1
|
Ruiz‐Malagón AJ, Rodríguez‐Sojo MJ, Redondo E, Rodríguez‐Cabezas ME, Gálvez J, Rodríguez‐Nogales A. Systematic review: The gut microbiota as a link between colorectal cancer and obesity. Obes Rev 2025; 26:e13872. [PMID: 39614602 PMCID: PMC11884970 DOI: 10.1111/obr.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microbiome modulation is one of the novel strategies in medicine with the greatest future to improve the health of individuals and reduce the risk of different conditions, including metabolic, immune, inflammatory, and degenerative diseases, as well as cancer. Regarding the latter, many studies have reported the role of the gut microbiome in carcinogenesis, formation and progression of colorectal cancer (CRC), as well as its response to different systemic therapies. Likewise, obesity, one of the most important risk factors for CRC, is also well known for its association with gut dysbiosis. Moreover, obesity and CRC display, apart from microbial dysbiosis, chronic inflammation, which participates in their pathogenesis. Although human and murine studies demonstrate the significant impact of the microbiome in regulating energy metabolism and CRC development, little is understood about the contribution of the microbiome to the development of obesity-associated CRC. Therefore, this systematic review explores the evidence for microbiome changes associated with these conditions and hypothesizes that this may contribute to the pathogenesis of obesity-related CRC. Two databases were searched, and different studies on the relationship among obesity, intestinal microbiota and CRC in clinical and preclinical models were selected. Data extraction was carried out by two reviewers independently, and 101 studies were finally considered. Findings indicate the existence of a risk association between obesity and CRC derived from metabolic, immune, and microbial disorders.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz‐Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Instituto de Investigación Biomédica de Málaga (IBIMA)MalgaSpain
| | - María Jesús Rodríguez‐Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Eduardo Redondo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Servicio de DigestivoHospital Universitario Virgen de las NievesGranadaSpain
| | - María Elena Rodríguez‐Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Alba Rodríguez‐Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| |
Collapse
|
2
|
Scheurlen KM, Chariker JH, Kanaan Z, Littlefield AB, George JB, Seraphine C, Rochet A, Rouchka EC, Galandiuk S. The NOTCH4-GATA4-IRG1 axis as a novel target in early-onset colorectal cancer. Cytokine Growth Factor Rev 2022; 67:25-34. [PMID: 35941043 DOI: 10.1016/j.cytogfr.2022.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
|
3
|
Moodi M, Tavakoli T, Tahergorabi Z. Crossroad between Obesity and Gastrointestinal Cancers: A Review of Molecular Mechanisms and Interventions. Int J Prev Med 2021; 12:18. [PMID: 34084315 PMCID: PMC8106288 DOI: 10.4103/ijpvm.ijpvm_266_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/12/2020] [Indexed: 12/28/2022] Open
Abstract
The burden of gastrointestinal (GI) cancer is increasing worldwide, and in the past decade, cancer had entered the list of chronic debilitating diseases whose risk is substantially increased by hypernutrition. Obesity may increase the risk of cancer by the imbalance of various mechanisms including insulin and insulin-like growth factor1 (IGF-I) signaling, systemic inflammation, immune dysregulation, tumor angiogenesis, adipokines secretion, and intestinal microbiota that usually act interdependently. An increased understanding of the mechanisms underlying obesity-GI cancer link can provide multiple opportunities for cancer prevention. This review discusses various mechanisms involved molecular mechanisms linking obesity with GI cancers including esophagus, stomach, colorectal and hepatocellular. Furthermore, an optional intervention such as diet restriction and exercise is described, which may be preventive or therapeutic in GI cancer.
Collapse
Affiliation(s)
- Mitra Moodi
- Social Determinants of Health Research Center, Department of Health Education and Health Promotion, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahmineh Tavakoli
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Gasteroenterology Section, Department of Internal Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Physiology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Chang ML, Yang Z, Yang SS. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. Int J Mol Sci 2020; 21:E8308. [PMID: 33167521 PMCID: PMC7663948 DOI: 10.3390/ijms21218308] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is a highly dynamic endocrine tissue and constitutes a central node in the interorgan crosstalk network through adipokines, which cause pleiotropic effects, including the modulation of angiogenesis, metabolism, and inflammation. Specifically, digestive cancers grow anatomically near adipose tissue. During their interaction with cancer cells, adipocytes are reprogrammed into cancer-associated adipocytes and secrete adipokines to affect tumor cells. Moreover, the liver is the central metabolic hub. Adipose tissue and the liver cooperatively regulate whole-body energy homeostasis via adipokines. Obesity, the excessive accumulation of adipose tissue due to hyperplasia and hypertrophy, is currently considered a global epidemic and is related to low-grade systemic inflammation characterized by altered adipokine regulation. Obesity-related digestive diseases, including gastroesophageal reflux disease, Barrett's esophagus, esophageal cancer, colon polyps and cancer, non-alcoholic fatty liver disease, viral hepatitis-related diseases, cholelithiasis, gallbladder cancer, cholangiocarcinoma, pancreatic cancer, and diabetes, might cause specific alterations in adipokine profiles. These patterns and associated bases potentially contribute to the identification of prognostic biomarkers and therapeutic approaches for the associated digestive diseases. This review highlights important findings about altered adipokine profiles relevant to digestive diseases, including hepatic, pancreatic, gastrointestinal, and biliary tract diseases, with a perspective on clinical implications and mechanistic explorations.