1
|
Mohammad SI, Vasudevan A, Nadhim Mohammed S, Uthirapathy S, M M R, Kundlas M, Siva Prasad GV, Kumari M, Mustafa YF, Ali Hussein Z. Anti-metastatic potential of flavonoids for the treatment of cancers: focus on epithelial-mesenchymal transition (EMT) process. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04235-3. [PMID: 40434422 DOI: 10.1007/s00210-025-04235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025]
Abstract
The leading factor contributing to patient mortality is the local invasion and metastasis of tumors, which are influenced by the malignant progression of tumor cells. The epithelial-mesenchymal transition (EMT) is key to understanding malignancy development. EMT is a critical regulatory mechanism for differentiating cell populations initially observed during the neural crest and embryonic gastrulation formation. This process is closely associated with tumor metastasis in cancer and is also related to the maintenance of cancer stem cells. Flavonoids, known for their antioxidant properties, have been widely studied for their anticancer potential to protect plants from harmful environmental conditions. They have attracted considerable attention and have been the focus of numerous experimental and epidemiological studies to evaluate their potential in cancer treatment. In vitro and in vivo research has demonstrated that flavonoids can significantly impact cancer-related EMT. They may inhibit the EMT process by reducing the levels of Twist1, N-cadherin, ZEB1, integrins, SNAI1/2, CD44, MMPs, and vimentin while increasing E-cadherin levels and targeting the PI3K/AKT, NF-κB p65, and JAK2/STAT3 signaling pathways. In order to suppress the transcription of the E-cadherin promoter, several Zn-finger transcription factors, such as SNAI2, ZEB1, and ZEB2, and basic helix-loop-helix (bHLH) factors, such as Twist, may directly bind to its E-boxes. Overall, clinical cancer research should integrate the anticancer properties of flavonoids, which address all phases of carcinogenesis, including EMT, to improve the prospects for targeted cancer therapies in patients suffering from aggressive forms of tumors.
Collapse
Affiliation(s)
- Suleiman Ibrahim Mohammad
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan
- INTI International University, 71800, Negeri Sembilan, Malaysia
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
- Shinawatra University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani, 12160, Thailand
| | - Sumaya Nadhim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Zainab Ali Hussein
- Radiological Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Singh S. Review on Natural Agents as Aromatase Inhibitors: Management of Breast Cancer. Comb Chem High Throughput Screen 2024; 27:2623-2638. [PMID: 37861041 DOI: 10.2174/0113862073269599231009115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is a prevalent type of cancer that is typically hormone-dependent, caused by estrogen. Aromatase inhibitors are frequently utilised in the treatment of hormonereceptor- positive breast cancer because they prevent the enzyme aromatase from converting androgens to estrogens. Natural medicines with aromatase inhibitory characteristics have attracted interest as potential alternatives or complementary therapy to manufactured medications. This review discusses the function of natural agents as aromatase inhibitors in treating breast cancer. A variety of natural compounds have been investigated for their capacity to inhibit aromatase activity and lower estrogen levels. These agents include resveratrol from red wine and grapes, curcumin from turmeric extract and green teahigh in catechins, and other flavonoids such as genistein, luteolin and quercetin. It has been demonstrated that by decreasing estrogen synthesis, they can slow the growth of breast cancer cells that are dependent on estrogen. However, the clinical evidence supporting their efficacy and safety in breast cancer treatment is inadequate. More research is required to investigate the therapeutic potential of natural medicines, such as aromatase inhibitors, in treating breast cancer. The clinical trials are required to assess their efficacy, appropriate doses, and potential interactions with other therapies. In conclusion, natural aromatase inhibitory drugs are promising adjuncts in the treatment of hormone receptor-positive breast cancer. Their clinical value and safety profile, however, require additional investigation.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P: 281406, India
| |
Collapse
|
3
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Marín V, Burgos V, Pérez R, Maria DA, Pardi P, Paz C. The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment. Int J Mol Sci 2023; 24:10737. [PMID: 37445915 DOI: 10.3390/ijms241310737] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed cancers worldwide, with an incidence of 47.8%. Its treatment includes surgery, radiotherapy, chemotherapy, and antibodies giving a mortality of 13.6%. Breast tumor development is driven by a variety of signaling pathways with high heterogeneity of surface receptors, which makes treatment difficult. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol isolated as the main component in green tea; it has shown multiple beneficial effects in breast cancer, controlling proliferation, invasion, apoptosis, inflammation, and demethylation of DNA. These properties were proved in vitro and in vivo together with synergistic effects in combination with traditional chemotherapy, increasing the effectiveness of the treatment. This review focuses on the effects of EGCG on the functional capabilities acquired by breast tumor cells during its multistep development, the molecular and signal pathways involved, the synergistic effects in combination with current drugs, and how nanomaterials can improve its bioavailability on breast cancer treatment.
