1
|
Li C, Ture SK, Nieves-Lopez B, Blick-Nitko SK, Maurya P, Livada AC, Stahl TJ, Kim M, Pietropaoli AP, Morrell CN. Thrombocytopenia Independently Leads to Changes in Monocyte Immune Function. Circ Res 2024; 134:970-986. [PMID: 38456277 PMCID: PMC11069346 DOI: 10.1161/circresaha.123.323662] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND While platelets have well-studied hemostatic functions, platelets are immune cells that circulate at the interface between the vascular wall and white blood cells. The physiological implications of these constant transient interactions are poorly understood. Activated platelets induce and amplify immune responses, but platelets may also maintain immune homeostasis in healthy conditions, including maintaining vascular integrity and T helper cell differentiation, meaning that platelets are central to both immune responses and immune quiescence. Clinical data have shown an association between low platelet counts (thrombocytopenia) and immune dysfunction in patients with sepsis and extracorporeal membrane oxygenation, further implicating platelets as more holistic immune regulators, but studies of platelet immune functions in nondisease contexts have had limited study. METHODS We used in vivo models of thrombocytopenia and in vitro models of platelet and monocyte interactions, as well as RNA-seq and ATAC-seq (assay for transposase-accessible chromatin with sequencing), to mechanistically determine how resting platelet and monocyte interactions immune program monocytes. RESULTS Circulating platelets and monocytes interact in a CD47-dependent manner to regulate monocyte metabolism, histone methylation, and gene expression. Resting platelet-monocyte interactions limit TLR (toll-like receptor) signaling responses in healthy conditions in an innate immune training-like manner. In both human patients with sepsis and mouse sepsis models, thrombocytopenia exacerbated monocyte immune dysfunction, including increased cytokine production. CONCLUSIONS Thrombocytopenia immune programs monocytes in a manner that may lead to immune dysfunction in the context of sepsis. This is the first demonstration that sterile, endogenous cell interactions between resting platelets and monocytes regulate monocyte metabolism and pathogen responses, demonstrating platelets to be immune rheostats in both health and disease.
Collapse
Affiliation(s)
- Chen Li
- Aab Cardiovascular Research Institute (C.L., S.K.T., B.N.-L., S.K.B.-N., P.M., A.C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Sara K Ture
- Aab Cardiovascular Research Institute (C.L., S.K.T., B.N.-L., S.K.B.-N., P.M., A.C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Benjamin Nieves-Lopez
- Aab Cardiovascular Research Institute (C.L., S.K.T., B.N.-L., S.K.B.-N., P.M., A.C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
- University of Puerto Rico, Medical Sciences Campus, San Juan (B.N.-L.)
| | - Sara K Blick-Nitko
- Aab Cardiovascular Research Institute (C.L., S.K.T., B.N.-L., S.K.B.-N., P.M., A.C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Preeti Maurya
- Aab Cardiovascular Research Institute (C.L., S.K.T., B.N.-L., S.K.B.-N., P.M., A.C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Alison C Livada
- Aab Cardiovascular Research Institute (C.L., S.K.T., B.N.-L., S.K.B.-N., P.M., A.C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Tyler J Stahl
- Genomics Research Center (T.J.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Minsoo Kim
- Department of Microbiology and Immunology (M.K., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Anthony P Pietropaoli
- Department of Medicine (A.P.P., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Craig N Morrell
- Aab Cardiovascular Research Institute (C.L., S.K.T., B.N.-L., S.K.B.-N., P.M., A.C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
- Department of Microbiology and Immunology (M.K., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
- Department of Medicine (A.P.P., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
- Department of Pathology and Laboratory Medicine (C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| |
Collapse
|
2
|
Li C, Ture SK, Nieves-Lopez B, Blick-Nitko SK, Maurya P, Livada AC, Stahl TJ, Kim M, Pietropaoli AP, Morrell CN. Thrombocytopenia Independently Leads to Monocyte Immune Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540214. [PMID: 37214993 PMCID: PMC10197656 DOI: 10.1101/2023.05.10.540214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In addition to their well-studied hemostatic functions, platelets are immune cells. Platelets circulate at the interface between the vascular wall and leukocytes, and transient platelet-leukocyte complexes are found in both healthy and disease states, positioning platelets to provide physiologic cues of vascular health and injury. Roles for activated platelets in inducing and amplifying immune responses have received an increasing amount of research attention, but our past studies also showed that normal platelet counts are needed in healthy conditions to maintain immune homeostasis. We have now found that thrombocytopenia (a low platelet count) leads to monocyte dysfunction, independent of the cause of thrombocytopenia, in a manner that is dependent on direct platelet-monocyte CD47 interactions that regulate monocyte immunometabolism and gene expression. Compared to monocytes from mice with normal platelet counts, monocytes from thrombocytopenic mice had increased toll-like receptor (TLR) responses, including increased IL-6 production. Furthermore, ex vivo co-incubation of resting platelets with platelet naïve bone marrow monocytes, induced monocyte metabolic programming and durable changes in TLR agonist responses. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) on monocytes from thrombocytopenic mice showed persistently open chromatin at LPS response genes and resting platelet interactions with monocytes induced histone methylation in a CD47 dependent manner. Using mouse models of thrombocytopenia and sepsis, normal platelet numbers were needed to limit monocyte immune dysregulation and IL6 expression in monocytes from human patients with sepsis also inversely correlated with patient platelet counts. Our studies demonstrate that in healthy conditions, resting platelets maintain monocyte immune tolerance by regulating monocyte immunometabolic processes that lead to epigenetic changes in TLR-related genes. This is also the first demonstration of sterile cell interactions that regulate of innate immune-metabolism and monocyte pathogen responses.
