1
|
Ashrafi E, Sauvageau D, Elliott JAW. Effects of different cryopreservation parameters on the differences between trypan blue and fluorescent SYTO 13/GelRed assays. Cryobiology 2024; 116:104883. [PMID: 38452848 DOI: 10.1016/j.cryobiol.2024.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Post-thaw cell viability assessment is very important in cryopreservation because it is the main assessment method used to optimize cryopreservation protocols for each cell type; hence, having standardized accurate, quick, and reliable assays for post-thaw cell viability measurements is of utmost importance. The trypan blue exclusion assay and nucleic-acid-binding fluorescence-based assays are two different methods for cell viability assessment. Both assays identify cells with damaged membranes by whether they let a compound enter the cell. In this study, these two assays are compared in the context of cryopreservation and the impacts of important cryopreservation parameters on the differences in measurements are investigated. H9c2 myoblasts were cryopreserved with different freezing protocols. Cell membrane integrities were measured immediately after thaw as well as after cryoprotectant removal by a hemocytometer-based trypan blue dye exclusion assay and a dual fluorometric SYTO 13/GelRed assay; and the results were compared. This study quantifies how (i) the absence or presence of different cryoprotectants, (ii) different cell-cryoprotectant incubation conditions, and (iii) the presence or removal of cryoprotectants after thaw affect the differences between these two viability assays.
Collapse
Affiliation(s)
- Elham Ashrafi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Mitra A, Naik L, Dhiman R, Sarkar N. Protonation-State Dependent Modulation of Hen Egg-White Lysozyme Fibrillation under the Influence of a Short Synthetic Peptide. J Phys Chem B 2024; 128:5995-6013. [PMID: 38875472 DOI: 10.1021/acs.jpcb.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Under the influence of various conditions, misfolding of soluble proteins occurs, leading to the formation of toxic insoluble amyloids. The formation and deposition of such amyloids within the body are associated with detrimental biological consequences such as the onset of several amyloid-related diseases. Previously, we established a strategy for the rational design of peptide inhibitors against amyloid formation based on the amyloidogenic-prone region of the protein. In the current study, we have designed and identified an Asp-containing rationally designed hexapeptide (SqP4) as an excellent inhibitor of hen egg-white lysozyme (HEWL) amyloid progression in vitro. First, SqP4 showed strong affinity toward the native monomeric HEWL leading to the stabilization of the native form and restriction in the unfolding process of monomeric HEWL. Second, SqP4 was found to arrest the amyloidogenic misfolded structure of HEWL in a nonfibrillar monomer-like stage. We also observed the differential effect of the protonation state of the charged amino acid (Asp) within the peptide inhibitor on the amyloid formation of HEWL and explored the reason behind the observations. The findings of this study can be implemented in future strategies for the development of potent therapeutics against other amyloid-related diseases.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| |
Collapse
|
3
|
Tjoa K, Nadhif MH, Utami SS, Kusuma SR, Astagiri PY, Adriono GA. Mechanical, optical, chemical, and biological evaluations of fish scale-derived scaffold for corneal replacements: A systematic review. Int J Biol Macromol 2024; 267:131183. [PMID: 38580016 DOI: 10.1016/j.ijbiomac.2024.131183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Corneal blindness is commonly treated through corneal replacement with allogeneic corneal donors, which may face shortage. Regarding this issue, xenogeneic alternatives are explored. Fish scale-derived scaffolds (FSSs) are among the alternatives due to the lower risk of infection and abundant sources of raw materials. Unfortunately, the information about mechanical, optical, chemical, and biological performances of FSSs for corneal replacements is still scattered, as well as about the fabrication techniques. This study aims to gather scattered pieces of information about the mentioned performances and fabrication techniques of FSSs for corneal replacements. Sorted from four scientific databases and using the PRISMA checklist, eleven relevant articles are collected. FSSs are commonly fabricated using decellularization and decalcification processes, generating FSSs with parallel multilayers or crossed fibers with topographic microchannels. In the collected studies, similar mechanical properties of FSSs to native tissues are discovered, as well as good transparency, light remittance, but poorer refractive indexes than native tissues. Biological evaluations mostly discuss histology, cell proliferations, and immune responses on FSSs, while only a few studies examine the vascularization. No studies completed comprehensive evaluations on the four properties. The current progress of FSS developments demonstrates the potential of FSS use for corneal replacements.
