1
|
Parrie LE, Crowell JAE, Telling GC, Bessen RA. The cellular prion protein promotes olfactory sensory neuron survival and axon targeting during adult neurogenesis. Dev Biol 2018; 438:23-32. [PMID: 29577883 DOI: 10.1016/j.ydbio.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
The cellular prion protein (PrPC) has been associated with diverse biological processes including cell signaling, neurogenesis, and neuroprotection, but its physiological function(s) remain ambiguous. Here we determine the role of PrPC in adult neurogenesis using the olfactory system model in transgenic mice. Olfactory sensory neurons (OSNs) within the olfactory sensory epithelium (OSE) undergo neurogenesis, integration, and turnover even into adulthood. The neurogenic processes of proliferation, differentiation/maturation, and axon targeting were evaluated in wild type, PrP-overexpressing, and PrP-null transgenic mice. Our results indicate that PrPC plays a role in maintaining mature OSNs within the epithelium: overexpression of PrPC resulted in greater survival of mitotically active cells within the OSE, whereas absence of prion protein resulted in fewer cells being maintained over time. These results are supported by both quantitative PCR analysis of gene expression and protein analysis characteristic of OSN differentiation. Finally, evaluation of axon migration determined that OSN axon targeting in the olfactory bulb is PrPC dose-dependent. Together, these findings provide new mechanistic insight into the neuroprotective role for PrPC in adult OSE neurogenesis, whereby more mature neurons are stably maintained in animals expressing PrPC.
Collapse
Affiliation(s)
- Lindsay E Parrie
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| | - Jenna A E Crowell
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| | - Richard A Bessen
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Oland LA, Tolbert LP. Roles of glial cells in neural circuit formation: insights from research in insects. Glia 2010; 59:1273-95. [PMID: 21732424 DOI: 10.1002/glia.21096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Investigators over the years have noted many striking similarities in the structural organization and function of neural circuits in higher invertebrates and vertebrates. In more recent years, the discovery of similarities in the cellular and molecular mechanisms that guide development of these circuits has driven a revolution in our understanding of neural development. Cellular mechanisms discovered to underlie axon pathfinding in grasshoppers have guided productive studies in mammals. Genes discovered to play key roles in the patterning of the fruitfly's central nervous system have subsequently been found to play key roles in mice. The diversity of invertebrate species offers to investigators numerous opportunities to conduct experiments that are harder or impossible to do in vertebrate species, but that are likely to shed light on mechanisms at play in developing vertebrate nervous systems. These experiments elucidate the broad suite of cellular and molecular interactions that have the potential to influence neural circuit formation across species. Here we focus on what is known about roles for glial cells in some of the important steps in neural circuit formation in experimentally advantageous insect species. These steps include axon pathfinding and matching to targets, dendritic patterning, and the sculpting of synaptic neuropils. A consistent theme is that glial cells interact with neurons in two-way, reciprocal interactions. We emphasize the impact of studies performed in insects and explore how insect nervous systems might best be exploited next as scientists seek to understand in yet deeper detail the full repertory of functions of glia in development.
Collapse
Affiliation(s)
- Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | |
Collapse
|
3
|
Torre ER, Gutekunst CA, Gross RE. Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype. Mol Cell Neurosci 2010; 44:135-53. [PMID: 20298787 PMCID: PMC2862895 DOI: 10.1016/j.mcn.2010.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 12/23/2022] Open
Abstract
Here we explore the role of semaphorin 3A and 3F (Sema3A, Sema3F) in the formation of the mesotelencephalic pathway. We show that Sema3A and 3F are expressed in the ventral mesencephalon (VM) of E13.5 rat embryos; the receptors Neuropilin 1 and Neuropilin 2, and co-receptors L1CAM, NrCAM, and Plexins A1 and A3 but not A4 are expressed by VM dopaminergic neurons; these neurons bind Sema3A and 3F in vitro which induces collapse of their growth cones and elicits, with different potencies, a repulsive response; and this response is absent in axons from Nrp1 and Nrp2 null embryos. Despite these in vitro effects, only very mild anatomical defects were detected in the organization of the mesotelencephalic pathway in embryonic and adult Nrp1 or Nrp2 null mice. However, the dopaminergic meso-habenular pathway and catecholaminergic neurons in the parafascicular and paraventricular nuclei of the thalamus were significantly affected in Nrp2 null mice. These data are consistent with a model whereby Sema3A and 3F, in combination with other guidance molecules, contributes to the navigation of DA axons to their final synaptic targets.
Collapse
Affiliation(s)
- Enrique R. Torre
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA
| | | | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA
- Department of Neurology and Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
4
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
5
|
de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci 2009; 3:52. [PMID: 20582279 PMCID: PMC2858608 DOI: 10.3389/neuro.22.004.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022] Open
Abstract
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
6
|
Lim JH, Davis GE, Wang Z, Li V, Wu Y, Rue TC, Storm DR. Zicam-induced damage to mouse and human nasal tissue. PLoS One 2009; 4:e7647. [PMID: 19876403 PMCID: PMC2765727 DOI: 10.1371/journal.pone.0007647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 10/08/2009] [Indexed: 11/18/2022] Open
Abstract
Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc), a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.