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Zinger Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei 10630, Taiwan;
| |
Collapse
|
5
|
Wójcik M, Herman AP, Zieba DA, Krawczyńska A. The Impact of Photoperiod on the Leptin Sensitivity and Course of Inflammation in the Anterior Pituitary. Int J Mol Sci 2020; 21:ijms21114153. [PMID: 32532062 PMCID: PMC7312887 DOI: 10.3390/ijms21114153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Leptin has a modulatory impact on the course of inflammation, affecting the expression of proinflammatory cytokines and their receptors. Pathophysiological leptin resistance identified in humans occurs typically in sheep during the long-day photoperiod. This study aimed to determine the effect of the photoperiod with relation to the leptin-modulating action on the expression of the proinflammatory cytokines and their receptors in the anterior pituitary under physiological or acute inflammation. Two in vivo experiments were conducted on 24 blackface sheep per experiment in different photoperiods. The real-time PCR analysis for the expression of the genes IL1B, IL1R1, IL1R2, IL6, IL6R, IL6ST, TNF, TNFR1, and TNFR2 was performed. Expression of all examined genes, except IL1β and IL1R2, was higher during short days. The leptin injection increased the expression of all examined genes during short days. In short days the synergistic effect of lipopolysaccharide and leptin increased the expression of IL1B, IL1R1, IL1R2, IL6, TNF, and TNFR2, and decreased expression of IL6ST. This mechanism was inhibited during long days for the expression of IL1R1, IL6, IL6ST, and TNFR1. The obtained results suggest the occurrence of leptin resistance during long days and suggest that leptin modulates the course of inflammation in a photoperiod-dependent manner in the anterior pituitary.
Collapse
Affiliation(s)
- Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
- Correspondence:
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
| | - Dorota Anna Zieba
- Laboratory of Biotechnology and Genomics, Department of Nutrition, Animal Biotechnology and Fisheries, Agricultural University of Krakow, 30-248 Krakow, Poland;
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
| |
Collapse
|
6
|
Jiang N, Li Y, Shu T, Wang J. Cytokines and inflammation in adipogenesis: an updated review. Front Med 2019; 13:314-329. [PMID: 30066061 DOI: 10.1007/s11684-018-0625-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Shen W, Li Y, Zou Y, Cao L, Cai X, Gong J, Xu Y, Zhu W. Mesenteric Adipose Tissue Alterations in Crohn's Disease Are Associated With the Lymphatic System. Inflamm Bowel Dis 2019; 25:283-293. [PMID: 30295909 DOI: 10.1093/ibd/izy306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mesenteric fat wrapping and thickening are typical characteristics of Crohn's disease (CD). The purpose of this study was to explore the cause of mesenteric adipose hypertrophy and analyze the role of lymphatic vessels in mesenteric adipose tissue in CD. METHODS Twenty-three CD patients who underwent ileocolonic resection were included. In CD patients, specimens were obtained from hypertrophic mesenteric adipose tissue (htMAT) next to the diseased ileum. The mesenteric lymphatic vessels in mesenteric adipose tissue were separated under stereoscope microscope. Transmission electron microscopy and immunofluorescence were used to observe the structure of mesenteric lymphatic vessels. The NF-κB signaling pathway in mesenteric adipose tissue was detected in CD specimens using Western blotting. RESULTS Electron microscopy showed that the structure of mesenteric lymphatic vessel was discontinuous, and the microstructure of lymphatic endothelial cells appeared ruptured and incomplete. Through an immunofluorescence technique, we found that the surface of lymphatic endothelial cells lacked tight junction protein staining in CD. Also, the expression of claudin-1, occludin, and ZO-1 in the mesenteric lymphatic vessel of htMAT was significantly lower than that of control. These results indicated that the structure of the mesenteric lymphatic vessel in htMAT was mispatterned and ruptured, which could lead to lymph leakage. Leaky lymph factors could stimulate adipose tissue to proliferate. Antigens that leaked into the mesenteric adipose tissue could effectively elicit an immune response. The levels of cytokines (TNF-a, IL-1β, IL-6) was increased in the htMAT of CD patients by activated NF-κB signaling pathway. CONCLUSIONS Our findings demonstrated that the hypertrophy of mesenteric adipose tissue may result from mispatterned and ruptured lymphatic vessels. Alteration of mesenteric adipose tissue was associated with activated NF-κB signaling pathway. This study enhances support for elucidating the importance of mesenteric lymphatic vessels and adipose tissue in CD.