Collapse
Affiliation(s)
- Kevin Tjoa
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Hanif Nadhif
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom; Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Medical Technology Cluster, Indonesian Medical Education and Research Institute, Jakarta, Indonesia.
| | | | | | - Prasandhya Yusuf Astagiri
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Medical Technology Cluster, Indonesian Medical Education and Research Institute, Jakarta, Indonesia
| | | |
Collapse
|
4
|
Cai Y, Prochazkova M, Kim YS, Jiang C, Ma J, Moses L, Martin K, Pham V, Zhang N, Highfill SL, Somerville RP, Stroncek DF, Jin P. Assessment and comparison of viability assays for cellular products. Cytotherapy 2024; 26:201-209. [PMID: 38085197 PMCID: PMC10872314 DOI: 10.1016/j.jcyt.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND AIMS Accurate assessment of cell viability is crucial in cellular product manufacturing, yet selecting the appropriate viability assay presents challenges due to various factors. This study compares and evaluates different viability assays on fresh and cryopreserved cellular products, including peripheral blood stem cell (PBSC) and peripheral blood mononuclear cell (PBMC) apheresis products, purified PBMCs and cultured chimeric antigen receptor and T-cell receptor-engineered T-cell products. METHODS Viability assays, including manual Trypan Blue exclusion, flow cytometry-based assays using 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) direct staining or cell surface marker staining in conjunction with 7-AAD, Cellometer (Nexcelom Bioscience LLC, Lawrence, MA, USA) Acridine Orange/PI staining and Vi-CELL BLU Cell Viability Analyzer (Beckman Coulter, Inc, Brea, CA, USA), were evaluated. A viability standard was established using live and dead cell mixtures to assess the accuracy of these assays. Furthermore, precision assessment was conducted to determine the reproducibility of the viability assays. Additionally, the viability of individual cell populations from cryopreserved PBSC and PBMC apheresis products was examined. RESULTS All methods provided accurate viability measurements and generated consistent and reproducible viability data. The assessed viability assays were demonstrated to be reliable alternatives when evaluating the viability of fresh cellular products. However, cryopreserved products exhibited variability among the tested assays. Additionally, analyzing the viability of each subset of the cryopreserved PBSC and PBMC apheresis products revealed that T cells and granulocytes were more susceptible to the freeze-thaw process, showing decreased viability. CONCLUSIONS The study demonstrates the importance of careful assay selection, validation and standardization, particularly for assessing the viability of cryopreserved products. Given the complexity of cellular products, choosing a fit-for-purpose viability assay is essential.
Collapse
Affiliation(s)
- Yihua Cai
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Michaela Prochazkova
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Yong-Soo Kim
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Chunjie Jiang
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Jinxia Ma
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Larry Moses
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Kathryn Martin
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Victoria Pham
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Nan Zhang
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Steven L Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Robert P Somerville
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Ping Jin
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Baik M, Shin S, Kumar S, Seo D, Lee I, Jun HS, Kang KW, Kim BS, Nam MH, Seo S. Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology. BIOSENSORS 2023; 13:993. [PMID: 38131753 PMCID: PMC10741567 DOI: 10.3390/bios13120993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Accurate and efficient classification and quantification of CD34+ cells are essential for the diagnosis and monitoring of leukemia. Current methods, such as flow cytometry, are complex, time-consuming, and require specialized expertise and equipment. This study proposes a novel approach for the label-free identification of CD34+ cells using a deep learning model and lens-free shadow imaging technology (LSIT). LSIT is a portable and user-friendly technique that eliminates the need for cell staining, enhances accessibility to nonexperts, and reduces the risk of sample degradation. The study involved three phases: sample preparation, dataset generation, and data analysis. Bone marrow and peripheral blood samples were collected from leukemia patients, and mononuclear cells were isolated using Ficoll density gradient centrifugation. The samples were then injected into a cell chip and analyzed using a proprietary LSIT-based device (Cellytics). A robust dataset was generated, and a custom AlexNet deep learning model was meticulously trained to distinguish CD34+ from non-CD34+ cells using the dataset. The model achieved a high accuracy in identifying CD34+ cells from 1929 bone marrow cell images, with training and validation accuracies of 97.3% and 96.2%, respectively. The customized AlexNet model outperformed the Vgg16 and ResNet50 models. It also demonstrated a strong correlation with the standard fluorescence-activated cell sorting (FACS) technique for quantifying CD34+ cells across 13 patient samples, yielding a coefficient of determination of 0.81. Bland-Altman analysis confirmed the model's reliability, with a mean bias of -2.29 and 95% limits of agreement between 18.49 and -23.07. This deep-learning-powered LSIT offers a groundbreaking approach to detecting CD34+ cells without the need for cell staining, facilitating rapid CD34+ cell classification, even by individuals without prior expertise.
Collapse
Affiliation(s)
- Minyoung Baik
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Dongmin Seo
- Department of Electrical Engineering, Semyung University, Jecheon 27136, Republic of Korea;
| | - Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (I.L.); (H.S.J.)
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (I.L.); (H.S.J.)
| | - Ka-Won Kang
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (K.-W.K.); (B.S.K.)
