1
|
Wang Z, Hou R, Wang S, Chen M, Zheng D, Zhang Z, Bai L, Chang C, Zhou S. FGFBP1 promotes triple-negative breast cancer progression through the KLK10-AKT axis. Biochem Biophys Res Commun 2025; 763:151763. [PMID: 40233428 DOI: 10.1016/j.bbrc.2025.151763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Triple-negative breast cancer (TNBC) is highly malignant, with rapid tumor growth and metastasis. Due to ER-, PR- and HER2-of TNBC, FGFR pathway play a pivotal role in the progression of TNBC. Its ligand FGFs is mostly released from the extracellular matrix by fibroblast growth factor binding protein 1 (FGFBP1). However, little is known about the role of FGFBP1 in TNBC. In this study, we found that overexpression of FGFBP1 significantly promoted the proliferation, migration and invasion of TNBC cells in vitro and in vivo and vice versa. Mechanistically, overexpression of FGFBP1 upregulated the expression of KLK10, thereby activating AKT, which led to proliferation, migration and invasion of TNBC cells. After knocking down FGFBP1, the expression of KLK10 was reduced and the AKT pathway was inhibited. In addition, knocking down KLK10 or inhibiting AKT pathway impaired the promotion effect of overexpression of FGFBP1 on the proliferation and invasion of TNBC cells. These results suggest that FGFBP1 may promote the proliferation, migration and invasion of TNBC cells through the KLK10-AKT axis. Targeting FGFBP1 may serve as a new therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Ruoqing Hou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Shiyu Wang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Min Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New Area, Shanghai, 200127, China
| | - Dongdong Zheng
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Zhiming Zhang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Lu Bai
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Cai Chang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China.
| | - Shichong Zhou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
2
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Yoon J, Oh DY. HER2-targeted therapies beyond breast cancer - an update. Nat Rev Clin Oncol 2024; 21:675-700. [PMID: 39039196 DOI: 10.1038/s41571-024-00924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
The receptor tyrosine-kinase HER2 (also known as ErbB2) is a well-established therapeutic target in patients with breast or gastric cancer selected on the basis of HER2 overexpression on immunohistochemistry and/or ERBB2 amplification on in situ hybridization. With advances in cancer molecular profiling and increased implementation of precision medicine approaches into oncology practice, actionable HER2 alterations in solid tumours have expanded to include ERBB2 mutations in addition to traditional HER2 overexpression and ERBB2 amplification. These various HER2 alterations can be found in solid tumour types beyond breast and gastric cancer, although few HER2-targeted therapeutic options have been established for the other tumour types. Nevertheless, during the 5 years since our previous Review on this topic was published in this journal, obvious and fruitful progress in the development of HER2-targeted therapies has been made, including new disease indications, innovative drugs with diverse mechanisms of action and novel frameworks for approval by regulatory authorities. These advances have culminated in the recent histology-agnostic approval of the anti-HER2 antibody-drug conjugate trastuzumab deruxtecan for patients with HER2-overexpressing solid tumours. In this new Review, we provide an update on the current development landscape of HER2-targeted therapies beyond breast cancer, as well as anticipated future HER2-directed treatment strategies to overcome resistance and thereby improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Jeesun Yoon
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Youn Oh
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Scheck MK, Hofheinz RD, Lorenzen S. HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments. Cancers (Basel) 2024; 16:1336. [PMID: 38611014 PMCID: PMC11010911 DOI: 10.3390/cancers16071336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Despite a decreasing incidence in Western countries, gastric cancer is among the most common cancer subtypes globally and is associated with one of the highest tumor-related mortality rates. Biomarkers play an increasing role in the treatment against gastric cancer. HER2 was one of the first biomarkers that found its way into clinical practice. Since the ToGA trial, trastuzumab has been part of first-line palliative chemotherapy in metastatic or unresectable gastric cancer. HER2-targeting agents, such as the tyrosine kinase inhibitor lapatinib, the antibody drug conjugate (ADC) trastuzumab-emtansine or dual HER2 inhibition (pertuzumab and trastuzumab), have been investigated in the second-line setting but led to negative study results. More recently, the ADC trastuzumab-deruxtecan was authorized after the failure of trastuzumab-based treatment. However, further improvements in HER2-directed therapy are required as resistance mechanisms and HER2 heterogeneity limit the existing treatment options. This review aims to give an overview of the current standard-of-care HER2-directed therapy in gastric cancer, as well as its challenges and future developments.