Collapse
Affiliation(s)
- Weisong Shen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yujie Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Lei Cao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingchen Cai
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Wu Z, Tan J, Chi Y, Zhang F, Xu J, Song Y, Cong X, Wu N, Liu Y. Mesenteric adipose tissue contributes to intestinal barrier integrity and protects against nonalcoholic fatty liver disease in mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G659-G670. [PMID: 29902065 DOI: 10.1152/ajpgi.00079.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral adipose tissue (VAT) is related to nonalcoholic fatty liver disease (NAFLD). However, the role of mesenteric adipose tissue (MAT), part of the VAT, in NAFLD is unclear. In the present study, we monitored the liver and four depots of the VAT in high-fat diet (HFD)-feeding mice at multiple time points (4, 8, and 12 wk). The MAT had become inflamed by the eighth week of HFD feeding, earlier than other depots of VAT. Furthermore, MAT removal after 8 wk of HFD resulted in more severe steatosis and more foci of inflammation infiltration, as well as higher NAFLD activity scores. Consistent with these findings, the mRNA expression of proinflammatory cytokines and lipid anabolism genes was increased in the livers of inflamed MAT-removal mice. MAT removal also injured the intestinal barrier and promoted intestinal inflammation. The bacterial load translocated to the liver and circulating levels of lipopolysaccharide were also evaluated in inflamed MAT-removal mice. In a coculture experiment involving adipocytes and intestinal epithelial cells, mRNA expression of zonula occludens-1 (ZO-1), and occludin in CT-26 cells was upregulated and permeability of monolayer Caco-2 cells was elevated under stimulation from adipocytes or inflamed adipocytes. Taken together, these results demonstrated that MAT removal damaged the intestinal barrier and aggravated NAFLD and that MAT inflammation may be a compensatory response to protect the liver by maintaining the intestinal barrier. NEW & NOTEWORTHY The mesenteric adipose tissue (MAT) lies between the gut and liver and plays a critical role in hepatic metabolic diseases. In the present study, we found that the MAT was prone to inflammation in high-fat diet-fed mice. Removal of the inflamed MAT resulted in more hepatic inflammation, lipid accumulation, and decreased glucose tolerance. Furthermore, we showed that the MAT contributed to intestinal barrier integrity, thus clarifying why MAT removal aggravated nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Jiang Tan
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Yujing Chi
- Central Laboratory & Institute of Clinical Molecular Biology Peking University People's Hospital , Beijing , People's Republic of China
| | - Feng Zhang
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Yang Song
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Xu Cong
- Hepatology Institute, Peking University People's Hospital, Beijing, People's Republic of China
| | - Na Wu
- Central Laboratory & Institute of Clinical Molecular Biology Peking University People's Hospital , Beijing , People's Republic of China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| |
Collapse
|
9
|
Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:421-49. [PMID: 27193454 DOI: 10.1146/annurev-pathol-012615-044359] [Citation(s) in RCA: 577] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including cancer, and is increasingly recognized as a growing cause of preventable cancer risk. Chronic inflammation, a well-known mediator of cancer, is a central characteristic of obesity, leading to many of its complications, and obesity-induced inflammation confers additional cancer risk beyond obesity itself. Multiple mechanisms facilitate this strong association between cancer and obesity. Adipose tissue is an important endocrine organ, secreting several hormones, including leptin and adiponectin, and chemokines that can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of proinflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance protumoral effects. Dysregulated metabolism that stems from obesity, including insulin resistance, hyperglycemia, and dyslipidemia, can further impact tumor growth and development. This review describes how adipose tissue becomes inflamed in obesity, summarizes ways these mechanisms impact cancer development, and discusses their role in four adipose-associated cancers that demonstrate elevated incidence or mortality in obesity.
Collapse
Affiliation(s)
- Tuo Deng
- Diabetes Research Center and Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030; .,Department of Medicine, Weill Cornell Medical College at Cornell University, New York, New York 10021
| | - Christopher J Lyon
- Diabetes Research Center and Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030;
| | - Stephen Bergin
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210.,The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Michael A Caligiuri
- The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Willa A Hsueh
- The Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
10
|
Donohoe CL, Lysaght J, O'Sullivan J, Reynolds JV. Emerging Concepts Linking Obesity with the Hallmarks of Cancer. Trends Endocrinol Metab 2017; 28:46-62. [PMID: 27633129 DOI: 10.1016/j.tem.2016.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
There is compelling epidemiological evidence linking obesity to many tumours; however, the molecular mechanisms fuelling this association are not clearly understood. Emerging evidence links changes in the tumour microenvironment with the obese state, and murine and human studies highlight the relevance of adipose stromal cells (ASCs), including immune cells, both at remote fat depots, such as the omentum, as well as in peritumoural tissue. These obesity-associated changes have been implicated in several hallmarks of cancer, including the chronic inflammatory state and associated cell signalling, epithelial-to-mesenchymal transition (EMT), tumour-related fibrosis, angiogenesis, and genomic instability. Here, we present a summary of developments over the past 5 years, with particular focus on the tumour microenvironment in the obese state.
Collapse
Affiliation(s)
- Claire L Donohoe
- Department of Surgery, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin/St James' Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin/St James' Hospital, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin/St James' Hospital, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin/St James' Hospital, Dublin, Ireland.