Collapse
|
3
|
Wang Q, Wang H, Yan H, Tian H, Wang Y, Yu W, Dai Z, Chen P, Liu Z, Tang R, Jiang C, Fan S, Liu X, Lin X. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system. SCIENCE ADVANCES 2022; 8:eabn3333. [PMID: 35767605 PMCID: PMC9242458 DOI: 10.1126/sciadv.abn3333] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Redundancy of multinucleated mature osteoclasts, which results from the excessive fusion of mononucleated preosteoclasts (pOCs), leads to osteolytic diseases such as osteoporosis. Unfortunately, the currently available clinical drugs completely inhibit osteoclasts, thus interfering with normal physiological bone turnover. pOC-specific regulation may be more suitable for maintaining bone homeostasis. Here, circBBS9, a previously unidentified circular RNA, was found to exert regulatory effects via the circBBS9/miR-423-3p/Traf6 axis in pOCs. To overcome the long-standing challenge of spatiotemporal RNA delivery to cells, we constructed biomimetic nanoparticles to achieve the pOC-specific targeted delivery of circBBS9. pOC membranes (POCMs) were extracted to camouflage cationic polymer for RNA interference with circBBS9 (POCM-NPs@siRNA/shRNAcircBBS9). POCM-NPs endowed the nanocarriers with improved stability, accurate pOC targeting, fusogenic uptake, and reactive oxygen species-responsive release. In summary, our findings may provide an alternative strategy for multinucleated cell-related diseases that involves restriction of mononucleated cell multinucleation through a spatiotemporally selective delivery system.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Wei Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaoming Liu
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| |
Collapse
|
4
|
Pincela Lins PM, Ribovski L, Corsi Antonio L, Altei WF, Sobreiro Selistre-de-Araújo H, Cancino-Bernardi J, Zucolotto V. Comparing extracellular vesicles and cell membranes as biocompatible coatings for gold nanorods: Implications for targeted theranostics. Eur J Pharm Biopharm 2022; 176:168-179. [PMID: 35643369 DOI: 10.1016/j.ejpb.2022.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) and cell membrane nanoghosts are excellent coatings for nanomaterials, providing enhanced delivery in the target sites and evasion of the immune system. These cell-derived coatings allow the exploration of the delivery properties of the nanoparticles without stimulation of the immune system. Despite the advances reported on the use of EVs and cell-membrane coatings for nanomedicine applications, there are no standards to compare the benefits and main differences between these technologies. Here we investigated macrophage-derived EVs and cell membranes-coated gold nanorods and compared both systems in terms of target delivery in cancer and stromal cells. Our results reveal a higher tendency of EV-coated nanorods to interact with macrophages yet both EV and cell membrane-coated nanorods were internalized in the metastatic breast cancer cells. The main differences between these nanoparticles are related to the presence or absence of CD47 in the coating material, not usually addressed in EVs characterization. Our findings highlight important delivery differences exhibited by EVs- or cell membranes- coated nanorods which understanding may be important to the design and development of theragnostic nanomaterials using these coatings for target delivery.
Collapse
Affiliation(s)
- Paula Maria Pincela Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil.
| | - Laís Ribovski
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Luana Corsi Antonio
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Wanessa Fernanda Altei
- Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos, SP, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, SP, Brazil
| | | | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil; Institute of Advanced Studies, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
5
|
Dehmani S, Nerrière-Daguin V, Néel M, Elain-Duret N, Heslan JM, Belarif L, Mary C, Thepenier V, Biteau K, Poirier N, Blancho G, Haspot F. SIRPγ-CD47 Interaction Positively Regulates the Activation of Human T Cells in Situation of Chronic Stimulation. Front Immunol 2021; 12:732530. [PMID: 34925315 PMCID: PMC8671138 DOI: 10.3389/fimmu.2021.732530] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
A numerous number of positive and negative signals via various molecules modulate T-cell activation. Within the various transmembrane proteins, SIRPγ is of interest since it is not expressed in rodents. SIRPγ interaction with CD47 is reevaluated in this study. Indeed, we show that the anti-SIRPγ mAb clone LSB2.20 previously used by others has not been appropriately characterized. We reveal that the anti-SIRPα clone KWAR23 is a Pan anti-SIRP mAb which efficiently blocks SIRPα and SIRPγ interactions with CD47. We show that SIRPγ expression on T cells varies with their differentiation and while being expressed on Tregs, is not implicated in their suppressive functions. SIRPγ spatial reorganization at the immune synapse is independent of its interaction with CD47. In vitro SIRPα-γ/CD47 blockade with KWAR23 impairs IFN-γ secretion by chronically activated T cells. In vivo in a xeno-GvHD model in NSG mice, the SIRPγ/CD47 blockade with the KWAR23 significantly delays the onset of the xeno-GvHD and deeply impairs human chimerism. In conclusion, we have shown that T-cell interaction with CD47 is of importance notably in chronic stimulation.
Collapse
Affiliation(s)
- Safa Dehmani
- OSE Immunotherapeutics, Nantes, France.,Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, Unité Mixte de Recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Véronique Nerrière-Daguin
- Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, Unité Mixte de Recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Mélanie Néel
- Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, Unité Mixte de Recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Nathan Elain-Duret
- Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, Unité Mixte de Recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Jean-Marie Heslan
- Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, Unité Mixte de Recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | | | | | | | | | | | - Gilles Blancho
- Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, Unité Mixte de Recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Fabienne Haspot
- Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, Unité Mixte de Recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| |
Collapse
|
6
|
Luo L, Zang G, Liu B, Qin X, Zhang Y, Chen Y, Zhang H, Wu W, Wang G. Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury. Am J Cancer Res 2021; 11:8043-8056. [PMID: 34335979 PMCID: PMC8315061 DOI: 10.7150/thno.60785] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rationale: As a potentially life-threatening disorder, cerebral ischemia-reperfusion (I/R) injury is associated with significantly high mortality, especially the irreversible brain tissue damage associated with increased reactive oxygen radical production and excessive inflammation. Currently, the insufficiency of targeted drug delivery and “on-demand” drug release remain the greatest challenges for cerebral I/R injury therapy. Bioengineered cell membrane-based nanotherapeutics mimic and enhance natural membrane functions and represent a potentially promising approach, relying on selective interactions between receptors and chemokines and increase nanomedicine delivery efficiency into the target tissues. Methods: We employed a systematic method to synthesize biomimetic smart nanoparticles. The CXCR4-overexpressing primary mouse thoracic aorta endothelial cell (PMTAEC) membranes and RAPA@HOP were extruded through a 200 nm polycarbonate porous membrane using a mini-extruder to harvest the RAPA@BMHOP. The bioengineered CXCR4-overexpressing cell membrane-functionalized ROS-responsive nanotherapeutics, loaded with rapamycin (RAPA), were fabricated to enhance the targeted delivery to lesions with pathological overexpression of SDF-1. Results: RAPA@BMHOP exhibited a three-fold higher rate of target delivery efficacy via the CXCR4/SDF-1 axis than its non-targeting counterpart in an in vivo model. Additionally, in response to the excessive pathological ROS, nanotherapeutics could be degraded to promote “on-demand” cargo release and balance the ROS level by p-hydroxy-benzyl alcohol degradation, thereby scavenging excessive ROS and suppressing the free radical-induced focal damage and local inflammation. Also, the stealth effect of cell membrane coating functionalization on the surface resulted in extended circulation time and high stability of nanoparticles. Conclusion: The biomimetic smart nanotherapeutics with active targeting, developed in this study, significantly improved the therapeutic efficacy and biosafety profiles. Thus, these nanoparticles could be a candidate for efficient therapy of cerebral I/R injury.