Collapse
Affiliation(s)
- Magdalena K. Scheck
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| | - Ralf D. Hofheinz
- Mannheim Cancer Center, Universitätsklinikum Mannheim, 68167 Mannheim, Germany;
| | - Sylvie Lorenzen
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| |
Collapse
|
5
|
Blangé D, Stroes CI, Derks S, Bijlsma MF, van Laarhoven HW. Resistance Mechanisms to HER2-Targeted Therapy in Gastroesophageal Adenocarcinoma: A Systematic Review. Cancer Treat Rev 2022; 108:102418. [DOI: 10.1016/j.ctrv.2022.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
6
|
miR-194-3p represses the docetaxel resistance in colon cancer by targeting KLK10. Pathol Res Pract 2022; 236:153962. [DOI: 10.1016/j.prp.2022.153962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
|
7
|
Shi W, Zhang G, Ma Z, Li L, Liu M, Qin L, Yu Z, Zhao L, Liu Y, Zhang X, Qin J, Ye H, Jiang X, Zhou H, Sun H, Jiao Z. Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat Commun 2021; 12:2812. [PMID: 33990570 PMCID: PMC8121856 DOI: 10.1038/s41467-021-23053-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
Trastuzumab is the backbone of HER2-directed gastric cancer therapy, but poor patient response due to insufficient cell sensitivity and drug resistance remains a clinical challenge. Here, we report that HER2 is involved in cell mitotic promotion for tumorigenesis by hyperactivating a crucial HER2-SHCBP1-PLK1 axis that drives trastuzumab sensitivity and is targeted therapeutically. SHCBP1 is an Shc1-binding protein but is detached from scaffold protein Shc1 following HER2 activation. Released SHCBP1 responds to HER2 cascade by translocating into the nucleus following Ser273 phosphorylation, and then contributing to cell mitosis regulation through binding with PLK1 to promote the phosphorylation of the mitotic interactor MISP. Meanwhile, Shc1 is recruited to HER2 for MAPK or PI3K pathways activation. Also, clinical evidence shows that increased SHCBP1 prognosticates a poor response of patients to trastuzumab therapy. Theaflavine-3, 3'-digallate (TFBG) is identified as an inhibitor of the SHCBP1-PLK1 interaction, which is a potential trastuzumab sensitizing agent and, in combination with trastuzumab, is highly efficacious in suppressing HER2-positive gastric cancer growth. These findings suggest an aberrant mitotic HER2-SHCBP1-PLK1 axis underlies trastuzumab sensitivity and offer a new strategy to combat gastric cancer.
Collapse
Affiliation(s)
- Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Gengyuan Zhang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zhijian Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Lianshun Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Miaomiao Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zeyuan Yu
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Lei Zhao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Yang Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xue Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Junjie Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Huili Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xiangyan Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Huinian Zhou
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Zuoyi Jiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China.
| |
Collapse
|
8
|
Ye J, Qi L, Liang J, Zong K, Liu W, Li R, Feng R, Zhai W. Lenvatinib induces anticancer activity in gallbladder cancer by targeting AKT. J Cancer 2021; 12:3548-3557. [PMID: 33995632 PMCID: PMC8120192 DOI: 10.7150/jca.50292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Abstract
Gallbladder cancer (GBC) is characterized by poor prognosis, early metastasis, and high recurrence rates, which seriously threaten human health. The effect of lenvatinib, a widely used drug in anti-hepatocellular carcinoma in China, on GBC progress, as well as its underlying molecular mechanism, remains unclear. Therefore, the present study investigated the effect of lenvatinib on human GBC GBC-SD and NOZ cells and its underlying mechanisms. A series of experiments, including cell proliferation, clone formation, wound healing, and cell migration and invasion assays, as well as flow cytometry, were performed to investigate the anticancer effect of lenvatinib on GBC. Western blotting was used to detect alterations in protein expression of CKD2, CKD4, cyclin D1, caspase-9, matrix metalloproteinase (MMP)-2, cell migration-inducing protein (CEMIP) and phospho-AKT (p-AKT). In addition, the chemosensitivity of lenvatinib-treated GBC cells to gemcitabine (GEM) and whether the activation of phosphoinositide 3 kinase (PI3K)/AKT contributed to the chemoresistance were determined. Finally, the anticancer effect of lenvatinib in vivo was detected using a xenograft mouse model. These data showed that treatment with lenvatinib inhibited cell proliferation, colony formation ability, migration, induced apoptosis, regulated cell cycle and resulted in decreased resistance to GEM. Treatment with lenvatinib decreased the expression of MMP-2, CEMIP, CDK2, CDK4 and cyclin D1, and increased the expression of cleaved caspase-9, which was mediated by the inactivation of the PI3K/AKT pathway in vitro. In addition, lenvatinib inhibited autophagy in GBC-SD and NOZ cells. Besides, Lenvatinib suppressed GBC cell growth in vivo by targeting p-AKT. In combination, the present data indicated that lenvatinib plays a potential anticancer role in GBC by downregulating the expression of p-AKT.