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (K.-W.K.); (B.S.K.)
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| |
Collapse
|
6
|
Muraduzzaman AKM, Islam NM, Tabassum S, Munshi SU. Intrinsic Apoptotic Pathway Genes of Circulating Blood Neutrophils Triggered during HIV Infection and Remained Stimulated in ART Patients. Curr HIV Res 2023; 21:122-127. [PMID: 37211847 DOI: 10.2174/1570162x21666230519164239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The intrinsic apoptotic pathway of neutrophils in Human Immunodeficiency Virus (HIV) infection results in spontaneous neutrophil death. There is a scarcity of data regarding the gene expression of an intrinsic apoptotic pathway of neutrophils in HIV patients. OBJECTIVE The objective of this study was to observe the differential expression of some important genes involved in the intrinsic apoptotic pathway of HIV patients, including those who were receiving antiretroviral therapy (ART). METHODS Blood samples were collected from asymptomatic, symptomatic, ART receiver HIV patients, and healthy individuals. Total RNA was extracted from neutrophils and subjected to quantitative real-time PCR assay. CD4+T cells and an automated complete blood count were performed. RESULTS Among the asymptomatic, symptomatic, and ART receiver HIV patients (n=20 in each group), median CD4+T counts were 633, 98, and 565 cells/ml, and the length of HIV infection in months (± SD) was 24.06 ± 21.36, 62.05 ± 25.51, and 69.2 ± 39.67, respectively. Compared with healthy controls, intrinsic apoptotic pathway genes, i.e., BAX, BIM, Caspase-3, Caspase-9, MCL-1, and Calpain-1, were upregulated to 1.21 ± 0.33, 1.8 ± 0.25, 1.24 ± 0.46, 1.54 ± 0.21, 1.88 ± 0.30, and 5.85 ± 1.34 fold in the asymptomatic group, and even more significantly, i.e., 1.51 ± 0.43, 2.09 ± 1.13, 1.85 ± 1.22, 1.72 ± 0.85, 2.26 ± 1.34, and 7.88 ± 3.31 fold in symptomatic patients, respectively. Despite CD4+ T-cell levels increased in the ART receiver group, these genes did not approach the level of healthy or asymptomatic and remained significantly upregulated. CONCLUSION The genes involved in the intrinsic apoptotic pathway in circulating neutrophils during HIV infection were stimulated in vivo, and ART reduced the expression of those upregulated genes but did not return to the level of asymptomatic or healthy individuals.
Collapse
Affiliation(s)
- A K M Muraduzzaman
- Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Nabeela Mahboob Islam
- Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Shahina Tabassum
- Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Saif Ullah Munshi
- Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| |
Collapse
|
7
|
Park S, Veluvolu V, Martin WS, Nguyen T, Park J, Sackett DL, Boccara C, Gandjbakhche A. Label-free, non-invasive, and repeatable cell viability bioassay using dynamic full-field optical coherence microscopy and supervised machine learning. BIOMEDICAL OPTICS EXPRESS 2022; 13:3187-3194. [PMID: 35781969 PMCID: PMC9208588 DOI: 10.1364/boe.452471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
We present a novel method that can assay cellular viability in real-time using supervised machine learning and intracellular dynamic activity data that is acquired in a label-free, non-invasive, and non-destructive manner. Cell viability can be an indicator for cytology, treatment, and diagnosis of diseases. We applied four supervised machine learning models on the observed data and compared the results with a trypan blue assay. The cell death assay performance by the four supervised models had a balanced accuracy of 93.92 ± 0.86%. Unlike staining techniques, where criteria for determining viability of cells is unclear, cell viability assessment using machine learning could be clearly quantified.
Collapse
Affiliation(s)
- Soongho Park
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20814, USA
| | - Vinay Veluvolu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20814, USA
| | - William S. Martin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20814, USA
| | - Thien Nguyen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20814, USA
| | - Jinho Park
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20814, USA
| | - Dan L. Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20814, USA
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Sreter JA, Foxall TL, Varga K. Intracellular and Extracellular Antifreeze Protein Significantly Improves Mammalian Cell Cryopreservation. Biomolecules 2022; 12:669. [PMID: 35625597 PMCID: PMC9139014 DOI: 10.3390/biom12050669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cell cryopreservation is an essential part of the biotechnology, food, and health care industries. There is a need to develop more effective, less toxic cryoprotective agents (CPAs) and methods, especially for mammalian cells. We investigated the impact of an insect antifreeze protein from Anatolica polita (ApAFP752) on mammalian cell cryopreservation using the human embryonic kidney cell line HEK 293T. An enhanced green fluorescent protein (EGFP)-tagged antifreeze protein, EGFP-ApAFP752, was transfected into the cells and the GFP was used to determine the efficiency of transfection. AFP was assessed for its cryoprotective effects intra- and extracellularly and both simultaneously at different concentrations with and without dimethyl sulfoxide (DMSO) at different concentrations. Comparisons were made to DMSO or medium alone. Cells were cryopreserved at -196 °C for ≥4 weeks. Upon thawing, cellular viability was determined using trypan blue, cellular damage was assessed by lactate dehydrogenase (LDH) assay, and cellular metabolism was measured using a metabolic activity assay (MTS). The use of this AFP significantly improved cryopreserved cell survival when used with DMSO intracellularly. Extracellular AFP also significantly improved cell survival when included in the DMSO freezing medium. Intra- and extracellular AFP used together demonstrated the most significantly increased cryoprotection compared to DMSO alone. These findings present a potential method to improve the viability of cryopreserved mammalian cells.