Collapse
Affiliation(s)
- Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 02950, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile
| | - Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | | | - Paulo Pardi
- Nucleo de Pesquisas NUPE/ENIAC University Center, Guarulhos 07012-030, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
6
|
Romano A, Martel F. The Role of EGCG in Breast Cancer Prevention and Therapy. Mini Rev Med Chem 2021; 21:883-898. [PMID: 33319659 DOI: 10.2174/1389557520999201211194445] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is the most frequent cancer in women. Green tea has been studied for breast cancer chemopreventive and possibly chemotherapeutic effects due to its high content in polyphenolic compounds, including epigallocatechin-3-gallate (EGCG). METHOD This review is based on literature research that included papers registered on the Medline® database. The research was conducted through PubMed, applying the following query: "EGCG"AND "breast cancer". The result was a total of 88 articles in which this review stands on. RESULTS In vitro, EGCG shows antioxidant or pro-oxidant properties, depending on the concentration and exposure time. EGCG blocks cell cycle progression and modulates signaling pathways that affect cell proliferation and differentiation. EGCG also induces apoptosis, negatively modulates different steps involved in metastasis, and targets angiogenesis by inhibiting VEGF transcription. In vivo investigations have shown that oral administration of EGCG results in the reduction of tumor growth and in antimetastatic and antiangiogenic effects in animal xenograft and allograft models. DISCUSSION Much remains unknown about the molecular mechanisms involved in the protective effects of EGCG on mammary carcinogenesis. In addition, more studies in vivo are necessary to determine the potential toxicity of EGCG at higher doses and to elucidate its interactions with other drugs. CONCLUSION A protective effect of EGCG has been shown in different experimental models and under different experimental conditions, suggesting clinical implications of EGCG for breast cancer prevention and therapy. The data presented in this review support the importance of further investigations.
Collapse
Affiliation(s)
- Adriana Romano
- Faculty of Medicine of University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine-Unit of Biochemistry, Faculty of Medicine of University of Porto, Porto, Portugal and Instituto de Investigacao e Inovacao em Saude(i3S), University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Chandra G, Patel S, Panchal M, Singh DV. S-adenosyl-L-homocysteine Hydrolase: Its Inhibitory Activity Against Plasmodium falciparum and Development of Malaria Drugs. Mini Rev Med Chem 2021; 21:833-846. [PMID: 33342411 DOI: 10.2174/1389557521666201218155321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Parasite Plasmodium falciparum is continuously giving a challenge to human beings by changing itself against most of the antimalarial drugs and its consequences can be seen in the form of a huge number of deaths each year especially in the poor and developing country. Due to its drug resistance ability, new drugs are regularly needed to kill the organism. Many new drugs have been developed based on different mechanisms. One of the potential mechanisms is to hamper protein synthesis by blocking the gene expression. S-Adenosyl-L-homocysteine (SAH) hydrolase is a NAD+ dependent tetrameric enzyme, which is responsible for the reversible hydrolysis of AdoHcy to adenosine and L-homocysteine, has been recognized as a new target for antimalarial agents since the parasite has a specific SAH hydrolase. The inhibition of SAH hydrolase causes the intracellular accumulation of S-Adenosyl-L-homocysteine, elevating the ratio of SAH to S-adenosylmethionine (SAM) and inhibiting SAM-dependent methyltransferase that catalyzes methylation of the capped structure at the 5'-terminus of mRNA, and other methylation reaction which is essential for parasite proliferation. In other words, S-Adenosyl-Lhomocysteine hydrolase regulates methyltransferase reactions. In this way, SAH hydrolase inhibitors can be used for the treatment of different diseases like malaria, cancer, viral infection, etc. by ultimately stopping the synthesis of protein. Many antiviral drugs have been synthesized and marketed which are based on the inhibition of SAH hydrolase. This review summarises the development of SAH inhibitors developed over the last 20 years and their potentiality for the treatment of malaria.