Collapse
Affiliation(s)
- Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Lei Qi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jialu Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Ke Zong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Renfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Ruo Feng
- Department of Histology and Embryology, Medical College of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
9
|
Wang Y, Wen C, Ye J, Huang H, Zhang Y, Yuan H, Yao G, Yu M. [Cytotoxic effect of photodynamic liposome gel combined with trastuzumab on drugresistant breast cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:164-172. [PMID: 33624588 DOI: 10.12122/j.issn.1673-4254.2021.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the cytotoxic effect of photodynamic therapy (PDT) combined with targeted therapy using cross-linked liposomes and gels (Ce6-PC-Tmab@A-Gel) loaded with photosensitizer Chlorin (Ce6) and the tumor-targeting drug Trastuzumab (Tmab) in drug-resistant HER2+ breast cancer cells. OBJECTIVE Ce6-PC-Tmab liposomes were prepared using the thin-film hydration method. The general properties, encapsulation efficiency and near-infrared responsivity of the nanoparticles were evaluated. Ce6-PC-Tmab@A-Gel with a shear response was prepared by freeze drying and stirring crosslinking, and its microstructure was observed with scanning electron microscopy (SEM) and the shear response evaluated using a rheometer. The inhibitory effect of Ce6-PC-Tmab@A-Gel in drug-resistant HER2+ breast cancer SK-BR-3 cells was assessed with cytotoxicity assay (MTT assay) combined with near-infrared light. OBJECTIVE The particle size of Ce6-PC-Tmab was 239.7±9.7 nm and the potential was -2.03±0.09 mV. The entrapment efficiency of Tmab by Ce6-PC-Tmab liposomes was (40.22± 0.73)%. The prepared Ce6-PC-Tmab@A-Gel had a good shear response with excellent drug release characteristics under nearinfrared light, and increased intensity and duration of near-infrared light exposure enhanced Tmab release from the gel. Ce6-PC-Tmab@A-Gel was stable at room temperature and in a simulated tumor microenvironment (pH 6.25). Cytotoxicity assay (MTT) showed that Ce6-PC-Tmab@A-Gel combined with near-infrared light resulted in a survival rate of (31.37±1.73)% in SKBR-3 cells, much lower than that in the control group and other treatment groups (P < 0.01); the combined treatment also had a high efficiency of ROS production, and ROS release reached (22.36 ± 0.11)% after 2 min of near-infrared light exposure. OBJECTIVE The prepared Ce6-PC-Tmab@A-Gel has good near-infrared light response release characteristics to ensure effective targeted therapy with Tmab. The injectable gel system potentially allows long-term local drug release in the tumor to improve the treatment efficacy against drug-resistant breast cancer.