Collapse
|
7
|
Fenselau C, Ostrand-Rosenberg S. Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell Immunol 2021; 359:104258. [PMID: 33338939 PMCID: PMC7802618 DOI: 10.1016/j.cellimm.2020.104258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Collaborative research is reviewed in which mass spectrometry-based proteomics and next generation sequencing were used qualitatively and quantitatively to interrogate proteins and RNAs carried in intact myeloid-derived suppressor cells (MDSC) and exosomes shed in vitro by MDSC. In aggregate exosomes more than 4000 proteins were identified, including annexins and immunosuppressive mediators. Bioassays showed that exosomes induce MDSC chemotaxis dependent on S100A8 and S100A9 in their cargo. Surface selective chemistry identified glycoproteins on MDSC and exosome surfaces, including CD47 and thrombospondin 1, which both facilitate exosome-catalyzed chemotaxis. Large numbers of mRNAs and microRNAs were identified in aggregate exosomes, whose potential functions in receptor cells include angiogenesis, and proinflammatory and immunosuppressive activities. Inflammation was found to have asymmetric effects on MDSC and exosomal cargos. Collectively, our findings indicate that the exosomes shed by MDSC provide divergent and complementary functions that support the immunosuppression and tumor promotion activities of MDSC.
Collapse
Affiliation(s)
- Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland, Baltimore County, MD 20742, United States; Department of Pathology, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT 84112, United States
| |
Collapse
|
8
|
Cheng Q, Gu J, Adhikari BK, Sun L, Sun J. Is CD47 a potentially promising therapeutic target in cardiovascular diseases? - Role of CD47 in cardiovascular diseases. Life Sci 2020; 247:117426. [PMID: 32061866 DOI: 10.1016/j.lfs.2020.117426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 01/03/2023]
Abstract
CD47 (cluster of differentiation 47) is a ubiquitously expressed transmembrane protein that belongs to the immunoglobulin superfamily. CD47 is both a receptor for the matricellular protein thrombospondin-1 (TSP-1) and a ligand for signal-regulatory protein alpha (SIRPα). Suppression of CD47 activity enhances angiogenesis and blood flow, restores phagocytosis by macrophages, improves ischemic tissue survival, attenuates ischemia reperfusion injury, and reverses atherosclerotic plaque formation. In conclusion, these observations suggest a pathogenic role of CD47 in the development of cardiovascular diseases (CVDs) and indicate that CD47 might be a potentially promising molecular target for treating CVDs. Herein, we highlight the role of CD47 in the CVD pathogenesis and discuss the potential clinical application by targeting CD47 for treating CVDs.
Collapse
Affiliation(s)
- Quanli Cheng
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China
| | - Junlian Gu
- The School of Nursing, Shandong University, Jinan, China
| | - Binay Kumar Adhikari
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China
| | - Liguang Sun
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China.
| | - Jian Sun
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Yoon D, Yoon D, Sim H, Hwang I, Lee JS, Chun W. Accelerated Wound Healing by Fibroblasts Differentiated from Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in a Pressure Ulcer Animal Model. Stem Cells Int 2018; 2018:4789568. [PMID: 30693037 PMCID: PMC6332923 DOI: 10.1155/2018/4789568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts synthesize and secrete dermal collagen, matrix proteins, growth factors, and cytokines. These characteristics of fibroblasts provide a potential way for fibroblast therapy to treat skin ulcers more effectively than conventional therapies such as cytokine therapy and negative pressure wound therapy. However, the obstacle to the commercialization of fibroblast therapy is the limited supply of cells with consistent quality. In this study, we tested whether human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) could be differentiated into fibroblasts considering that they have characteristics of high differentiation rates, unlimited proliferation possibility from a single colony, and homogeneity. As a result, hESC-MSC-derived fibroblasts (hESC-MSC-Fbs) showed a significant increase in the expression of type I and III collagen, fibronectin, and fibroblast-specific protein-1 (FSP-1). Besides, vessel formation and wound healing were enhanced in hESC-MSC-Fb-treated skin tissues compared to PBS- or hESC-MSC-treated skin tissues, along with decreased IL-6 expression at 4 days after the formation of pressure ulcer wound in a mouse model. In view of the limited available cell sources for fibroblast therapy, hESC-MSC-Fbs show a promising potential as a commercial cell therapy source to treat skin ulcers.