Collapse
Affiliation(s)
- Jonathan A. Sreter
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Thomas L. Foxall
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Krisztina Varga
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
9
|
Patel KA, Patel N, Kim GH, Chape LS, Agbon KGD, Angulo Fuentes MP, Barbosa FML, Castellano RT, Gonzalez GN, Mathew S, Mantile-Selvaggi G, Reich-Slotky R. Validation of automated fluorescent-based technology for measuring total nucleated cell viability of hematopoietic progenitor cell products. Transfusion 2022; 62:848-856. [PMID: 35211976 DOI: 10.1111/trf.16837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND A reliable rapid method for measuring total nucleated cell (TNC) viability is essential for cell-based products manufacturing. The trypan blue (TB) exclusion method, commonly used to measure TNC viability of hematopoietic progenitor cell (HPC) products, is a subjective assay, typically uses a microscope, and includes a limited number of cells. The NucleoCounter NC-200 is an automated fluorescent-based cell counter that uses pre-calibrated cartridges with acridine orange and DAPI dyes to measure cell count and viability. This study describes the validation of the NC-200 for testing HPC's viability. METHODS Samples from 189 fresh and 60 cryopreserved HPC products were included. Fresh products were tested for viability after collection by both TB and NC-200. 7-aminoactinomycin D (7AAD) CD45+ cell viability results were obtained from a flow cytometry test. Cryopreserved products thawed specimens were tested for viability by both TB and NC-200. The NC-200 viability results were compared with the other methods. Acceptability criteria were defined as ≤10% difference between the NC-200 method and the other methods for at least 95% of the samples. RESULTS Fresh products' mean viability difference between NC-200 and TB or 7AAD CD45+ method was 4.9% (95%CI 4.6-5.4) and 2.8% (95%CI 2.2-3.4), respectively. Thawed products' mean viability difference between NC-200 and TB was 3.0% (95%CI 0.4-5.6). CONCLUSION The NC-200 automated fluorescent-based method can be used effectively to determine HPC's viability for both fresh and cryopreserved products. It can help eliminate human bias and provide consistent data and operational ease.
Collapse
Affiliation(s)
- Kanan A Patel
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Nita Patel
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Grace H Kim
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Laura S Chape
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Kristianne Gail D Agbon
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Minnie P Angulo Fuentes
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Francis-Marie L Barbosa
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Ryan T Castellano
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Gloria N Gonzalez
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Sheeba Mathew
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | | | - Ronit Reich-Slotky
- Department of Stem Cell Transplantation and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| |
Collapse
|
10
|
DNA Dyes-Highly Sensitive Reporters of Cell Quantification: Comparison with Other Cell Quantification Methods. Molecules 2021; 26:molecules26185515. [PMID: 34576986 PMCID: PMC8465179 DOI: 10.3390/molecules26185515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Cell quantification is widely used both in basic and applied research. A typical example of its use is drug discovery research. Presently, plenty of methods for cell quantification are available. In this review, the basic techniques used for cell quantification, with a special emphasis on techniques based on fluorescent DNA dyes, are described. The main aim of this review is to guide readers through the possibilities of cell quantification with various methods and to show the strengths and weaknesses of these methods, especially with respect to their sensitivity, accuracy, and length. As these methods are frequently accompanied by an analysis of cell proliferation and cell viability, some of these approaches are also described.