Collapse
Affiliation(s)
- Y Wang
- Department of Mammary Gland, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan 523000, China
| | - C Wen
- Department of Mammary Gland, Nanfang Hospital, Guangzhou 510515, China
| | - J Ye
- Department of Mammary Gland, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan 523000, China
| | - H Huang
- Department of Mammary Gland, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan 523000, China
| | - Y Zhang
- Department of Mammary Gland, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan 523000, China
| | - H Yuan
- Department of Mammary Gland, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan 523000, China
| | - G Yao
- Department of Mammary Gland, Nanfang Hospital, Guangzhou 510515, China
| | - M Yu
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Wang W, Wang S, Xu AM, Yuan X, Huang L, Li J. Overexpression of GSE1 Related to Trastuzumab Resistance in Gastric Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8834923. [PMID: 33623790 PMCID: PMC7875631 DOI: 10.1155/2021/8834923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the most prevalent human cancers with poor prognosis. Trastuzumab is a well-used targeted drug for gastric cancer with HER2 amplification. Trastuzumab resistance restrains the clinical use of trastuzumab. In this study, we reported human Gse1 coiled-coil protein (GSE1) promoted trastuzumab resistance in HER2-positive gastric cancer cells. Acquired trastuzumab-resistant gastric cancer cells overexpressed GSE1, and depletion of GSE1 decreased the trastuzumab resistance of trastuzumab-resistant gastric cancer cells. BCL-2 was a downstream gene positively regulated by GSE1 and also performed promoting the role of trastuzumab resistance in HER2-positive gastric cancer cells. A high level of GSE1 was associated with a high risk of tumor lymph node metastasis and higher clinical stage in HER2-positive gastric cancer patients. GSE1 was a potential target that could be used for HER2-positive gastric cancer therapy.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Hainan Weikang Pharmaceutical, Co., Ltd. Qianshan, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - A. man Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liguo Huang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
11
|
Silva-Oliveira R, Pereira FF, Petronilho S, Martins AT, Lameirinhas A, Constâncio V, Caldas-Ribeiro I, Salta S, Lopes P, Antunes L, Castro F, de Sousa SP, Henrique R, Jerónimo C. Clinical Significance of ARID1A and ANXA1 in HER-2 Positive Breast Cancer. J Clin Med 2020; 9:E3911. [PMID: 33276477 PMCID: PMC7761245 DOI: 10.3390/jcm9123911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND trastuzumab is considered the standard of care for human epidermal growth factor receptor-2 (HER-2+) breast cancer patients. Regardless of the benefits of its use, many early-stage patients eventually recur, and usually, the disease progresses within a year. Since about half of the HER-2+ patients do not respond to trastuzumab, new biomarkers of prognosis and prediction are warranted to allow a better patient stratification. Annexin A1 (ANXA1) was previously reported to contribute to trastuzumab resistance through AKT activation. An association between adenine thymine-rich interactive domain 1A (ARID1A) loss and ANXA1 upregulation was also previously suggested by others. METHODS in this study, we examined tissue samples from 215 HER-2+ breast cancer patients to investigate the value of ARID1A and ANXA1 protein levels in trastuzumab response prediction and patient outcome. Expression of ARID1A and ANXA1 were assessed by immunohistochemistry. RESULTS contrary to what was expected, no inverse association was found between ARID1A and ANXA1 expression. HER-2+ (non-luminal) tumours displayed higher ANXA1 expression than luminal B-like (HER-2+) tumours. Concerning trastuzumab resistance, ARID1A and ANXA1 proteins did not demonstrate predictive value as biomarkers. Nevertheless, an association was depicted between ANXA1 expression and breast cancer mortality and relapse. CONCLUSIONS overall, our results suggest that ANXA1 may be a useful prognostic marker in HER-2+ patients. Additionally, its ability to discriminate between HER-2+ (non-luminal) and luminal B-like (HER-2+) patients might assist in patient stratification regarding treatment strategy.
Collapse
Affiliation(s)
- Rita Silva-Oliveira
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Filipa Ferreira Pereira
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.F.P.); (S.P.d.S.)
| | - Sara Petronilho
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Teresa Martins
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Lameirinhas
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Vera Constâncio
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Inês Caldas-Ribeiro
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Sofia Salta
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Paula Lopes
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Luís Antunes
- Cancer Epidemiology Group—Research Center & Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Fernando Castro
- Breast Cancer Clinic and Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Susana Palma de Sousa
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.F.P.); (S.P.d.S.)