| |
Collapse
|
11
|
Buckley MM, O'Brien R, Devlin M, Creed AA, Rae MG, Hyland NP, Quigley EMM, McKernan DP, O'Malley D. Leptin modifies the prosecretory and prokinetic effects of the inflammatory cytokine interleukin-6 on colonic function in Sprague-Dawley rats. Exp Physiol 2016; 101:1477-1491. [PMID: 27676233 DOI: 10.1113/ep085917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/23/2016] [Indexed: 03/03/2025]
Abstract
What is the central question of this study? Does crosstalk exist between leptin and interleukin-6 in colonic enteric neurons, and is this a contributory factor in gastrointestinal dysfunction associated with irritable bowel syndrome? What is the main finding and its importance? Leptin ameliorates the prosecretory and prokinetic effects of the pro-inflammatory cytokine interleukin-6 on rat colon. Leptin also suppresses the neurostimulatory effects of irritable bowel syndrome plasma, which has elevated concentrations of interleukin-6, on enteric neurons. This may indicate a regulatory role for leptin in immune-mediated bowel dysfunction. In addition to its role in regulating energy homeostasis, the adipokine leptin modifies gastrointestinal (GI) function. Indeed, leptin-resistant obese humans and leptin-deficient obese mice exhibit altered GI motility. In the functional GI disorder irritable bowel syndrome (IBS), circulating leptin concentrations are reported to differ from those of healthy control subjects. Additionally, IBS patients display altered cytokine profiles, including elevated circulating concentrations of the pro-inflammatory cytokine interleukin-6 (IL-6), which bears structural homology and similarities in intracellular signalling to leptin. This study aimed to investigate interactions between leptin and IL-6 in colonic neurons and their possible contribution to IBS pathophysiology. The functional effects of leptin and IL-6 on colonic contractility and absorptosecretory function were assessed in organ baths and Ussing chambers in Sprague-Dawley rat colon. Calcium imaging and immunohistochemical techniques were used to investigate the neural regulation of GI function by these signalling molecules. Our findings provide a neuromodulatory role for leptin in submucosal neurons, where it inhibited the stimulatory effects of IL-6. Functionally, this translated to suppression of IL-6-evoked potentiation of veratridine-induced secretory currents. Leptin also attenuated IL-6-induced colonic contractions, although it had little direct effect on myenteric neurons. Calcium responses evoked by IBS plasma in both myenteric and submucosal neurons were also suppressed by leptin, possibly through interactions with IL-6, which is elevated in IBS plasma. As leptin has the capacity to ameliorate the neurostimulatory effects of soluble mediators in IBS plasma and modulated IL-6-evoked changes in bowel function, leptin may have a role in immune-mediated bowel dysfunction in IBS patients.
Collapse
Affiliation(s)
- Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Michelle Devlin
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aisling A Creed
- Department of Physiology, University College Cork, Cork, Ireland
| | - Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Eamonn M M Quigley
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Declan P McKernan
- Department of Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Yousef AI, El-Masry OS, Yassin EH. The anti-oncogenic influence of ellagic acid on colon cancer cells in leptin-enriched microenvironment. Tumour Biol 2016; 37:13345-13353. [PMID: 27460082 DOI: 10.1007/s13277-016-5284-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
Ellagic acid (EA) has been proposed as a promising candidate for therapeutic use in colon cancer. Investigation of the effectiveness of EA in a leptin-enriched model might have been given a little interest. Here in, we investigated the anti-tumor effect of EA in the presence of leptin to reflect on therapeutic use of EA in obesity-linked colon cancer. Proven effective in leptin-enriched microenvironment, EA inhibited cell proliferation of HCT-116 and CaCo-2 cell lines, modulated cell cycle, translocated Bax to the mitochondrial fraction of cells, activated caspase-8, and reduced PCNA expression. The current study findings cast a beam of light on the potential therapeutic use of EA in obesity-related colon carcinogenesis.
Collapse
Affiliation(s)
- Amany I Yousef
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, 165, Horreya Avenue, Hadara, Alexandria, 21561, Egypt
| | - Omar S El-Masry
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, 165, Horreya Avenue, Hadara, Alexandria, 21561, Egypt.
| | - Eman H Yassin
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, 165, Horreya Avenue, Hadara, Alexandria, 21561, Egypt
| |
Collapse
|
13
|
The impact of BMI on early colorectal neoplastic lesions and the role of endoscopic diagnosis:. An Italian observational study. Int J Surg 2016; 33 Suppl 1:S71-5. [PMID: 27250694 DOI: 10.1016/j.ijsu.2016.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION CRC often arises from polyps: an early detection and resection are effective in decreasing both incidence and mortality rate. Relation between risk factors, adenomas and CRC have been showed, but there is little evidence for overweight association with preneoplastic lesions. This study analyzed the correlation between body mass index (BMI) and primitive site of polyps. METHODS We performed a retrospective study, in a period between January 2010 and October 2014. Subjects aged 50 years and older who underwent their first-time screening colonoscopy were included. Reports regarding characteristic of the polyps were collected. RESULTS 142 patients were enrolled and they were divided into two groups: group I - patients with left sided colonic polyps, and group II - patients who right sided colonic polyps. The ANOVA test-one way, documents a difference between the BMI and the colon localization of polyps. CONCLUSIONS Patients with overweight had a higher risk to develop lesions in the left colon compared to patients with normal weight. Despite the fact that Italian epidemiological studies have found a prevalence of polyps of 44-53% in rectal-sigmoid segment, 32-36% in transverse segment and of 14-20% in right segment, we showed an incidence of 26.05% for right sided polyps, which maybe related with the eating habits of the territory.