Collapse
|
11
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Galeano E. Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS One 2021; 16:e0247668. [PMID: 33630921 PMCID: PMC7906414 DOI: 10.1371/journal.pone.0247668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The primary purpose of this study was to develop an improved processing method for PBMCs metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end, an experimental design was applied to develop an alternative method to process PBMCs at low concentrations. The design included the isolation of PBMCs from the whole blood of four different volunteers, of whom 27 cell samples were processed by two different techniques for quenching and extraction of metabolites: a traditional one using organic solvents and an alternative one employing a high-intensity ultrasound probe, the latter with a variation that includes the use of deproteinizing filters. Finally, all the samples were characterized by 1H-NMR and the metabolomic profiles were compared by the method. As a result, two new methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultrafiltration Method (UUM), are described and compared to the Folch Method (FM), which is the standard protocol for extracting metabolites from cell samples. We found that UM and UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount of identifiable, quantifiable metabolites and reproducibility.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medelín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
12
|
Voga M, Kovač V, Majdic G. Comparison of Canine and Feline Adipose-Derived Mesenchymal Stem Cells/Medicinal Signaling Cells With Regard to Cell Surface Marker Expression, Viability, Proliferation, and Differentiation Potential. Front Vet Sci 2021; 7:610240. [PMID: 33521084 PMCID: PMC7838367 DOI: 10.3389/fvets.2020.610240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
Remarkable immunomodulatory abilities of mesenchymal stem cells, also called multipotent mesenchymal stromal cells or medicinal signaling cells (MSCs), have entailed significant advances in veterinary regenerative medicine in recent years. Despite positive outcomes from MSC therapies in various diseases in dogs and cats, differences in MSC characteristics between small animal veterinary patients are not well-known. We performed a comparative study of cells' surface marker expression, viability, proliferation, and differentiation capacity of adipose-derived MSCs (ADMSCs) from dogs and domestic cats. The same growth media and methods were used to isolate, characterize, and culture canine and feline ADMSCs. Adipose tissue was collected from 11 dogs and 8 cats of both sexes. The expression of surface markers CD44, CD90, and CD34 was detected by flow cytometry. Viability at passage 3 was measured with the hemocytometer and compared to the viability measured by flow cytometry after 1 day of handling. The proliferation potential of MSCs was measured by calculating cell doubling and cell doubling time from second to eighth passage. Differentiation potential was determined at early and late passages by inducing cells toward adipogenic, osteogenic, and chondrogenic differentiation using commercial media. Our study shows that the percentage of CD44+CD90+ and CD34−/− cells is higher in cells from dogs than in cells from cats. The viability of cells measured by two different methods at passage 3 differed between the species, and finally, canine ADMSCs possess greater proliferation and differentiation potential in comparison to the feline ADMSCs.
Collapse
Affiliation(s)
- Metka Voga
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Valerija Kovač
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Gregor Majdic
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia.,Medical Faculty, Institute for Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
13
|
Trevisan E, Menegazzi R, Zabucchi G, Troian B, Prato S, Vita F, Rapozzi V, Grandolfo M, Borelli V. Effect of methylene blue photodynamic therapy on human neutrophil functional responses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111605. [PMID: 31473428 DOI: 10.1016/j.jphotobiol.2019.111605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy (PDT) has become an emerging novel therapeutic approach for treating localized microbial infections, particularly those sustained by multidrug-resistant strains. Given the irreplaceable role played by professional phagocytes in limiting infections, such as polymorphonuclear neutrophils, any newly designed antimicrobial therapeutic approach must not interfere with their function. The present investigation presents a detailed analysis of the effect of PDT on the viability and several functional responses of human polymorphonuclear neutrophils loaded with methylene blue (MB), one of the more commonly used photosensitizers in antimicrobial PDT. Taking advantage of the use of a specifically-designed optical LED array for illuminating MB-loaded human polymorphonuclear neutrophils, a number of cell functions have been assayed under miniaturized, strictly controlled and reproducible experimental conditions. The major findings of this study are the following: (1) MB-PDT increases human neutrophils adhesion and does not modify myeloperoxidase release; (2) MB-PDT markedly enhances reactive oxygen species generation that is independent of superoxide-forming phagocytic oxidase and very likely ascribable to LED-dependent excitation of accumulated methylene blue; (3) MB-PDT almost abolishes human neutrophils candidacidal activity by hindering the engulfing machinery. This in vitro study may represent a valuable reference point for future research on PDT applications for treating localized microbial infections.
Collapse
Affiliation(s)
- Elisa Trevisan
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Renzo Menegazzi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Barbara Troian
- A.P.E. Research Srl, Area Science Park, Basovizza, Trieste 34012, Italy.
| | - Stefano Prato
- A.P.E. Research Srl, Area Science Park, Basovizza, Trieste 34012, Italy.
| | - Francesca Vita
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Valentina Rapozzi
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Micaela Grandolfo
- International School for Advenced Studies, Neurobiology sector, Via Bonomea, 265, 34136 Trieste, Italy.