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Manoj Panchal
- Department of Life Science, School of Earth, Biological and Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth, Biological and Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
8
|
Bimonte S, Cascella M, Barbieri A, Arra C, Cuomo A. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: an update of the current state of knowledge. Infect Agent Cancer 2020; 15:2. [PMID: 31938038 PMCID: PMC6954554 DOI: 10.1186/s13027-020-0270-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC), represents a subtype of breast cancer in which the estrogens receptor (ER) negative, the progesterone receptor (PR) negative and the human epidermal growth factor receptor 2 (HER2) negative, are not expressed. Thusly, TNBC does not respond to hormonal therapies or to those targeting the HER2 protein receptors. To overcome this flawed issue, new alternative therapies based on the use of natural substances, as the (-) - epigallocatechin 3-gallate (EGCG), has been proposed. It is largely documented that EGCG, the principal constituent of green tea, has suppressive effects on different types of cancer, including breast cancer, through the regulation of different signaling pathways. Thus, is reasonable to assume that EGCG could be viewed as a therapeutic option for the prevention and the treatment of TNBC. Here, we summarizing these promising results with the scope of turn a light on the potential roles of EGCG in the treatment of TNBC patients.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
9
|
De Gregorio V, Corrado B, Sbrescia S, Sibilio S, Urciuolo F, Netti PA, Imparato G. Intestine-on-chip device increases ECM remodeling inducing faster epithelial cell differentiation. Biotechnol Bioeng 2019; 117:556-566. [PMID: 31598957 DOI: 10.1002/bit.27186] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
An intestine-on-chip has been developed to study intestinal physiology and pathophysiology as well as intestinal transport absorption and toxicity studies in a controlled and human similar environment. Here, we report that dynamic culture of an intestine-on-chip enhances extracellular matrix (ECM) remodeling of the stroma, basement membrane production and speeds up epithelial differentiation. We developed a three-dimensional human intestinal stromal equivalent composed of human intestinal subepithelial myofibroblasts embedded in their own ECM. Then, we cultured human colon carcinoma-derived cells in both static and dynamic conditions in the opportunely designed microfluidic system until the formation of a well-oriented epithelium. This low cost and handy microfluidic device allows to qualitatively and quantitatively detect epithelial polarization and mucus production as well as monitor barrier function and ECM remodeling after nutraceutical treatment.
Collapse
Affiliation(s)
- Vincenza De Gregorio
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Brunella Corrado
- Departments of Naples, National Research Council, Institute for Microelectronics and Microsystems, Naples, Italy
| | | | - Sara Sibilio
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| | - Francesco Urciuolo
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy.,Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy.,Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy.,Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
10
|
Bioactive Compounds: Multi-Targeting Silver Bullets for Preventing and Treating Breast Cancer. Cancers (Basel) 2019; 11:cancers11101563. [PMID: 31618928 PMCID: PMC6826729 DOI: 10.3390/cancers11101563] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Each cell in our body is designed with a self-destructive trigger, and if damaged, can happily sacrifice itself for the sake of the body. This process of self-destruction to safeguard the adjacent normal cells is known as programmed cell death or apoptosis. Cancer cells outsmart normal cells and evade apoptosis and it is one of the major hallmarks of cancer. The cardinal quest for anti-cancer drug discovery (bioactive or synthetic compounds) is to be able to re-induce the so called “programmed cell death” in cancer cells. The importance of bioactive compounds as the linchpin of cancer therapeutics is well known as many effective chemotherapeutic drugs such as vincristine, vinblastine, doxorubicin, etoposide and paclitaxel have natural product origins. The present review discusses various bioactive compounds with known anticancer potential, underlying mechanisms by which they induce cell death and their preclinical/clinical development. Most bioactive compounds can concurrently target multiple signaling pathways that are important for cancer cell survival while sparing normal cells hence they can potentially be the silver bullets for targeting cancer growth and metastatic progression.