| | - Rui Henrique
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Bie L, Luo S, Li D, Wei Y, Mu Y, Chen X, Wang S, Guo P, Lu X. HOTAIR Competitively Binds MiRNA330 as a Molecular Sponge to Increase the Resistance of Gastric Cancer to Trastuzumab. Curr Cancer Drug Targets 2020; 20:700-709. [PMID: 32364078 DOI: 10.2174/1568009620666200504114000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND HOTAIR, one of the most widely studied long non-coding RNAs in tumors, is closely related to tumor proliferation, migration, invasion and chemoresistance. OBJECTIVE Here, we studied the mechanism behind proliferation and chemoresistance processes. METHODS A total of 75 samples were collected from patients who underwent surgical resection of their gastric cancer and received trastuzumab treatment. Primary cells were isolated and cultured. We also developed a cell line overexpressing HOTAIR by constructing a lentiviral vector. These cell lines were studied using an array of established biomolecular methods. RESULTS We found that HOTAIR levels were inversely associated with sensitivity to trastuzumab in gastric cancer and that overexpression of HOTAIR can promote the proliferation and invasion of gastric cancer cells. The sensitivity of cells overexpressing HOTAIR to two different types of human epidermal growth factor receptor 2 (HER2) inhibitors (trastuzumab and afatinib) showed that overexpression of HOTAIR is specific for trastuzumab resistance. Furthermore, luciferase reporter gene assay and western blot assay showed that there is a HOTAIR-miRNA330-ERBB4 competitive endogenous RNA regulatory network with miRNA330 as the core. CONCLUSION HOTAIR can not only promote tumor proliferation but also enhance the resistance of tumor cells to drugs. Our experimental data not only showed strong expression of HOTAIR in gastric cancer, but also that strong expression of HOTAIR caused the sensitivity of gastric cancer cells to trastuzumab, which is a useful reference for postoperative medication.
Collapse
Affiliation(s)
- Liangyu Bie
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Suxia Luo
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Dan Li
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Yan Wei
- Department of Pathology, Nanyang Medical College, Nanyang, Henan province, China
| | - Yu Mu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Xiaobing Chen
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Saiqi Wang
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Ping Guo
- Department of Oncology, The First Affiliated Hospital of Nanyang Medical College, Nanyang, Henan province, China
| | - Xiaoyu Lu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan province, China
| |
Collapse
|
13
|
Abstract
Gastric cancer is one of most challenging cancers and a significant cause of death worldwide. Gastric cancer is, associated with a high incidence and recurrence rate of metastatic disease and poor survival for those with metastatic disease. Claudin-4 is a transmembrane protein that plays an important role in tight junctions. Increasing experimental research has demonstrated that claudin-4 plays an important role in the progression of gastric cancer, including the occurrence of epithelial to mesenchymal transition, intestinal metaplasia, and gastric cancer. In addition, claudin-4 regulates cell proliferation, invasion, migration and apoptosis. Claudin-4 may represent a potential biomarker for gastric cancer patient prognosis and is useful in the classification of gastric cancer. Therefore, in this review, we summarize current information on claudin-4 and gastric cancer, describing the role of claudin-4 in gastric cancer progression and its application in clinical treatment to provide a basis for further research and promote the claudin-4 gene as a potential target to diagnose and treat gastric cancer.
Collapse
Affiliation(s)
- Wei Liu
- First School of Clinical Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Meijin Li
- College of Science, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
14
|
Gao X, Lu C, Chen C, Sun K, Liang Q, Shuai J, Wang X, Xu Y. ARPP-19 Mediates Herceptin Resistance via Regulation of CD44 in Gastric Cancer. Onco Targets Ther 2020; 13:6629-6643. [PMID: 32753897 PMCID: PMC7354958 DOI: 10.2147/ott.s253841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose As the first-line drug for treatment of HER2-positive metastatic gastric cancer (GC), Herceptin exhibits significant therapeutic efficacy. However, acquired resistance of Herceptin limits the therapeutic benefit of gastric cancer patients, in which the molecular mechanisms remain to be further determined. Methods Quantitative real-time polymerase chain reaction was performed to detect the mRNA levels of ARPP-19 and CD44 in GC cells. Protein levels were determined using Western blot and IHC staining. MTT and soft agar colony formation assays were used to measure cell proliferation. Xenograft model was established to verify the functional role of ARPP-19 in Herceptin resistance in vivo. Sphere formation assay was conducted to determine cell stemness. Results We observed ARPP-19 was up-regulated in Herceptin resistance gastric cancer cells NCI-N87-HR and MKN45-HR. The forced expression of ARPP-19 promoted, whereas the silencing of ARPP-19 impaired Herceptin resistance of HER2-positive gastric cancer cells both in vitro and in vivo. Moreover, ARPP-19 significantly enhanced the sphere formation capacity and CD44 expression, CD44 was also a positive factor of Herceptin resistance in HER2-positive gastric cancer cells. In addition, high level of ARPP-19 was positively associated with Herceptin resistance and poor survival rate of gastric cancer patients. Conclusion We have demonstrated that ARPP-19 promoted Herceptin resistance of gastric cancer via up-regulation of CD44, our study suggested that ARPP-19 could be a potential diagnostic and therapeutic candidate for HER2-positive gastric cancer.