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
14
|
Damiani E, Solorio JA, Doyle AP, Wallace HM. How reliable are in vitro IC50 values? Values vary with cytotoxicity assays in human glioblastoma cells. Toxicol Lett 2019; 302:28-34. [DOI: 10.1016/j.toxlet.2018.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/30/2022]
|
15
|
Effect of Decantation Time on Viability and Apoptosis in Adipocytes After Liposuction. Aesthetic Plast Surg 2019; 43:228-232. [PMID: 30361982 DOI: 10.1007/s00266-018-1258-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND The effect of decantation time on viability and apoptosis in adipocytes has not been described. The objective of the study was to describe viability and apoptosis in adipocytes up to 2 h after harvesting. METHODS Twenty patients who underwent esthetic liposuction from the abdomen were included. The lipoaspirate was obtained from the infra-umbilical area with the tumescent technique. Liposuction was performed with a 60-ml syringe and a 3-ml cannula. Lipoaspirates were centrifuged at 50 g for 5 min at 0, 60 and 120 min after harvesting. One gram of fat was digested with 0.1% type 1 collagenase and incubated at 37 degrees for 30 min. Adipocytes were counted on 10 random microscopic fields. Apoptosis was determined by TUNEL assay. A fluorescence microscope was used to visualize the staining nuclei and cells. RESULTS Regarding viability, immediately after harvesting, 57.6 ± 18.9% of the cells were viable, whereas 60 min after liposuction the viability decreased to 51.62 ± 8.8% and 120 min after liposuction the percentage of viable cells was 46.8 ± 16.9%. The percentage of apoptotic cells at time 0 was 38.2 ± 8.0%, whereas it was 51.24 ± 8.1% at 60 min and 62.9 ± 16.1% at 120 min after collection. CONCLUSIONS Apoptosis and mortality of adipocytes after liposuction increase directly proportional to the time of decantation. Lipoinjection should be performed as soon as possible after harvesting. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
16
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
17
|
Rah WJ, Shin EK, Koh H, Suh JY, Chang M, Nam E, Oh JH, Jung Y, Lee JY, Bong SR, Hong SH, Kim JY, Han S, Hwang JK, Chung C, Lee YH. Clinical Applicability of Newly Developed Image-based Cell Counter for Counting CD34+ Cells: Comparison with Flow Cytometric Analysis. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2016. [DOI: 10.15264/cpho.2016.23.2.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Wee-Jin Rah
- Department of Pediatrics, Hanyang University Hospital, Seoul, Korea
| | - Eun-kyung Shin
- Department of Pediatrics, Hanyang University Hospital, Seoul, Korea
| | - Hani Koh
- Department of Pediatrics, Hanyang University Hospital, Seoul, Korea
- Blood & Marrow Transplantation Center, Hanyang University College of Medicine, Seoul, Korea
| | - Jin Young Suh
- Blood & Marrow Transplantation Center, Hanyang University College of Medicine, Seoul, Korea
| | - Misoo Chang
- Biostatistical Consulting and Research Lab, Hanyang University College of Medicine, Seoul, Korea
| | - Eunwoo Nam
- Biostatistical Consulting and Research Lab, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | - Young-Ho Lee
- Department of Pediatrics, Hanyang University Hospital, Seoul, Korea
- Blood & Marrow Transplantation Center, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Abstract
The protocol described in this appendix allows for light microscopic quantitation of cell viability. Cells are suspended in PBS containing trypan blue and then examined to determine the percentage of cells that have clear cytoplasm (viable cells) versus cells that have blue cytoplasm (nonviable cells).
Collapse
Affiliation(s)
- Warren Strober
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
19
|
Larsson MC, Lerm M, Ängeby K, Nordvall M, Juréen P, Schön T. A luciferase-based assay for rapid assessment of drug activity against Mycobacterium tuberculosis including monitoring of macrophage viability. J Microbiol Methods 2014; 106:146-150. [PMID: 25194234 DOI: 10.1016/j.mimet.2014.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/07/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
The intracellular (IC) effect of drugs against Mycobacterium tuberculosis (Mtb) is not well established but increasingly important to consider when combining current and future multidrug regimens into the best possible treatment strategies. For this purpose, we developed an IC model based on a genetically modified Mtb H37Rv strain, expressing the Vibrio harvei luciferase (H37Rv-lux) infecting the human macrophage like cell line THP-1. Cells were infected at a low multiplicity of infection (1:1) and subsequently exposed to isoniazid (INH), ethambutol (EMB), amikacin (AMI) or levofloxacin (LEV) for 5days in a 96-well format. Cell viability was evaluated by Calcein AM and was maintained throughout the experiment. The number of viable H37Rv-lux was determined by luminescence and verified by a colony forming unit analysis. The results were compared to the effects of the same drugs in broth cultures. AMI, EMB and LEV were significantly less effective intracellularly (MIC90: >4mg/L, 8mg/L and 2mg/L, respectively) compared to extracellularly (MIC90: 0.5mg/L for AMI and EMB; 0.25mg/L for LEV). The reverse was the case for INH (IC: 0.064mg/L vs EC: 0.25mg/L). In conclusion, this luciferase based method, in which monitoring of cell viability is included, has the potential to become a useful tool while evaluating the intracellular effects of anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Marie C Larsson