Collapse
Affiliation(s)
- Dajeong Yoon
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Dogeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Heejoong Sim
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Inseok Hwang
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Wook Chun
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
- Department of Surgery, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Zeng D, Sun Q, Chen A, Fan J, Yang X, Xu L, Du P, Qiu W, Zhang W, Wang S, Sun Z. A fully human anti-CD47 blocking antibody with therapeutic potential for cancer. Oncotarget 2018; 7:83040-83050. [PMID: 27863402 PMCID: PMC5347751 DOI: 10.18632/oncotarget.13349] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/17/2016] [Indexed: 01/06/2023] Open
Abstract
CD47/SIRPα interaction serves as an immune checkpoint for macrophage-mediated phagocytosis. Mouse anti-CD47 blocking antibodies had demonstrated potent efficacy in the treatment of both leukemic and solid tumors in preclinical experimentations, and therefore had moved forward rapidly into clinical trials. However, a fully human blocking antibody, which meets clinical purpose better, has not been reported for CD47 up to date. In this study, we reported the isolation of a fully human anti-CD47 blocking antibody, ZF1, from a phage display library. ZF1 displayed high specificity and affinity for CD47 protein, which were comparable to those for humanized anti-CD47 blocking antibody B6H12. Importantly, ZF1 treatment could induce robust, or even stronger than B6H12, phagocytosis of leukemic cancer cells by macrophage in vitro, and protect BALB/c nude mice from cancer killing by engrafted leukemic cells (CCRF and U937) to a similar extent as B6H12 did. Thus, these data provide primary early pre-clinical support for the development of ZF1 as a fully human blocking antibody to treat human leukemia by targeting CD47 molecule.
Collapse
Affiliation(s)
- Dadi Zeng
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Qiang Sun
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Ang Chen
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Jiangfeng Fan
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Xiaopeng Yang
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Lei Xu
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Peng Du
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Weiyi Qiu
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Weicai Zhang
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Shuang Wang
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Zhiwei Sun
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| |
Collapse
|
11
|
Chauhan S, Danielson S, Clements V, Edwards N, Ostrand-Rosenberg S, Fenselau C. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function. J Proteome Res 2017; 16:238-246. [PMID: 27728760 PMCID: PMC6127855 DOI: 10.1021/acs.jproteome.6b00811] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.
Collapse
Affiliation(s)
- Sitara Chauhan
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Steven Danielson
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Virginia Clements
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Nathan Edwards
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Catherine Fenselau
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
12
|
Characterization of Novel Molecular Mechanisms Favoring Rac1 Membrane Translocation. PLoS One 2016; 11:e0166715. [PMID: 27835684 PMCID: PMC5105943 DOI: 10.1371/journal.pone.0166715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022] Open
Abstract
The Rac1 GTPase plays key roles in cytoskeletal organization, cell motility and a variety of physiological and disease-linked responses. Wild type Rac1 signaling entails dissociation of the GTPase from cytosolic Rac1-Rho GDP dissociation inhibitor (GDI) complexes, translocation to membranes, activation by exchange factors, effector binding, and activation of downstream signaling cascades. Out of those steps, membrane translocation is the less understood. Using transfections of a expression cDNA library in cells expressing a Rac1 bioreporter, we previously identified a cytoskeletal feedback loop nucleated by the F-actin binding protein coronin 1A (Coro1A) that promotes Rac1 translocation to the plasma membrane by facilitating the Pak-dependent dissociation of Rac1-Rho GDI complexes. This screening identified other potential regulators of this process, including WDR26, basigin, and TMEM8A. Here, we show that WDR26 promotes Rac1 translocation following a Coro1A-like and Coro1A-dependent mechanism. By contrast, basigin and TMEM8A stabilize Rac1 at the plasma membrane by inhibiting the internalization of caveolin-rich membrane subdomains. This latter pathway is F-actin-dependent but Coro1A-, Pak- and Rho GDI-independent.
Collapse
|
13
|
Tengood JE, Levy RJ, Stachelek SJ. The use of CD47-modified biomaterials to mitigate the immune response. Exp Biol Med (Maywood) 2016; 241:1033-41. [PMID: 27190273 DOI: 10.1177/1535370216647130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Addressing the aberrant interactions between immune cells and biomaterials represents an unmet need in biomaterial research. Although progress has been made in the development of bioinert coatings, identifying and targeting relevant cellular and molecular pathways can provide additional therapeutic strategies to address this major healthcare concern. To that end, we describe the immune inhibitory motif, receptor-ligand pairing of signal regulatory protein alpha and its cognate ligand CD47 as a potential signaling pathway to enhance biocompatibility. The goals of this article are to detail the known roles of CD47-signal regulatory protein alpha signal transduction pathway and to describe how immobilized CD47 can be used to mitigate the immune response to biomaterials. Current applications of CD47-modified biomaterials will also be discussed herein.
Collapse
Affiliation(s)
- Jillian E Tengood
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stanley J Stachelek
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Gupta MK, Jayaram S, Reddy DN, Polisetty RV, Sirdeshmukh R. Transcriptomic and Proteomic Data Integration and Two-Dimensional Molecular Maps with Regulatory and Functional Linkages: Application to Cell Proliferation and Invasion Networks in Glioblastoma. J Proteome Res 2015; 14:5017-27. [DOI: 10.1021/acs.jproteome.5b00765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Institute of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Savita Jayaram
- Institute of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Divijendra Natha Reddy
- Neuro-Oncology,
Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical
Foundation, Narayana Health, Bangalore 560099, India
| | | | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Neuro-Oncology,
Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical
Foundation, Narayana Health, Bangalore 560099, India
| |
Collapse
|
15
|