Collapse
|
11
|
Liou YM, Chan CL, Huang R, Wang CLA. Effect of l-caldesmon on osteoclastogenesis in RANKL-induced RAW264.7 cells. J Cell Physiol 2018; 233:6888-6901. [PMID: 29377122 DOI: 10.1002/jcp.26452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023]
Abstract
Non-muscle caldesmon (l-CaD) is involved in the regulation of actin cytoskeletal remodeling in the podosome formation, but its function in osteoclastogenesis remains to be determined. In this study, RANKL-induced differentiation of RAW264.7 murine macrophages to osteoclast-like cells (OCs) was used as a model to determine the physiological role of l-CaD and its phosphorylation in osteoclastogenesis. Upon RANKL treatment, RAW264.7 cells undergo cell-cell fusion into multinucleate, and TRAP-positive large OCs with a concomitant increase of l-CaD expression. Using gain- and loss-of-function in OC precursor cells followed by RANKL induction, we showed that the expression of l-CaD in response to RANKL activation is an important event for osteoclastogenesis, and bone resorption. To determine the effect of l-CaD phosphorylation in osteoclastogenesis, three decoy peptides of l-CaD were used with, respectively, Ser-to-Ala mutations at the Erk- and Pak1-mediated phosphorylation sites, and Ser-to-Asp mutation at the Erk-mediated phosphorylation sites. Both the former two peptides competed with the C-terminal segment of l-CaD for F-actin binding and accelerated formation of podosome-like structures in RANKL-induced OCs, while the third peptide did not significantly affect the F-actin binding of l-CaD, and decreased the formation of podosome-like structures in OCs. With the experiments using dephosphorylated and phosphorylated l-CaD mutants, we further showed that dephosphorylated l-CaD mutant facilitated RANKL-induced TRAP activity with an increased cell fusion index, whereas phosphorylated l-CaD decreased the TRAP activity and cell fusion. Our findings suggested that both the level of l-CaD expression and the extent of l-CaD phosphorylation play a role in RANKL-induced osteoclast differentiation.
Collapse
Affiliation(s)
- Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chu-Lung Chan
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Renjian Huang
- Boston Biomedical Research Institute, Watertown, Massachusetts
| | | |
Collapse
|
12
|
Natural Products for the Management and Prevention of Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8324696. [PMID: 29681985 PMCID: PMC5846366 DOI: 10.1155/2018/8324696] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Among all types of cancer, breast cancer is one of the most challenging diseases, which is responsible for a large number of cancer related deaths. Hormonal therapy, surgery, chemotherapy, and radiotherapy have been used as treatment of breast cancer, for a very long time. Due to severe side effects and multidrug resistance, these treatment approaches become increasingly ineffective. However, adoption of complementary treatment approach can be a big solution for this situation, as it is evident that compounds derived from natural source have a great deal of anticancer activity. Natural compounds can fight against aggressiveness of breast cancer, inhibit cancerous cell proliferation, and modulate cancer related pathways. A large number of research works are now focusing on the natural and dietary compounds and trying to find out new and more effective treatment strategies for the breast cancer patients. In this review, we discussed some significant natural chemical compounds with their mechanisms of actions, which can be very effective against the breast cancer and can be more potent by their proper modifications and further clinical research. Future research focusing on the natural anti-breast-cancer agents can open a new horizon in breast cancer treatment, which will play a great role in enhancing the survival rate of breast cancer patients.
Collapse
|
13
|
Morris J, Moseley VR, Cabang AB, Coleman K, Wei W, Garrett-Mayer E, Wargovich MJ. Reduction in promotor methylation utilizing EGCG (epigallocatechin-3-gallate) restores RXRα expression in human colon cancer cells. Oncotarget 2018; 7:35313-26. [PMID: 27167203 PMCID: PMC5085231 DOI: 10.18632/oncotarget.9204] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/16/2016] [Indexed: 12/16/2022] Open
Abstract
Silencing of regulatory genes through hypermethylation of CpG islands is an important mechanism in tumorigenesis. In colon cancer, RXRα, an important dimerization partner with other nuclear transcription factors, is silenced through this mechanism. We previously found that colon tumors in ApcMin/+ mice had diminished levels of RXRα protein and expression levels of this gene were restored by treatment with a green tea intervention, due to reduced promoter methylation of RXRα. We hypothesized that CIMP+ cell lines, which epigenetically silence key regulatory genes would also evidence silencing of RXRα and EGCG treatment would restore its expression. We indeed found EGCG to restore RXRα activity levels in the human cell lines, in a dose dependent manner and reduced RXRα promoter methylation. EGCG induced methylation changes in several other colon cancer related genes but did not cause a decrease in global methylation. Numerous epidemiological reports have shown the benefits of green tea consumption in reducing colon cancer risk but to date no studies have shown that the risk reduction may be related to the epigenetic restoration by tea polyphenols. Our results show that EGCG modulates the reversal of gene silencing involved in colon carcinogenesis providing a possible avenue for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Jay Morris
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vondina R Moseley
- Department of Cell & Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - April B Cabang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Katie Coleman
- Department of Cell & Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wei Wei
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Biostatistics & Epidemiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael J Wargovich
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Grzesik M, Naparło K, Bartosz G, Sadowska-Bartosz I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem 2017; 241:480-492. [PMID: 28958556 DOI: 10.1016/j.foodchem.2017.08.117] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro tests and assays involving erythrocytes. Catechins showed the highest ABTS-scavenging capacity, the highest stoichiometry of Fe3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypochlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (-)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (-)-epicatechin gallate, (-)-epigallocatechin gallate and (-)-epigallocatechin protected at lowest concentrations against hypochlorite-induced hemolysis. Catechins [(-)-epigallocatechin gallate and (-)-epicatechin gallate)] were most efficient in the inhibition of AAPH-induced oxidation of 2'7'-dichlorodihydroflurescein contained inside erythrocytes. Excellent antioxidant properties of catechins and other flavonoids make them ideal candidates for nanoformulations to be used in antioxidant therapy.
