10152737 DOI: 10.1186/s12964-023-01116-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023] Open
Abstract
Metabolic reprogramming is one of the main characteristics of cancer cells and plays pivotal role in the proliferation and survival of cancer cells. Amino acid is one of the key nutrients for cancer cells and many studies have focused on the regulation of amino acid metabolism, including the genetic alteration, epigenetic modification, transcription, translation and post-translational modification of key enzymes in amino acid metabolism. Long non-coding RNAs (lncRNAs) are composed of a heterogeneous group of RNAs with transcripts of more than 200 nucleotides in length. LncRNAs can bind to biological molecules such as DNA, RNA and protein, regulating the transcription, translation and post-translational modification of target genes. Now, the functions of lncRNAs in cancer metabolism have aroused great research interest and significant progress has been made. This review focuses on how lncRNAs participate in the reprogramming of amino acid metabolism in cancer cells, especially glutamine, serine, arginine, aspartate, cysteine metabolism. This will help us to better understand the regulatory mechanism of cancer metabolic reprogramming and provide new ideas for the development of anti-cancer drugs. Video Abstract.
Collapse
Affiliation(s)
- Qifan Hu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City, 330006, Jiangxi, China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, 330200, Jiangxi, China
- School of Basic Medical Sciences, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Yutong Li
- Nanchang Vocational University, Nanchang City, 330500, Jiangxi, China
| | - Dan Li
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China
| | - Yi Yuan
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Keru Wang
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Lu Yao
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Zhujun Cheng
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China.
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China.
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City, 330006, Jiangxi, China.
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, 330200, Jiangxi, China.
| |
Collapse
|
50
|
Zhang R, Luo S, Zhao T, Wu M, Huang L, Zhang L, Huang Y, Gao H, Sun X, Gong T, Zhang Z. Scavenger receptor A-mediated nanoparticles target M1 macrophages for acute liver injury. Asian J Pharm Sci 2023; 18:100813. [PMID: 37274920 PMCID: PMC10238850 DOI: 10.1016/j.ajps.2023.100813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 06/07/2023] Open
Abstract
Acute liver injury (ALI) has an elevated fatality rate due to untimely and ineffective treatment. Although, schisandrin B (SchB) has been extensively used to treat diverse liver diseases, its therapeutic efficacy on ALI was limited due to its high hydrophobicity. Palmitic acid-modified serum albumin (PSA) is not only an effective carrier for hydrophobic drugs, but also has a superb targeting effect via scavenger receptor-A (SR-A) on the M1 macrophages, which are potential therapeutic targets for ALI. Compared with the common macrophage-targeted delivery systems, PSA enables site-specific drug delivery to reduce off-target toxicity. Herein, we prepared SchB-PSA nanoparticles and further assessed their therapeutic effect on ALI. In vitro, compared with human serum albumin encapsulated SchB nanoparticles (SchB-HSA NPs), the SchB-PSA NPs exhibited more potent cytotoxicity on lipopolysaccharide (LPS) stimulated Raw264.7 (LAR) cells, and LAR cells took up PSA NPs 8.79 times more than HSA NPs. As expected, the PSA NPs also accumulated more in the liver. Moreover, SchB-PSA NPs dramatically reduced the activation of NF-κB signaling, and significantly relieved inflammatory response and hepatic necrosis. Notably, the high dose of SchB-PSA NPs improved the survival rate in 72 h of ALI mice to 75%. Hence, SchB-PSA NPs are promising to treat ALI.
Collapse
Affiliation(s)
- Rongping Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Shiqing Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Mengying Wu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Lu Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|