Collapse
Affiliation(s)
- Xiang Gao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Changwen Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Changyu Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kang Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Qixin Liang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Jianfeng Shuai
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Xiaoming Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuxing Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| |
Collapse
|
15
|
Shen G, Gao Q, Liu F, Zhang Y, Dai M, Zhao T, Cheng M, Xu T, Jin P, Yin W, Huang D, Weng H, Chen W, Ren H, Mu X, Wu X, Hu S. The Wnt3a/β-catenin/TCF7L2 signaling axis reduces the sensitivity of HER2-positive epithelial ovarian cancer to trastuzumab. Biochem Biophys Res Commun 2020; 526:685-691. [PMID: 32248976 DOI: 10.1016/j.bbrc.2020.03.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most common and lethal gynecological cancers. Novel therapeutic agents have been developed for EOC, but patient survival remains poor. Trastuzumab has been approved for breast and gastric cancers with high expression of human epidermal growth factor receptor 2 (HER2), but it has not achieved any clinical success in EOC. Dysregulated Wnt/β-catenin signaling is involved in cancer development, but whether it plays a role in EOC resistance to trastuzumab remains largely unknown. Here, we observed that high expression of Wnt3a, β-catenin and TCF7L2, which can form a signaling axis in the Wnt/β-catenin pathway, commonly existed in HER2-positive EOC tissue samples and was correlated with a poor patient prognosis. Cell proliferation and migration assays and nude mouse xenograft model experiments demonstrated that the Wnt3a/β-catenin/TCF7L2 signaling axis promoted tumor cell growth and metastasis and reduced tumor sensitivity to trastuzumab. Analysis of downstream Akt signaling suggested that the function of the Wnt3a/β-catenin/TCF7L2 signaling axis was mediated, at least in part, through increasing Akt phosphorylation. Overall, this study reveals a crucial role for the Wnt3a/β-catenin/TCF7L2 signaling axis in EOC resistance to trastuzumab and the potential application of HER2-targeted drugs combined with inhibitors of this signaling axis for EOC treatment.
Collapse
Affiliation(s)
- Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China.
| | - Qian Gao
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China; Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fenfen Liu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Yan Zhang
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China; School of Health Services Management, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Meng Dai
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Tingting Zhao
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Min Cheng
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Tingjuan Xu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Peipei Jin
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Dabing Huang
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China; Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Haiyan Weng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wen Chen
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Huirong Ren
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Xuanxuan Mu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Xinchun Wu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Shilian Hu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China.
| |
Collapse
|
16
|
Ruan T, Liu W, Tao K, Wu C. A Review of Research Progress in Multidrug-Resistance Mechanisms in Gastric Cancer. Onco Targets Ther 2020; 13:1797-1807. [PMID: 32184615 PMCID: PMC7053652 DOI: 10.2147/ott.s239336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors, and it is also one of the leading causes of cancer death worldwide. Because of its insidious symptoms and lack of early dictation screening, many cases of gastric cancer are at late stages which make it more complicated to cure. For these advanced-stage gastric cancers, combination therapy of surgery, chemotherapy, radiotherapy and target therapy would bring more benefit to the patients. However, the drug-resistance to the chemotherapy restricts its effect and might lead to treatment failure. In this review article, we discuss the mechanisms which have been found in recent years of drug resistance in gastric cancer. And we also want to find new approaches to counteract chemotherapy resistance and bring more benefits to the patients.