Collapse
|
14
|
Roberts MD, Mobley CB, Toedebush RG, Heese AJ, Zhu C, Krieger AE, Cruthirds CL, Lockwood CM, Hofheins JC, Wiedmeyer CE, Leidy HJ, Booth FW, Rector RS. Western diet-induced hepatic steatosis and alterations in the liver transcriptome in adult Brown-Norway rats. BMC Gastroenterol 2015; 15:151. [PMID: 26519296 PMCID: PMC4628330 DOI: 10.1186/s12876-015-0382-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023] Open
Abstract
Background The purpose of this study was to investigate the effects of sub-chronic high fat, high sucrose diet (also termed ‘Westernized diet’ or WD) feeding on the liver transcriptome during early nonalcoholic fatty liver disease (NAFLD) development. Methods Brown Norway male rats (9 months of age) were randomly assigned to receive ad libitum access to a control (CTL; 14 % kcal fat, 1.2 % sucrose by weight) diet or WD (42 % kcal from fat, 34 % sucrose by weight) for 6 weeks. Results Six weeks of WD feeding caused hepatic steatosis development as evidenced by the 2.25-fold increase in liver triacylglycerol content, but did not induce advanced liver disease (i.e., no overt inflammation or fibrosis) in adult Brown Norway rats. RNA deep sequencing (RNA-seq) revealed that 94 transcripts were altered in liver by WD feeding (46 up-, 48 down-regulated, FDR < 0.05). Specifically, the top differentially regulated gene network by WD feeding was ‘Lipid metabolism, small molecular biochemistry, vitamin and mineral metabolism’ (Ingenuity Pathway Analysis (IPA) score 61). The top-regulated canonical signaling pathway in WD-fed rats was the ‘Superpathway of cholesterol biosynthesis’ (10/29 genes regulated, p = 1.68E-17), which coincides with a tendency for serum cholesterol levels to increase in WD-fed rats (p = 0.09). Remarkably, liver stearoyl-CoA desaturase (Scd) mRNA expression was by far the most highly-induced transcript in WD-fed rats (approximately 30-fold, FDR = 0.01) which supports previous literature underscoring this gene as a crucial target during NAFLD development. Conclusions In summary, sub-chronic WD feeding appears to increase hepatic steatosis development over a 6-week period but only induces select inflammation-related liver transcripts, mostly acute phase response genes. These findings continue to outline the early stages of NAFLD development prior to overt liver inflammation and advanced liver disease.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA.,Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, USA
| | | | - Ryan G Toedebush
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Alexander J Heese
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Conan Zhu
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Anna E Krieger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Clayton L Cruthirds
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | | | - John C Hofheins
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Charles E Wiedmeyer
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Heather J Leidy
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medicine-Gastroenterology and Hepatology, University of Missouri, Columbia, MO, USA. .,Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO, USA.
| |
Collapse
|
15
|
Abstract
Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.
Collapse
|
16
|
Chapkin RS, DeClercq V, Kim E, Fuentes NR, Fan YY. Mechanisms by Which Pleiotropic Amphiphilic n-3 PUFA Reduce Colon Cancer Risk. CURRENT COLORECTAL CANCER REPORTS 2014; 10:442-452. [PMID: 25400530 DOI: 10.1007/s11888-014-0241-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the major causes of cancer-related mortality in both men and women worldwide. Genetic susceptibility and diet are primary determinants of cancer risk and tumor behavior. Experimental, epidemiological, and clinical data substantiate the beneficial role of n-3 polyunsaturated fatty acids (PUFA) in preventing chronic inflammation and colon cancer. From a mechanistic perspective, n-3 PUFA are pleiotropic and multifaceted with respect to their molecular mechanisms of action. For example, this class of dietary lipid uniquely alters membrane structure/ cytoskeletal function, impacting membrane receptor function and downstream signaling cascades, including gene expression profiles and cell phenotype. In addition, n-3 PUFA can synergize with other potential anti-tumor agents, such as fermentable fiber and curcumin. With the rising prevalence of diet-induced obesity, there is also an urgent need to elucidate the link between chronic inflammation in adipose tissue and colon cancer risk in obesity. In this review, we will summarize recent developments linking n-3 PUFA intake, membrane alterations, epigenetic modulation, and effects on obesity-associated colon cancer risk.
Collapse
Affiliation(s)
- Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Center for Translational Environmental Health Research, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA. Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Vanessa DeClercq
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Molecular & Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Natividad Roberto Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
17
|
Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: Environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol 2014; 20:6055-6072. [PMID: 24876728 PMCID: PMC4033445 DOI: 10.3748/wjg.v20.i20.6055] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/14/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer and cancer-related mortality worldwide. The disease has been traditionally a major health problem in industrial countries, however the CRC rates are increasing in the developing countries that are undergoing economic growth. Several environmental risk factors, mainly changes in diet and life style, have been suggested to underlie the rise of CRC in these populations. Diet and lifestyle impinge on nuclear receptors, on the intestinal microbiota and on crucial molecular pathways that are implicated in intestinal carcinogenesis. In this respect, the epidemiological transition in several regions of the world offers a unique opportunity to better understand CRC carcinogenesis by studying the disease phenotypes and their environmental and molecular associations in different populations. The data from these studies may have important implications for the global prevention and treatment of CRC.