- Department of Clinical Microbiology, Linköping University Hospital, Sweden
| | - Maria Lerm
- Department of Medical Microbiology, Linköping University, Sweden
| | - Kristian Ängeby
- Department of Clinical Microbiology, Karolinska University Hospital Department of Clinical Microbiology, MTC-Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; Department of Microbiology, The University of the West Indies, Kingston, Jamaica
| | - Michaela Nordvall
- Department of Clinical Microbiology, Linköping University Hospital, Sweden
| | | | - Thomas Schön
- Department of Medical Microbiology, Linköping University, Sweden; Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Sweden; Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
20
|
Avelar-Freitas BA, Almeida VG, Pinto MCX, Mourão FAG, Massensini AR, Martins-Filho OA, Rocha-Vieira E, Brito-Melo GEA. Trypan blue exclusion assay by flow cytometry. ACTA ACUST UNITED AC 2014; 47:307-15. [PMID: 24652322 PMCID: PMC4075294 DOI: 10.1590/1414-431x20143437] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/14/2014] [Indexed: 01/18/2023]
Abstract
Dye exclusion tests are used to determine the number of live and dead cells. These
assays are based on the principle that intact plasma membranes in live cells exclude
specific dyes, whereas dead cells do not. Although widely used, the trypan blue (TB)
exclusion assay has limitations. The dye can be incorporated by live cells after a
short exposure time, and personal reliability, related to the expertise of the
analyst, can affect the results. We propose an alternative assay for evaluating cell
viability that combines the TB exclusion test and the high sensitivity of the flow
cytometry technique. Previous studies have demonstrated the ability of TB to emit
fluorescence when complexed with proteins. According to our results, TB/bovine serum
albumin and TB/cytoplasmic protein complexes emit fluorescence at 660 nm, which is
detectable by flow cytometry using a 650-nm low-pass band filter. TB at 0.002% (w/v)
was defined as the optimum concentration for distinguishing unstained living cells
from fluorescent dead cells, and fluorescence emission was stable for 30 min after
cell treatment. Although previous studies have shown that TB promotes green
fluorescence quenching, TB at 0.002% did not interfere with green fluorescence in
human live T-cells stained with anti-CD3/fluorescein isothiocyanate (FITC) monoclonal
antibody. We observed a high correlation between the percentage of propidium
iodide+CD3/FITC+ and TB+CD3/FITC+ cells, as well as similar
double-stained cell profiles in flow cytometry dot-plot graphs. Taken together, the
results indicate that a TB exclusion assay by flow cytometry can be employed as an
alternative tool for quick and reliable cell viability analysis.
Collapse
Affiliation(s)
- B A Avelar-Freitas
- Laboratório de Imunologia, Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri and Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Diamantina, MG, Brasil
| | - V G Almeida
- Laboratório de Imunologia, Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri and Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Diamantina, MG, Brasil
| | - M C X Pinto
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - F A G Mourão
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A R Massensini
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - O A Martins-Filho
- Centro de Pesquisas René Rachou, Fundação Osvaldo Cruz, Belo Horizonte, MG, Brasil
| | - E Rocha-Vieira
- Laboratório de Imunologia, Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri and Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Diamantina, MG, Brasil
| | - G E A Brito-Melo
- Laboratório de Imunologia, Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri and Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Diamantina, MG, Brasil
| |
Collapse
|
21
|
Jin Q, Huang F, Sun S, Zhou Y, Xu X, Xi W. An improved method on isolation and serial passage of Chlamydia pneumoniae from human peripheral blood mononuclear cells. J Clin Lab Anal 2013; 27:471-6. [PMID: 24218129 PMCID: PMC6807342 DOI: 10.1002/jcla.21629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Conventional method for Chlamydia pneumoniae (Cpn) isolation and propagation is technically challenging and time-consuming. Here, we developed a method to improve the isolation and passage of Cpn collected from human peripheral blood mononuclear cells (PBMCs). METHODS PBMCs positive with Cpn antigen (Cpn-Ag) were isolated, then centrifuged and cultured with Hep-2 cells after being broken. Cells were broken again and put into new Hep-2 cells to finish totally four passages with isolated and imported Cpn. Microimmunofluorescence method was used to detect Cpn. Inclusion forming unit (IFU) number was counted for each passage. Polymerase chain reaction (PCR) method was used to detect Cpn DNA. Efficiency of different centrifugation modes was compared. RESULTS Hep-2 cells of the first and second passages were strong positive with Cpn-Ag, the third passage was positive, and the fourth negative. Degeneration appeared in the fourth passage for isolated Cpn and third passage for imported strain. Centrifugation mode of 1,000 rpm for 2 h was the most efficient for Cpn propagation and passage. CONCLUSION This simplified method achieved efficient isolation, propagation, and passage of Cpn from PBMCs, and isolated strain was superior to imported strain on propagating ability.