Soriano-Romaní L, García-Posadas L, López-García A, Paraoan L, Diebold Y. Thrombospondin-1 induces differential response in human corneal and conjunctival epithelial cells lines under in vitro inflammatory and apoptotic conditions. Exp Eye Res 2015; 134:1-14. [PMID: 25753839 DOI: 10.1016/j.exer.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/06/2015] [Accepted: 03/05/2015] [Indexed: 11/19/2022]
Abstract
Recently, thrombospondin-1 (TSP-1) has been reported to be critical for maintaining a healthy ocular surface. The purpose of the study was to characterize the expression of TSP-1 and of its receptors CD36 and CD47 in corneal and conjunctival epithelial cells and determine the effect of exogenous TSP-1 treatment on these cells, following the induction of inflammation- and apoptosis-related changes. The expression of TSP-1, CD36 and CD47 by corneal and conjunctival cell lines was firstly characterized by ELISA, immunofluorescence analysis, Western blotting and reverse transcription polymerase chain reaction (RT-PCR). Benzalkonium chloride (BAC) exposure for 5 or 15 min was used as pro-inflammatory and pro-apoptotic stimulus for corneal or conjunctival epithelial cells, respectively. To analyze inflammation and apoptosis-related changes, IL-6 and TGF-β2 secretion determined by ELISA was used as inflammatory markers, while activated caspase-3/7 levels and cell viability, determined by CellEvent™ Caspase-3/7 Green Detection Reagent and XTT cytotoxicity assay, respectively, were used as apoptotic markers. Changes in CD36 and CD47 mRNA expression were quantified by real time RT-PCR. Corneal epithelial cells secreted and expressed higher protein levels of TSP-1 than conjunctival epithelial cells, although TSP-1 mRNA expression levels were similar and had lower CD36 and CD47, both at protein and mRNA levels. Both cell lines responded to exogenous TSP-1 treatment increasing CD36 at protein and mRNA levels. Blocking experiments revealed a predominance of TSP-1/CD47 rather than TSP-1/CD36 interactions to up-regulate CD36 levels in conjunctival epithelial cells, but not in corneal epithelial cells. BAC exposure increased IL-6 secretion and caspase-3/7 levels and decreased cell viability in both, corneal and conjunctival epithelial cells. Moreover, BAC exposure increased latent TGF-β2 levels in conjunctival epithelial cells. Interestingly, CD36 mRNA expression was down-regulated after BAC exposure in both cell lines. Exogenous TSP-1 treatment reduced TGF-β2 up-regulated levels by BAC exposure in conjunctival epithelial cells and less pronounced reduced IL-6 in BAC-exposed corneal epithelial cells. The effect on CD36 and CD47 regulation was less pronounced or even opposite depending on the inflammation- and apoptosis-related markers tested. Our results show evidence of the capacity of corneal and conjunctival epithelial cells to respond to TSP-1 via CD36 or CD47. Experimental simulation of inflammation- and apoptosis-related conditions changed the effects differentially elicited by TSP-1 on corneal and conjunctival epithelial cells, suggesting an unexpected and relevant contribution of TSP-1 on ocular surface homeostasis regulation.
Collapse
Affiliation(s)
| | | | | | - Luminita Paraoan
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Yolanda Diebold
- Ocular Surface Group-IOBA, University of Valladolid, Valladolid, Spain.
| |
Collapse
|
16
|
Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 2015; 50:212-30. [PMID: 25708195 DOI: 10.3109/10409238.2015.1014024] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD47 is a widely expressed integral membrane protein that serves as the counter-receptor for the inhibitory phagocyte receptor signal-regulatory protein-α (SIRPα) and as a signaling receptor for the secreted matricellular protein thrombospondin-1. Recent studies employing mice and somatic cells lacking CD47 have revealed important pathophysiological functions of CD47 in cardiovascular homeostasis, immune regulation, resistance of cells and tissues to stress and chronic diseases of aging including cancer. With the emergence of experimental therapeutics targeting CD47, a more thorough understanding of CD47 signal transduction is essential. CD47 lacks a substantial cytoplasmic signaling domain, but several cytoplasmic binding partners have been identified, and lateral interactions of CD47 with other membrane receptors play important roles in mediating signaling resulting from the binding of thrombospondin-1. This review addresses recent advances in identifying the lateral binding partners, signal transduction pathways and downstream transcription networks regulated through CD47 in specific cell lineages. Major pathways regulated by CD47 signaling include calcium homeostasis, cyclic nucleotide signaling, nitric oxide and hydrogen sulfide biosynthesis and signaling and stem cell transcription factors. These pathways and other undefined proximal mediators of CD47 signaling regulate cell death and protective autophagy responses, mitochondrial biogenesis, cell adhesion and motility and stem cell self-renewal. Although thrombospondin-1 is the best characterized agonist of CD47, the potential roles of other members of the thrombospondin family, SIRPα and SIRPγ binding and homotypic CD47 interactions as agonists or antagonists of signaling through CD47 should also be considered.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- a Laboratory of Pathology , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | | |
Collapse
|
17
|
Barclay AN, van den Berg TK. The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. Annu Rev Immunol 2014; 32:25-50. [DOI: 10.1146/annurev-immunol-032713-120142] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Thrombospondins (TSPs) are secreted extracellular matrix (ECM) proteins from TSP family, which consists of five homologous members. They share a complex domain structure and have numerous binding partners in ECM and multiple cell surface receptors. Information that has emerged over the past decade identifies TSPs as important mediators of cellular homeostasis, assigning new important roles in cardiovascular pathology to these proteins. RECENT FINDINGS Recent studies of the functions of TSP in the cardiovascular system, diabetes and aging, which placed several TSPs in a position of critical regulators, demonstrated the involvement of these proteins in practically every aspect of cardiovascular pathophysiology related to atherosclerosis: inflammation, immunity, leukocyte recruitment and function, function of vascular cells, angiogenesis, and responses to hypoxia, ischemia and hyperglycemia. TSPs are also critically important in the development and ultimate outcome of the complications associated with atherosclerosis--myocardial infarction, and heart hypertrophy and failure. Their expression and significance increase with age and with the progression of diabetes, two major contributors to the development of atherosclerosis and its complications. SUMMARY This overview of recent literature examines the latest information on the newfound functions of TSPs that emphasize the importance of ECM in cardiovascular homeostasis and pathology. The functions of TSPs in myocardium, vasculature, vascular complications of diabetes, aging and immunity are discussed.