Collapse
|
18
|
Olivo-Marston SE, Hursting SD, Perkins SN, Schetter A, Khan M, Croce C, Harris CC, Lavigne J. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLoS One 2014; 9:e94765. [PMID: 24732966 PMCID: PMC3986228 DOI: 10.1371/journal.pone.0094765] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/28/2013] [Indexed: 12/17/2022] Open
Abstract
Obesity is an established colon cancer risk factor, while preventing or reversing obesity via a calorie restriction (CR) diet regimen decreases colon cancer risk. Unfortunately, the biological mechanisms underlying these associations are poorly understood, hampering development of mechanism-based approaches for preventing obesity-related colon cancer. We tested the hypotheses that diet-induced obesity (DIO) would increase (and CR would decrease) colon tumorigenesis in the mouse azoxymethane (AOM) model. In addition, we established that changes in inflammatory cytokines, growth factors, and microRNAs are associated with these energy balance-colon cancer links, and thus represent mechanism-based targets for colon cancer prevention. Mice were injected with AOM once a week for 5 weeks and randomized to: 1) control diet; 2) 30% CR diet; or 3) DIO diet. Mice were euthanized at week 5 (n = 12/group), 10 (n = 12/group), and 20 (n = 20/group) after the last AOM injection. Colon tumors were counted, and cytokines, insulin-like growth factor 1 (IGF-1), IGF binding protein 3 (IGFBP-3), adipokines, proliferation, apoptosis, and expression of microRNAs (miRs) were measured. The DIO diet regimen induced an obese phenotype (∼36% body fat), while CR induced a lean phenotype (∼14% body fat); controls were intermediate (∼26% body fat). Relative to controls, DIO increased (and CR decreased) the number of colon tumors (p = 0.01), cytokines (p<0.001), IGF-1 (p = 0.01), and proliferation (p<0.001). DIO decreased (and CR increased) IGFBP-3 and apoptosis (p<0.001). miRs including mir-425, mir-196, mir-155, mir-150, mir-351, mir-16, let-7, mir34, and mir-138 were differentially expressed between the dietary groups. We conclude that the enhancing effects of DIO and suppressive effects of CR on colon carcinogenesis are associated with alterations in several biological pathways, including inflammation, IGF-1, and microRNAs.
Collapse
Affiliation(s)
- Susan E. Olivo-Marston
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Epidemioogy, The Ohio State University College of Public Health, Columbus, Ohio, United States of America
- * E-mail:
| | - Stephen D. Hursting
- Department of Nutritional Sciences, University of Texas-Austin, Austin, Texas, United States of America
- Department of Molecular Carcinogenesis, University of Texas-MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Susan N. Perkins
- Center for Cancer Training, The National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aaron Schetter
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mohammed Khan
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carlo Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jackie Lavigne
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Kuo SM, Chan WC, Hu Z. Wild-type and IL10-null mice have differential colonic epithelial gene expression responses to dietary supplementation with synbiotic Bifidobacterium animalis subspecies lactis and inulin. J Nutr 2014; 144:245-51. [PMID: 24381223 DOI: 10.3945/jn.113.185249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prebiotic plus probiotic (synbiotic) supplementations promote fermentation and have shown anti-inflammatory activity in colonic epithelium. However, in many instances, patients with inflammatory bowel disease (IBD) have demonstrated adverse effects after prebiotic supplementation at a dose well tolerated by normal individuals. To test the hypothesis that the host inflammation affects the colonic epithelial response to increased fermentation, the gene expression of colonic epithelium was analyzed. In a 1-way experimental design to test the effect of supplements in wild-type mice using the standard diet formulated by the American Institute of Nutrition (AIN-93G) as the control diet, fermentable fiber inulin (5%) in the absence or presence of the probiotic Bifidobacterium animalis subspecies lactis (Bb12) (10(8) CFU/kg diet) showed limited effects on gene expression as determined by whole-genome microarray. Bb12 supplementation alone was known not to increase fermentation and here instead significantly upregulated genes in nucleic acid metabolic processes. The effects of the synbiotic diet were then determined in mice exposed to LPS-induced inflammation in a 2-way experimental design testing the effect of diet and LPS. The microarray and quantitative reverse transcription-polymerase chain reaction analyses on the wild-type mice revealed that LPS-induced changes in the colonic epithelium were 4- to 10-fold less in the synbiotic diet group compared with the control diet group. Unlike the wild-type mice, anti-inflammatory cytokine interleukin 10 (IL10)-null mice (susceptible to IBD) given the synbiotic diet, compared with those given the control diet, had 3- to 40-fold increased expression of inflammation-related genes such as Cxcl1 (chemokine C-X-C motif ligand 1) and S100a9 (S100 calcium binding protein A9) in the absence and presence of LPS exposure. These contrasting intestinal epithelial responses to increased fermentation in wild-type and IL10-null mice are similar to the difference between healthy human individuals and those with IBD, suggesting that the host disease/genetic background should be considered before prebiotic/probiotic supplementation.
Collapse
|
20
|
Alemán JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology 2014; 146:357-373. [PMID: 24315827 PMCID: PMC3978703 DOI: 10.1053/j.gastro.2013.11.051] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023]
Abstract
Obesity is among the fastest growing diseases worldwide; treatment is inadequate, and associated disorders, including gastrointestinal cancers, have high morbidity and mortality. An increased understanding of the mechanisms of obesity-induced carcinogenesis is required to develop methods to prevent or treat these cancers. In this report, we review the mechanisms of obesity-associated colorectal, esophageal, gastric, and pancreatic cancers and potential treatment strategies.
Collapse
Affiliation(s)
| | - Leonardo H. Eusebi
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, and Center for Applied Biomedical Research (CRBA), University of Bologna, Italy
| | - Kavish Patidar
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | |
Collapse
|
21
|
Verkerke HP, Petri WA, Marie CS. The dynamic interdependence of amebiasis, innate immunity, and undernutrition. Semin Immunopathol 2012; 34:771-85. [PMID: 23114864 PMCID: PMC3510265 DOI: 10.1007/s00281-012-0349-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/21/2012] [Indexed: 01/27/2023]
Abstract
Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, greatly contributes to disease burden in the developing world. Efforts to exhaustively characterize the pathogenesis of amebiasis have increased our understanding of the dynamic host-parasite interaction and the process by which E. histolytica trophozoites transition from gut commensals to invaders of the intestinal epithelium. Mouse models of disease continue to be instrumental in this area. At the same time, large-scale studies in human populations have identified genetic and environmental factors that influence susceptibility to amebiasis. Nutritional status has long been known to globally influence immune function. So it is not surprising that undernutrition has emerged as a critical risk factor. A better understanding of how nutritional status affects immunity to E. histolytica will have dramatic implications in the development of novel treatments. Future work should continue to characterize the fascinating host-parasite arms race that occurs at each stage of infection.