Collapse
Affiliation(s)
- Qian Jin
- Department of Respiratory MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Feihua Huang
- Department of Respiratory MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Shuming Sun
- Department of Respiratory MedicineJinshan HospitalFudan UniversityShanghaiChina
| | - Ying Zhou
- Department of Respiratory MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Xianrong Xu
- Department of Respiratory MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Weixing Xi
- Department of Clinical LaboratoryTongde Hospital of Zhejiang ProvinceHangzhou, ZhejiangChina
| |
Collapse
|
22
|
Scerpa MC, Rossi C, Daniele N, Lanti A, Adorno G, Picardi A, Arcese W, Amadori S, Isacchi G, Zinno F. A new system for quality control in hematopoietic progenitor cell units before reinfusion in autologous transplant. Transfusion 2013; 54:522-31. [PMID: 23789937 DOI: 10.1111/trf.12307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND In our Center, the cell viability, the integrity of the bag, and the clonogenic assay were evaluated before the reinfusion of hematopoietic progenitor cells-apheresis (HPC-A). This quality control (QC) should be made 14 days before the reinfusion to the patient to have the result of the functional test on the proliferative capacity of hematopoietic progenitors. STUDY DESIGN AND METHODS This study was designed to assess the potential of an automatic cell counting system (NucleoCounter NC-3000, ChemoMetec) in our clinical routine as a support of the clonogenic assay and the cytofluorimetric analysis for the QC of the cryopreserved HPC-A. The cell viability was evaluated by flow cytometry using the modified International Society of Hematotherapy and Graft Engineering protocol. The proliferative potential was assessed by specific clonogenic tests using a commercial medium. Furthermore, we evaluated the cellular functionality with NucleoCounter NC-3000, by using two protocols: "vitality assay" and "mitochondrial potential assay." RESULTS The evaluation of the total nucleated cells in preapoptosis measured by 5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazol-carbocyanine iodide (JC-1) assay showed a negative correlation (r=-0.43) with the total number of colonies (colony-forming unit [CFU]-granulocyte-macrophage progenitors plus burst-forming unit-erythroid progenitors plus CFU-granulocyte, erythroid, macrophage, megakaryocyte progenitors) obtained after seeding of 50 × 10(6) /L viable total nucleated cells. We observed a significant difference (p<0.0001) comparing the median number of colonies (166.70; SD, ± 136.36) obtained with a value of JC-1 less than 30% to the number of colonies (61.75; SD, ± 59.76) obtained with a value of JC-1 more than 30%. CONCLUSION The evaluation of cell functionality by the use of the NucleoCounter NC-3000 is in agreement with results from clonogenic assay and can be considered an effective alternative in the routine laboratory.
Collapse
Affiliation(s)
- Maria Cristina Scerpa
- Cryolab Center of Biotechnology and Cryobiology, Immunohematology Section, SIMT, Department of Hematology, Tor Vergata University, Rome, Italy; Rome Transplant Network, Department of Hematology, Tor Vergata University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kummrow A, Frankowski M, Bock N, Werner C, Dziekan T, Neukammer J. Quantitative assessment of cell viability based on flow cytometry and microscopy. Cytometry A 2012; 83:197-204. [PMID: 23081720 DOI: 10.1002/cyto.a.22213] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 11/05/2022]
Abstract
We compare flow cytometric and microscopic determination of cell viability by fluorescence labeling using calcein acetoxy-methyl-ester and ethidium homodimer-1 as live and dead stain, respectively. Peripheral blood monocytes served as model system and were accumulated applying density gradients. Subsequently, monocytes were further enriched by magnetic-activated or fluorescence-activated cell sorting (MACS, FACS) targeting the antigen CD14. Identical samples were used for flow cytometric and microscopic analysis to allow direct comparison of both analysis methods. More than 1,000 cells were measured for each sample to minimize the measurement uncertainty caused by counting statistics. We observed good agreement of flow cytometric and microscopic viability measurements. On average, the difference in viability measured by flow cytometry and microscopy amounted to (2.7 ± 1.4)% for live staining and (1.7 ± 1.2)% for dead staining. These deviations were similar to the uncertainty of measurement for cell viability, thus demonstrating that both methods delivered equal results. Besides monocytes, comparison of flow cytometric and microscopy viability for MACS enriched CD34-positive cells also showed consistent results.
Collapse
Affiliation(s)
- A Kummrow
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|