Collapse
|
19
|
Abu El-Asrar AM, Nawaz MI, Ola MS, De Hertogh G, Opdenakker G, Geboes K. Expression of thrombospondin-2 as a marker in proliferative diabetic retinopathy. Acta Ophthalmol 2013; 91:e169-77. [PMID: 23387388 DOI: 10.1111/aos.12035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To determine the expression of the endogenous anti-angiogenic and pro-fibrotic matricellular protein thrombospondin (TSP)-2 and its receptors CD36 and CD47 in proliferative diabetic retinopathy (PDR). In addition, we examined the expression of TSP-2 in the retinas of diabetic rats. METHODS Epiretinal membranes from 14 patients with PDR and nine patients with proliferative vitreoretinopathy were studied by immunohistochemistry. Vitreous samples from 30 PDR and 25 nondiabetic patients were studied by enzyme-linked immunosorbent assay. Vitreous samples and retinas of rats were examined by Western blotting. RESULTS In epiretinal membranes, vascular endothelial cells and myofibroblasts expressed TSP-2, CD36 and CD47. In PDR membranes, significant correlations were observed between numbers of blood vessels expressing the panendothelial cell marker CD34 and numbers of blood vessels and stromal cells expressing TSP-2, CD36 and CD47. The numbers of blood vessels and stromal cells expressing CD34, TSP-2, CD36 and CD47 were significantly higher in membranes with active neovascularization when compared with those with quiescent disease. Thrombospondin-2 levels in vitreous samples from PDR patients were significantly higher than those in control patients without diabetes (p < 0.001). Western blot analysis revealed a significant increase in the expression of intact and cleaved TSP-2 in vitreous samples from PDR patients and in the retinas of diabetic rats compared to nondiabetic controls. CONCLUSIONS Upregulation of TSP-2 may be a protective mechanism against inflammation and angiogenesis associated with PDR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
20
|
Papageorgiou AP, Swinnen M, Vanhoutte D, VandenDriessche T, Chuah M, Lindner D, Verhesen W, de Vries B, D'hooge J, Lutgens E, Westermann D, Carmeliet P, Heymans S. Thrombospondin-2 prevents cardiac injury and dysfunction in viral myocarditis through the activation of regulatory T-cells. Cardiovasc Res 2012; 94:115-24. [DOI: 10.1093/cvr/cvs077] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Interactions between the extracellular matrix and inflammation during viral myocarditis. Immunobiology 2011; 217:503-10. [PMID: 21907443 DOI: 10.1016/j.imbio.2011.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/24/2011] [Accepted: 07/05/2011] [Indexed: 01/17/2023]
Abstract
Viral myocarditis is a life-threatening disease characterized by severe cardiac inflammation that can result in heart failure or sudden cardiac death in previously healthy adults. In a subset of patients, it may result in the development of dilated cardiomyopathy due to the chronic inflammatory process. Despite its clinical need, specific treatments for myocarditis are currently not available. The extracellular matrix (ECM) under normal conditions, functions to maintain the mechanical and structural integrity of the heart but can adapt under pathological circumstances to preserve cardiac function. Recent studies have revealed a crucial role of the ECM in the reparative process after cardiac insult, not only as a key component in cardiac remodeling but also as a regulator of the inflammatory process. Increasing our understanding of the impact the ECM has in the disease pathogenesis and progression of viral myocarditis, might lead to much needed therapeutic interventions. In this review we will describe the pathology of viral myocarditis and illustrate the interplay between inflammation and the ECM in general terms, and during viral myocarditis.
Collapse
|
22
|
Sick E, Boukhari A, Deramaudt T, Rondé P, Bucher B, André P, Gies JP, Takeda K. Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway. Glia 2011; 59:308-19. [PMID: 21125662 DOI: 10.1002/glia.21102] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD47 is a membrane receptor that plays pivotal roles in many pathophysiological processes, including infection, inflammation, cell spreading, proliferation, and apoptosis. We show that activation of CD47 increases proliferation of human U87 and U373 astrocytoma cells but not normal astrocytes. CD47 function-blocking antibodies inhibit proliferation of untreated U87 and U373 cells but not normal astrocytes, suggesting that CD47 may be constitutively activated in astrocytoma. CD47 expression levels were similar in our three cell types. CD47 couples to G-proteins in astrocytes and astrocytoma and especially to the Gβγ dimer. Downstream signaling following CD47 activation involves Gβγ dimer-dependent activation of the PI3K/Akt pathway in astrocytoma cells but not in normal astrocytes. This pathway is known to be deregulated in astrocytoma, leading to cell proliferation and enhanced survival signals. Putative PLIC-1 interaction with CD47 in astrocytoma cells but not astrocytes may contribute to the proliferative effect observed upon activation of CD47. Our data indicate that CD47 receptors have a stimulatory role in cell proliferation and demonstrate for the first time that CD47 signals via the PI3K/Akt pathway in cancerous cells but not normal cells.
Collapse
Affiliation(s)
- Emilie Sick
- Université de Strasbourg, CNRS UMR 7213-Pharmacologie, Faculté de Pharmacie, 74 rte du Rhin, Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Lecchi C, Ceciliani F, Bernasconi S, Franciosi F, Bronzo V, Sartorelli P. Bovine alpha-1 acid glycoprotein can reduce the chemotaxis of bovine monocytes and modulate CD18 expression. Vet Res 2008; 39:50. [DOI: 10.1051/vetres:2008027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 06/20/2008] [Indexed: 01/08/2023] Open
|
25
|
Su X, Johansen M, Looney MR, Brown EJ, Matthay MA. CD47 deficiency protects mice from lipopolysaccharide-induced acute lung injury and Escherichia coli pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:6947-53. [PMID: 18453616 PMCID: PMC2771449 DOI: 10.4049/jimmunol.180.10.6947] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CD47 modulates neutrophil transmigration toward the sites of infection or injury. Mice lacking CD47 are susceptible to Escherichia coli (E. coli) peritonitis. However, less is known concerning the role of CD47 in the development of acute lung inflammation and injury. In this study, we show that mice lacking CD47 are protected from LPS-induced acute lung injury and E. coli pneumonia with a significant reduction in pulmonary edema, lung vascular permeability, and bacteremia. Reconstitution of CD47(+/-) mice with CD47(-/-) neutrophils significantly reduced lung edema and neutrophil infiltration, thus demonstrating that CD47(+) neutrophils are required for the development of lung injury from E. coli pneumonia. Importantly, CD47-deficient mice with E. coli pneumonia had an improved survival rate. Taken together, deficiency of CD47 protects mice from LPS-induced acute lung injury and E. coli pneumonia. Targeting CD47 may be a novel pathway for treatment of acute lung injury.