Collapse
Affiliation(s)
- Hans P. Verkerke
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Chelsea S. Marie
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
22
|
Abstract
Enhanced susceptibility to infection has long been recognized in children with congenital deficiency of leptin or its receptor. Studies in mice have demonstrated that leptin deficiency affects both the innate and acquired immune systems. Here, we review recent studies that demonstrate the impact on immunity of a common non-synonomous polymorphism of the leptin receptor. In a Bangladesh cohort of children, the presence of two copies of the ancestral Q223 allele was significantly associated with resistance to amebiasis. Children and mice with at least one copy of the leptin receptor 223R mutation were more susceptible to amebic colitis. Leptin signaling in the intestinal epithelium and downstream STAT3 (signal transducer and activator of transcription 3) and SHP2 (Src homology phosphatase 2) signaling were required for protection in the murine model of amebic colitis. Murine models have also implicated leptin in protection from other infections, including Mycobacterium tuberculosis, Klebsiella pneumoniae, and Streptococcus pneumoniae. Thus, the role of leptin signaling in infectious disease and specifically leptin-mediated protection of the intestinal epithelium will be the focus of this review.
Collapse
|
23
|
Marie CS, Verkerke HP, Paul SN, Mackey AJ, Petri WA. Leptin protects host cells from Entamoeba histolytica cytotoxicity by a STAT3-dependent mechanism. Infect Immun 2012; 80:1934-43. [PMID: 22331430 PMCID: PMC3347425 DOI: 10.1128/iai.06140-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/29/2012] [Indexed: 11/20/2022] Open
Abstract
The adipocytokine leptin links nutritional status to immune function. Leptin signaling protects from amebiasis, but the molecular mechanism is not understood. We developed an in vitro model of ameba-host cell interaction to test the hypothesis that leptin prevents ameba-induced apoptosis in host epithelial cells. We demonstrated that activation of mammalian leptin signaling increased cellular resistance to amebic cytotoxicity, including caspase-3 activation. Exogenous expression of the leptin receptor conferred resistance in susceptible cells, and leptin stimulation enhanced protection. A series of leptin receptor signaling mutants showed that resistance to amebic cytotoxicity was dependent on activation of STAT3 but not the Src homology-2 domain-containing tyrosine phosphatase (SHP-2) or STAT5. A common polymorphism in the leptin receptor (Q223R) that increases susceptibility to amebiasis in humans and mice was found to increase susceptibility to amebic cytotoxicity in single cells. The Q223R polymorphism also decreased leptin-dependent STAT3 activation by 21% relative to that of the wild-type (WT) receptor (P = 0.035), consistent with a central role of STAT3 signaling in protection. A subset of genes uniquely regulated by STAT3 in response to leptin was identified. Most notable were the TRIB1 and suppressor of cytokine signaling 3 (SOCS3) genes, which have opposing roles in the regulation of apoptosis. Overall apoptotic genes were highly enriched in this gene set (P < 1E-05), supporting the hypothesis that leptin regulation of host apoptotic genes via STAT3 is responsible for protection. This is the first demonstration of a mammalian signaling pathway that restricts amebic pathogenesis and represents an important advance in our mechanistic understanding of how leptin links nutrition and susceptibility to infection.
Collapse
Affiliation(s)
- Chelsea S Marie
- Biology Department, Drew University, Madison, New Jersey, USA.
| | | | | | | | | |
Collapse
|
24
|
Kaidar-Person O, Bar-Sela G, Person B. The two major epidemics of the twenty-first century: obesity and cancer. Obes Surg 2012; 21:1792-7. [PMID: 21842287 DOI: 10.1007/s11695-011-0490-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is a well-known fact that severe obesity is associated with the metabolic syndrome, type 2 diabetes, cardiovascular disease, hypertension, and other diseases. Epidemiological studies have suggested that obesity is also associated with increased risk of several cancer types. The number of people who are suffering from severe obesity is growing, and clinical data suggest that severely obese patients belong to a unique population with regards to risk, efficacy of screening, and cancer treatment. This review will point out the potential mechanism linking obesity and cancer and will discuss several challenges in various treatment modalities of cancer in obese patients.
Collapse
Affiliation(s)
- Orit Kaidar-Person
- Division of Oncology, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
25
|
Farquharson AJ, Steele RJ, Carey FA, Drew JE. Novel multiplex method to assess insulin, leptin and adiponectin regulation of inflammatory cytokines associated with colon cancer. Mol Biol Rep 2011; 39:5727-36. [DOI: 10.1007/s11033-011-1382-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/13/2011] [Indexed: 12/16/2022]
|
26
|
Lakhan SE, Kirchgessner A. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction. J Transl Med 2011; 9:202. [PMID: 22115311 PMCID: PMC3235071 DOI: 10.1186/1479-5876-9-202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 11/24/2011] [Indexed: 02/07/2023] Open
Abstract
Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS), which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Global Neuroscience Initiative Foundation, Los Angeles, CA, USA.