Collapse
Affiliation(s)
- Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Sun R, Chen T, Li M, Liu Z, Qiu B, Li Z, Xu Y, Pan C, Zhang Z. PTPN3 suppresses the proliferation and correlates with favorable prognosis of perihilar cholangiocarcinoma by inhibiting AKT phosphorylation. Biomed Pharmacother 2020; 121:109583. [DOI: 10.1016/j.biopha.2019.109583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022] Open
|
18
|
Gupta N, Srivastava SK. Atovaquone: An Antiprotozoal Drug Suppresses Primary and Resistant Breast Tumor Growth by Inhibiting HER2/β-Catenin Signaling. Mol Cancer Ther 2019; 18:1708-1720. [PMID: 31270151 PMCID: PMC6905100 DOI: 10.1158/1535-7163.mct-18-1286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/06/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. In the current study, we evaluated the anticancer effects of an antiprotozoal drug, atovaquone, against several breast cancer cell lines. Our results showed that atovaquone treatment induced apoptosis and inhibited the growth of all the breast cancer cell lines tested, including several patient-derived cells. In addition, atovaquone treatment significantly reduced the expression of HER2, β-catenin, and its downstream molecules such as pGSK-3β, TCF-4, cyclin D1, and c-Myc in vitro Efficacy of atovaquone was further evaluated in an in vivo tumor model by orthotropic implantation of two highly aggressive 4T1 and CI66 breast cancer cells in the mammary fat pad of female mice. Our results demonstrated that oral administration of atovaquone suppressed the growth of CI66 and 4T1 tumors by 70% and 60%, respectively. Paclitaxel is the first-line chemotherapeutic agent for metastatic breast cancer. We demonstrate that atovaquone administration suppressed the growth of 4T1 paclitaxel-resistant tumors by 40%. Tumors from atovaquone-treated mice exhibited reduced HER2, β-catenin, and c-Myc levels alongside an increase in apoptosis in all the three tumor models when analyzed by Western blotting, IHC, and TUNEL assay. Taken together, our results indicate that atovaquone effectively reduces the growth of primary and paclitaxel-resistant breast tumors. Atovaquone is already in the clinics with high safety and tolerability profile. Therefore, the findings from our studies will potentially prompt further clinical investigation into repurposing atovaquone for the treatment of patients with advanced breast cancer.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| |
Collapse
|
19
|
Mu H, Xiang L, Li S, Rao D, Wang S, Yu K. MiR-10a functions as a tumor suppressor in prostate cancer via targeting KDM4A. J Cell Biochem 2019; 120:4987-4997. [PMID: 30302800 DOI: 10.1002/jcb.27774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023]
Abstract
Deregulation of microRNAs contributes to the abnormal cell growth which is frequently observed in cancer. In the current study, we detected the expression and regulatory relationship between miR-10a and Lysine-specific demethylase 4A (KDM4A) to reveal their function in prostate cancer (PCa) progression. We found that miR-10a levels were significantly decreased in PCa cell lines in comparison with the normal epithelial cell line RWPE-1. Downregulation of miR-10a levels was also observed in tumor tissues from PCa patients compared with the adjacent normal tissues. Enhanced expression of miR-10a inhibited cell proliferation and colony forming capability of PCa cells. In addition, quantitative real-time polymerase chain reaction and Western blot analysis showed a significant decrease of KDM4A in response to miR-10a elevation in PCa cells. Using dual luciferase assay, we confirmed that KDM4A was a target gene for miR-10a. Furthermore, Western blot analysis indicated that miR-10a overexpression inactivated YAP signaling and suppressed transcription of YAP target genes. Additionally, cell growth arrest and colony forming capacity inhibition induced by miR-10a overexpression could be reversed by YAP overexpression in PCa cells. More importantly, miR-10a mimics inhibited PC-3 tumor growth in nude mice accompanied with a remarkable reduction of KDM4A and YAP expression. In conclusion, our results uncovered a tumor suppressor role of miR-10a in PCa via negative regulation of KDM4A and its downstream Hippo-YAP pathway.
Collapse
Affiliation(s)
- Haiqi Mu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luxia Xiang
- Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shaoxun Li
- Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dapang Rao
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuaibin Wang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiyuan Yu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|