Collapse
Affiliation(s)
- Xiao Su
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | |
Collapse
|
26
|
Santegoets SJAM, Gibbs S, Kroeze K, van de Ven R, Scheper RJ, Borrebaeck CA, de Gruijl TD, Lindstedt M. Transcriptional profiling of human skin-resident Langerhans cells and CD1a+ dermal dendritic cells: differential activation states suggest distinct functions. J Leukoc Biol 2008; 84:143-51. [PMID: 18436579 DOI: 10.1189/jlb.1107750] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In human skin, two main populations of dendritic cells (DC) can be discriminated: dermal DC (DDC) and epidermal Langerhans cells (LC). Although extensively studied, most of the knowledge about DDC and LC phenotype and function is obtained from studying DDC and LC cultured in vitro or DDC and LC migrated from skin explants. These studies have left the exact relationship between steady-state human LC and DDC unclear: in particular, whether CD1a+ DDC represent migrated LC or whether they constitute a separate subset. To gain further insight in the kinship between skin-resident CD1a+ DDC and LC, we analyzed CD1a+ DDC and LC, isolated from steady-state skin samples, by high-density microarray analysis. Results show that the CD1a+ DDC specifically express markers associated with DDC phenotype, such as the macrophage mannose receptor, DC-specific ICAM-grabbing nonintegrin, the scavenger receptor CD36, coagulation factor XIIIa, and chemokine receptor CCR5, whereas LC specifically express Langerin, membrane ATPase (CD39), and CCR6, all hallmarks of the LC lineage. In addition, under steady-state conditions, both DC subsets display a strikingly different activation status, indicative of distinct functional properties. CD1a+ DDC exhibit a more activated, proinflammatory, migratory, and T cell-stimulatory profile, as compared with LC, whereas LC mainly express molecules involved in cell adhesion and DC retention in the epidermis. In conclusion, transcriptional profiling is consistent with the notion that CD1a+ DDC and LC represent two distinct DC subsets but also that under steady-state conditions, CD1a+ DDC and epidermal LC represent opposites of the DC activation spectrum.
Collapse
|
27
|
Chin AC, Parkos CA. Pathobiology of Neutrophil Transepithelial Migration: Implications in Mediating Epithelial Injury. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 2:111-43. [DOI: 10.1146/annurev.pathol.2.010506.091944] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alex C. Chin
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322; ,
| | - Charles A. Parkos
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322; ,
| |
Collapse
|
28
|
Subramanian S, Boder ET, Discher DE. Phylogenetic divergence of CD47 interactions with human signal regulatory protein alpha reveals locus of species specificity. Implications for the binding site. J Biol Chem 2006; 282:1805-18. [PMID: 17098740 DOI: 10.1074/jbc.m603923200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell-cell interactions between ubiquitously expressed integrin-associated protein (CD47) and its counterreceptor signal regulatory protein (SIRPalpha) on phagocytes regulate a wide range of adhesive signaling processes, including the inhibition of phagocytosis as documented in mice. We show that CD47-SIRPalpha binding interactions are different between mice and humans, and we exploit phylogenetic divergence to identify the species-specific binding locus on the immunoglobulin domain of human CD47. All of the studies are conducted in the physiological context of membrane protein display on Chinese hamster ovary (CHO) cells. Novel quantitative flow cytometry analyses with CD47-green fluorescent protein and soluble human SIRPalpha as a probe show that neither human CD47 nor SIRPalpha requires glycosylation for interaction. Human CD47-expressing CHO cells spread rapidly on SIRPalpha-coated glass surfaces, correlating well with the spreading of primary human T cells. In contrast, CHO cells expressing mouse CD47 spread minimally and show equally weak binding to soluble human SIRPalpha. Further phylogenetic analyses and multisite substitutions of the CD47 Ig domain show that human to cow mutation of a cluster of seven residues on adjacent strands near the middle of the domain decreases the association constant for human SIRPalpha to about one-third that of human CD47. Direct tests of cell-cell adhesion between human monocytes and CD47-displaying CHO cells affirm the species specificity as well as the importance of the newly identified binding locus in cell-cell interactions.
Collapse
Affiliation(s)
- Shyamsundar Subramanian
- Biophysical Engineering Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
29
|
Van VQ, Lesage S, Bouguermouh S, Gautier P, Rubio M, Levesque M, Nguyen S, Galibert L, Sarfati M. Expression of the self-marker CD47 on dendritic cells governs their trafficking to secondary lymphoid organs. EMBO J 2006; 25:5560-8. [PMID: 17093498 PMCID: PMC1679770 DOI: 10.1038/sj.emboj.7601415] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 10/10/2006] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) capture and process Ag in the periphery. Thus, traffic through lymphatic vessels is mandatory before DCs relocate to lymph nodes where they are dedicated to T-cell priming. Here, we show that the ubiquitous self-marker CD47 selectively regulates DC, but not T and B cell trafficking across lymphatic vessels and endothelial barriers in vivo. We find an altered skin DC migration and impaired T-cell priming in CD47-deficient mice at steady state and under inflammatory conditions. Competitive DC migration assays and active immunization with myeloid DCs demonstrate that CD47 expression is required on DCs but not on the endothelium for efficient DC trafficking and T-cell responses. This migratory defect correlates with the quasi-disappearance of splenic marginal zone DCs in nonmanipulated CD47-deficient mice. Nonetheless, CCR7 expression and CCL19-driven chemotaxis remain intact. Our data reveal that CD47 on DCs is a critical factor in controlling migration and efficient initiation of the immune response.