| | | |
Collapse
|
27
|
Teixeira LG, Leonel AJ, Aguilar EC, Batista NV, Alves AC, Coimbra CC, Ferreira AVM, de Faria AMC, Cara DC, Alvarez Leite JI. The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation. Lipids Health Dis 2011; 10:204. [PMID: 22073943 PMCID: PMC3254137 DOI: 10.1186/1476-511x-10-204] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/10/2011] [Indexed: 12/13/2022] Open
Abstract
Background This study evaluated the relationship between ulcerative colitis and obesity, which are both chronic diseases characterized by inflammation and increases in immune cells and pro-inflammatory cytokines. Methods Mice with chronic ulcerative colitis induced by 2 cycles of dextran sodium sulfate (DSS) in the first and fourth week of the experiment were fed a high-fat diet (HFD) to induce obesity by 8 weeks. The animals were divided into 4 \ groups (control, colitis, HFD and colitis + HFD). Results Obesity alone did not raise histopathology scores, but the combination of obesity and colitis worsened the scores in the colon compared to colitis group. Despite the reduction in weight gain, there was increased inflammatory infiltrate in both the colon and visceral adipose tissue of colitis + HFD mice due to increased infiltration of macrophages, neutrophils and lymphocytes. Intravital microscopy of VAT microvasculature showed an increase in leukocyte adhesion and rolling and overexpression of adhesion molecules compared to other groups. Moreover, circulating lymphocytes, monocytes and neutrophils in the spleen and cecal lymph nodes were increased in the colitis + HFD group. Conclusion Our results demonstrated the relationship between ulcerative colitis and obesity as aggravating factors for each disease, with increased inflammation in the colon and adipose tissue and systemic alterations observed in the spleen, lymph nodes and bloodstream.
Collapse
Affiliation(s)
- Lílian G Teixeira
- Department of Biochemistry and Immunology - Institute of Biological Sciences -Universidade Federal de Minas Gerais, Av, Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Molecular mechanisms linking adipokines to obesity-related colon cancer: focus on leptin. Proc Nutr Soc 2011; 71:175-80. [PMID: 22014041 DOI: 10.1017/s0029665111003259] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is linked to increased risk of colon cancer, currently the third most common cancer. Consequently rising levels of obesity worldwide are likely to significantly impact on obesity-related colon cancers in the decades to come. Understanding the molecular mechanisms whereby obesity increases colon cancer risk is thus a focus for research to inform strategies to prevent the increasing trend in obesity-related cancers. This review will consider research on deregulation of adipokine signalling, a consequence of altered adipokine hormone secretion from excess adipose tissue, with a focus on leptin, which has been studied extensively as a potential mediator of obesity-related colon cancer. Numerous investigations using colon cell lines in vitro, in vivo studies in rodents and investigations of colon cancer patients illuminate the complexity of the interactions of leptin with colon tissues via leptin receptors expressed by the colon epithelium. Although evidence indicates a role for leptin in proliferation of colon epithelial cells in vitro, this has been contradicted by studies in rodent models. However, recent studies have indicated that leptin may influence inflammatory mediators linked with colon cancer and also promote cell growth dependent on genotype and is implicated in growth promotion of colon cancer cells. Studies in human cancer patients indicate that there may be different tumour sub-types with varying levels of leptin receptor expression, indicating the potential for leptin to induce variable responses in the different tumour types. These studies have provided insights into the complex interplay of adipokines with responsive tissues prone to obesity-related colon cancer. Deregulation of adipokine signalling via adipokine receptors located in the colon appears to be a significant factor in obesity-related colon cancer. Molecular profiling of colon tumours will be a useful tool in future strategies to characterise the influence that adipokines may have on tumour development and subsequent therapeutic intervention. Study of the molecular mechanisms linking obesity with cancer also supports recommendations to maintain a normal body weight to reduce the risk of colon cancer.
Collapse
|
29
|
Drew J. Janice Drew’s work on diet and cancer. World J Gastrointest Pathophysiol 2011; 2:61-4. [PMID: 21860839 PMCID: PMC3158879 DOI: 10.4291/wjgp.v2.i4.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/06/2011] [Accepted: 08/13/2011] [Indexed: 02/06/2023] Open
Abstract
Obesity and associated reduced consumption of plant derived foods are linked to increased risk of colon cancer as well as a number of other organ specific cancers. Inflammatory processes are a contributing factor but the precise mechanisms remain elusive. Obesity and cancer incidence are increasing worldwide, presenting bleak prospects for reducing, or preventing, obesity related cancers. The incidence of these preventable cancers can be achieved with greater understanding of the molecular mechanisms linking diet and carcinogenesis. Janice Drew has developed a research program over recent years to investigate molecular mechanisms related to consumption of anti-inflammatory metabolites generated from consumption of plant based diets, the impact of high fat diets and associated altered metabolism and obesity on regulation of colon inflammatory responses and processes regulating the colon epithelium. Comprehensive strategies have been developed incorporating transcriptomics, including the novel gene expression technology, the GenomeLab System and proteomics, together with biochemical analyses of plasma and tissue samples to assess correlated changes in oxidative stress, inflammation and pathology. The approaches developed have achieved success in establishing antioxidant and anti-inflammatory activity of dietary antioxidants and associated genes and pathways that interact to modulate redox status in the colon. Cellular processes and genes altered in response to obesity and high fat diets have provided evidence of molecular mechanisms that are implicated in obesity related cancer.
Collapse
|