Collapse
Affiliation(s)
- Michalina Grzesik
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Katarzyna Naparło
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland.
| |
Collapse
|
15
|
The Inhibitory Effect of Epigallocatechin Gallate on the Viability of T Lymphoblastic Leukemia Cells is Associated with Increase of Caspase-3 Level and Fas Expression. Indian J Hematol Blood Transfus 2017; 34:253-260. [PMID: 29622866 DOI: 10.1007/s12288-017-0854-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
Acute lymphoblastic leukemia is the most prevalent cancer in children. Novel components to help struggle aggressive malignancies and overcome some side effects of conventional treatments could be a promising strategy. Epigallocatechingallate (EGCG), have attracted the attention of scientists for prevention or treatment of some cancers. Jurkat cells were incubated with the different concentrations of EGCG (30-100 µm) for 24, 48, and 72 h and cell viability was investigated using MTS test. Apoptosis and the level of caspase 3 alterations were evaluated using flowcytometry and expression of Fas by Real Time PCR. EGCG decreased viability of cells with an inhibition concentration (IC50) of 82.8 ± 3.1, 68.8 ± 4 and 59.7 ± 4.8 μM in 24,48 and 72 h. 50, 70 and 100 µM concentrations of EGCG induced apoptosis in about 31, 40 and 71% of the cells, respectively. The mean value of caspase 3 positive cells in the presence of 50, 70 and 100 µm concentrations of EGCG was 19.3 ± 2.9, 29.5 ± 3.1 and 61.2 ± 3.4 respectively compared to 7.8 ± 1.1 in control with a significant difference at 100 µm concentration. Treatment with EGCG for 48 h enhanced the expression of Fas reaching to a significant level at 100 µM concentration. EGCG is effective in decrease cell viability, apoptosis induction and enhancement of caspase 3 and Fas expression level in jurkat cells. A comprehensive understanding of molecular events and pharmacokinetics of the component and experiments in animal models are required for dose determination and its interaction with other components of combination chemotherapy.
Collapse
|
16
|
Hong OY, Noh EM, Jang HY, Lee YR, Lee BK, Jung SH, Kim JS, Youn HJ. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol Lett 2017; 14:441-446. [PMID: 28693189 DOI: 10.3892/ol.2017.6108] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/17/2017] [Indexed: 02/03/2023] Open
Abstract
Epigallocatechin gallate (EGCG), a major constituent of green tea, has potential as a treatment for a variety of diseases, including cancer. EGCG induces apoptosis and inhibits tumorigenesis through multiple signaling pathways in breast cancer cells. β-catenin signaling modulators could be useful in the prevention and therapy of breast cancer. However, the precise anticancer effect of EGCG through the β-catenin signaling pathway in breast cancer is unclear. The present study investigated the association between β-catenin expression and clinicopathological factors of breast cancer patients, and the effect of EGCG on β-catenin expression in breast cancer cells. β-catenin expression was analyzed according to the clinicopathological factors of 74 patients with breast cancer. All patients were females diagnosed with invasive ductal carcinoma. Western blot analysis revealed that β-catenin was expressed at higher levels in breast cancer tissue than in normal tissue. β-catenin expression was associated with lymph node metastasis (P=0.04), tumor-node-metastasis stage (P=0.03) and estrogen receptor status (P<0.01). EGCG decreased MDA-MB-231 cell viability and significantly downregulated the expression of β-catenin, phosphorylated Akt and cyclin D1. Remarkably, additive effects of LY294002 and wortmannin, two phosphatidylinositol-3 kinase inhibitors, were observed. The present results suggest that EGCG inhibits the growth of MDA-MB-231 cells through the inactivation of the β-catenin signaling pathway. Based on these promising results, EGCG may be a potential treatment for triple negative breast cancer patients.