Collapse
Affiliation(s)
- Vu Quang Van
- Immunoregulation Laboratory, CHUM Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Sylvie Lesage
- Immunoregulation Laboratory, CHUM Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Salim Bouguermouh
- Immunoregulation Laboratory, CHUM Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Patrick Gautier
- Immunoregulation Laboratory, CHUM Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, CHUM Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Martin Levesque
- Immunoregulation Laboratory, CHUM Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Sébastien Nguyen
- Immunoregulation Laboratory, CHUM Research Center, University of Montreal, Montreal, Quebec, Canada
| | | | - Marika Sarfati
- Immunoregulation Laboratory, CHUM Research Center, University of Montreal, Montreal, Quebec, Canada
- Laboratoire Immunorégulation (M4211K), Centre de recherche du CHUM, 1560, rue Sherbrooke est, Montréal, Québec, Canada H2L 4M1. Tel.: +1 514 890 8000 (26701); Fax: +1 514 412 7652; E-mail:
| |
Collapse
|
30
|
Wang H, VerHalen J, Madariaga ML, Xiang S, Wang S, Lan P, Oldenborg PA, Sykes M, Yang YG. Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood 2006; 109:836-42. [PMID: 17008545 PMCID: PMC1785095 DOI: 10.1182/blood-2006-04-019794] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Signal regulatory protein alpha (SIRPalpha) is a critical immune inhibitory receptor on macrophages, and its interaction with CD47, a ligand for SIRPalpha, prevents autologous phagocytosis. We hypothesized that interspecies incompatibility of CD47 may contribute to the rejection of xenogeneic cells by macrophages. Here, we show that pig CD47 does not interact with mouse SIPRalpha. Similar to CD47-/- mouse cells, porcine red blood cells (RBCs) failed to induce SIRPalpha tyrosine phosphorylation in mouse macrophages. Blocking SIRPalpha with antimouse SIRPalpha mAb (P84) significantly enhanced the phagocytosis of CD47+/+ mouse cells, but did not affect the engulfment of porcine or CD47-/- mouse cells by mouse macrophages. CD47-deficient mice, whose macrophages do not phagocytose CD47-/- mouse cells, showed markedly delayed clearance of porcine RBCs compared with wild-type mouse recipients. Furthermore, mouse CD47 expression on porcine cells markedly reduced their phagocytosis by mouse macrophages both in vitro and in vivo. These results indicate that interspecies incompatibility of CD47 contributes significantly to phagocytosis of xenogeneic cells by macrophages and suggest that genetic manipulation of donor CD47 to improve its interaction with the recipient SIRPalpha may provide a novel approach to prevent phagocyte-mediated xenograft rejection.
Collapse
Affiliation(s)
- Hui Wang
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Wenzhou Medical College, Wenzhou, China
| | - Jon VerHalen
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Maria Lucia Madariaga
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shuanglin Xiang
- Beth Israel Deaconess Medical Center of Harvard Medical School, Boston, MA
| | - Shumei Wang
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ping Lan
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden
| | - Megan Sykes
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yong-Guang Yang
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Wenzhou Medical College, Wenzhou, China
- Correspondence: Yong-Guang Yang,
Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, MGH-East, Bldg 149-5102, 13th St, Boston, MA 02129; e-mail:
| |
Collapse
|
31
|
Yu X, Fukunaga A, Nagai H, Oniki S, Honma N, Ichihashi M, Matozaki T, Nishigori C, Horikawa T. Engagement of CD47 inhibits the contact hypersensitivity response via the suppression of motility and B7 expression by Langerhans cells. J Invest Dermatol 2006; 126:797-807. [PMID: 16456531 DOI: 10.1038/sj.jid.5700176] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD47 is a membrane-associated glycoprotein that suppresses the function of immune cells. We previously reported that Langerhans cells (LCs) express Src homology 2 domain-containing protein tyrosine phosphatase substrate 1 (SHPS-1), a ligand for CD47, which plays an important role in the regulation of their motility. In this study, we show that LCs also express CD47, and that ligation of CD47 with SHPS-1-Fc fusion protein in vivo diminishes the development of the contact hypersensitivity response. We further demonstrate that CD47 engagement affects immune functions of LCs. CD47 engagement in vivo significantly inhibits the emigration of LCs from the epidermis into draining lymph nodes following treatment with haptens and tumor necrosis factor-alpha. The emigration of dendritic cells from skin explants into the medium and the chemotaxis of murine XS52 dendritic cells were significantly reduced by treatment with SHPS-1-Fc or an anti-CD47 mAb. Under explant culture system, SHPS-1-Fc treatment suppressed the expression of CD80 and CD86 of LCs. These effects on LCs and contact hypersensitivity response of CD47 ligation were reversed by treatment with pertussis toxin. These results suggest that the ligation of CD47 inhibits the migration of LCs and the expression of B7 costimulatory molecules, which results in inhibition of the contact hypersensitivity response.
Collapse
Affiliation(s)
- Xijun Yu
- Division of Dermatology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Goodman MG. Mechanism of synergy between T cell signals and C8-substituted guanine nucleosides in humoral immunity: B lymphotropic cytokines induce responsiveness to 8-mercaptoguanosine. Br J Pharmacol 1986; 167:1415-30. [PMID: 3514757 DOI: 10.1111/j.1476-5381.2012.02099.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
B lymphocytes require a source of T cell-like help to produce antibody to T cell-dependent antigens. T cell-derived lymphokines and C8-substituted guanine ribonucleosides (such as 8-mercaptoguanosine; 8MGuo) are effective sources of such T cell-like help. Addition of T cell-derived lymphokines to antigen-activated B cells together with 8MGuo results in synergistic B cell differentiation, amplifying the sum of the individual responses twofold to four-fold. Lymphokine activity is required at initiation of culture for optimal synergy with 8MGuo, whereas the nucleoside can be added up to 48 hr after the lymphokines with full synergy. 8MGuo provides a perceived T cell-like differentiation signal to B cells from immunodeficient xid mice, thereby distinguishing a subset of Lyb-5- nucleoside-responsive B cells from those activated by soluble anti-mu followed by B cell stimulatory factor-1, interleukin 1, and B cell differentiation factors, which are Lyb-5+. Moreover, at least a subset of the B cells recruited by the synergistic interaction of lymphokines and nucleoside is distinct from that responsive to 8MGuo + antigen, insofar as Sephadex G-10 nonadherent xid B cells fail to respond to either 8MGuo or lymphokines alone, but do respond to the combination. A distinct subpopulation can also be demonstrated among normal B cells by limiting dilution analysis in which the precursor frequency of antigen-reactive B cells in the presence of lymphokines or nucleoside alone increases substantially when both agents are present together. In concert with the kinetic data, these observations suggest that synergy derives at least in part from the ability of lymphokines to induce one or more elements the absence of which limits the capacity of a distinct B cell subpopulation to respond to 8MGuo.
Collapse
|