Collapse
Affiliation(s)
- Jae H. Lim
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Greg E. Davis
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Zhenshan Wang
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Vicky Li
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Yuping Wu
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Tessa C. Rue
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Mayer U, Küller A, Daiber PC, Neudorf I, Warnken U, Schnölzer M, Frings S, Möhrlen F. The proteome of rat olfactory sensory cilia. Proteomics 2009; 9:322-34. [PMID: 19086097 DOI: 10.1002/pmic.200800149] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca(2+) for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC-ESI-MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.
Collapse
Affiliation(s)
- Ulrich Mayer
- Department of Molecular Physiology, Institute of Zoology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
HIRAO A, OOKAWARA S. Lectin binding patterns in the olfactory bulb of mallard ducks (Anas platyrhynchos). Anim Sci J 2008. [DOI: 10.1111/j.1740-0929.2008.00581.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Olender T, Lancet D, Nebert DW. Update on the olfactory receptor (OR) gene superfamily. Hum Genomics 2008; 3:87-97. [PMID: 19129093 PMCID: PMC2752031 DOI: 10.1186/1479-7364-3-1-87] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 11/10/2022] Open
Abstract
The olfactory receptor gene (OR) superfamily is the largest in the human genome. The superfamily contains 390 putatively functional genes and 465 pseudogenes arranged into 18 gene families and 300 subfamilies. Even members within the same subfamily are often located on different chromosomes. OR genes are located on all autosomes except chromosome 20, plus the X chromosome but not the Y chromosome. The gene:pseudogene ratio is lowest in human, higher in chimpanzee and highest in rat and mouse--most likely reflecting the greater need of olfaction for survival in the rodent than in the human. The OR genes undergo allelic exclusion, each sensory neurone expressing usually only one odourant receptor allele; the mechanism by which this phenomenon is regulated is not yet understood. The nomenclature system (based on evolutionary divergence of genes into families and subfamilies of the OR gene superfamily) has been designed similarly to that originally used for the CYP gene superfamily.
Collapse
Affiliation(s)
- Tsviya Olender
- The Crown Human Genome Center, Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Doron Lancet
- The Crown Human Genome Center, Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics (CEG), University Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
10
|
Bernstein JA, Zhang G, Jin L, Abbott C, Nebert DW. Olfactory receptor gene polymorphisms and nonallergic vasomotor rhinitis. J Asthma 2008; 45:287-92. [PMID: 18446592 PMCID: PMC2752410 DOI: 10.1080/02770900701867579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We sought a genotype-phenotype association: between single-nucleotide polymorphisms (SNPs) in olfactory receptor (OR) genes from the two largest OR gene clusters and odor-triggered nonallergic vasomotor rhinitis (nVMR). In the initial pedigree screen, using transmission disequilibrium test (TDT) analysis, six SNPs showed "significant" p-values between 0.0449 and 0.0043. In a second case-control population, the previously identified six SNPs did not re-emerge, whereas four new SNPs showed p-values between 0.0490 and 0.0001. Combining both studies, none of the SNPs in the TDT analysis survived the Bonferroni correction. In the population study, one SNP showed an empirical p-value of 0.0066 by shuffling cases and controls with 10(5) replicates; however, the p-value for this SNP was 0.83 in the pedigree study. This study emphasizes that underpowered studies having p-values between < 0.05 and 0.0001 should be regarded as inconclusive and require further replication before concluding the study is "informative." However, we believe that our hypothesis that an association between OR genotypes and the nVMR phenotype remains feasible. Future studies using either a genomewide association study of all OR gene-pseudogene regions throughout the genome--at the current recommended density of 2.5 to 5 kb per tag SNP--or studies incorporating microarray analyses of the entire "OR genome" in well-characterized nVMR patients are required.
Collapse
Affiliation(s)
- Jonathan A Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Immunology/Allergy Section, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0053, USA.
| | | | | | | | | |
Collapse
|
11
|
Klimmeck D, Mayer U, Ungerer N, Warnken U, Schnölzer M, Frings S, Möhrlen F. Calcium-signaling networks in olfactory receptor neurons. Neuroscience 2007; 151:901-12. [PMID: 18155848 DOI: 10.1016/j.neuroscience.2007.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 10/31/2007] [Accepted: 11/16/2007] [Indexed: 01/03/2023]
Abstract
The olfactory neuroepithelium represents a unique interface between the brain and the external environment. Olfactory function comprises a distinct set of molecular tasks: sensory signal transduction, cytoprotection and adult neurogenesis. A multitude of biochemical studies has revealed the central role of Ca(2+) signaling in the function of olfactory receptor neurons (ORNs). We set out to establish Ca(2+)-dependent signaling networks in ORN cilia by proteomic analysis. We subjected a ciliary membrane preparation to Ca(2+)/calmodulin-affinity chromatography using mild detergent conditions in order to maintain functional protein complexes involved in olfactory Ca(2+) signaling. Thus, calmodulin serves as a valuable tool to gain access to novel Ca(2+)-regulated protein complexes. Tandem mass spectrometry (nanoscale liquid-chromatography-electrospray injection) identified 123 distinct proteins. Ninety-seven proteins (79%) could be assigned to specific olfactory functions, including 32 to sensory signal transduction and 40 to cytoprotection. We point out novel perspectives for research on the Ca(2+)-signaling networks in the olfactory system of the rat.
Collapse
Affiliation(s)
- D Klimmeck
- Department of Molecular Physiology, Institute of Zoology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|