Collapse
Affiliation(s)
- On-Yu Hong
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry and Institute of Biomaterials Implant, School of Dentistry, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
| | - Hye-Yeon Jang
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry and Institute of Biomaterials Implant, School of Dentistry, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
| | - Byoung Kil Lee
- Department of Surgery, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk 54907, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk 54907, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk 54907, Republic of Korea
| |
Collapse
|
17
|
Xiang LP, Wang A, Ye JH, Zheng XQ, Polito CA, Lu JL, Li QS, Liang YR. Suppressive Effects of Tea Catechins on Breast Cancer. Nutrients 2016; 8:nu8080458. [PMID: 27483305 PMCID: PMC4997373 DOI: 10.3390/nu8080458] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Tea leaf (Camellia sinensis) is rich in catechins, which endow tea with various health benefits. There are more than ten catechin compounds in tea, among which epigallocatechingallate (EGCG) is the most abundant. Epidemiological studies on the association between tea consumption and the risk of breast cancer were summarized, and the inhibitory effects of tea catechins on breast cancer, with EGCG as a representative compound, were reviewed in the present paper. The controversial results regarding the role of tea in breast cancer and areas for further study were discussed.
Collapse
Affiliation(s)
- Li-Ping Xiang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Ao Wang
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Curt Anthony Polito
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| |
Collapse
|
18
|
Green Tea Catechin, EGCG, Suppresses PCB 102-Induced Proliferation in Estrogen-Sensitive Breast Cancer Cells. Int J Breast Cancer 2015; 2015:163591. [PMID: 26783468 PMCID: PMC4691479 DOI: 10.1155/2015/163591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023] Open
Abstract
The persistence of polychlorinated biphenyls (PCBs) in the environment is of considerable concern since they accumulate in human breast tissue and may stimulate the growth of estrogen-sensitive tumors. Studies have shown that EGCG from green tea can modify estrogenic activity and thus may act as a cancer chemopreventive agent. In the present study, we evaluated the individual and combined effects of PCB 102 and EGCG on cell proliferation using an estrogen-sensitive breast cancer cell line MCF-7/BOS. PCB 102 (1-10 μM) increased cell proliferation in a dose-dependent manner. Furthermore, the proliferative effects of PCB 102 were mediated by ERα and could be abrogated by the selective ERα antagonist MPP. EGCG (10-50 μM) caused a dose-dependent inhibition of PCB 102-induced cell proliferation, with nearly complete inhibition at 25 μM EGCG. The antiproliferative action of EGCG was mediated by ERβ and could be blocked by the ERβ-specific inhibitor PHTPP. In conclusion, EGCG suppressed the proliferation-stimulating activity of the environmental estrogen PCB 102 which may be helpful in the chemoprevention of breast cancer.
Collapse
|
19
|
Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, Bilsland AE, Boosani CS, Chen S, Ciriolo MR, Crawford S, Fujii H, Georgakilas AG, Guha G, Halicka D, Helferich WG, Heneberg P, Honoki K, Keith WN, Kerkar SP, Mohammed SI, Niccolai E, Nowsheen S, Vasantha Rupasinghe HP, Samadi A, Singh N, Talib WH, Venkateswaran V, Whelan RL, Yang X, Felsher DW. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 2015; 35 Suppl:S199-S223. [PMID: 25865775 PMCID: PMC4930000 DOI: 10.1016/j.semcancer.2015.02.007] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Alan E Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | | | - Sarah Crawford
- Department of Biology, Southern Connecticut State University, New Haven, CT, United States
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | | | - William G Helferich
- University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, United States
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sid P Kerkar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, Canada
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science University, Amman, Jordan
| | | | - Richard L Whelan
- Mount Sinai Roosevelt Hospital, Icahn Mount Sinai School of Medicine, New York City, NY, United States
| | - Xujuan Yang
- University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, United States
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
20
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 605] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
21
|
Chen ZY, Wang PW, Shieh DB, Chiu KY, Liou YM. Involvement of gelsolin in TGF-beta 1 induced epithelial to mesenchymal transition in breast cancer cells. J Biomed Sci 2015; 22:90. [PMID: 26482896 PMCID: PMC4615330 DOI: 10.1186/s12929-015-0197-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Increasing evidence suggests that transforming growth factor-beta 1 (TGF-β1) triggers epithelial to mesenchymal transition (EMT) and facilitates breast cancer stem cell differentiation. Gelsolin (GSN) is a ubiquitous actin filament-severing protein. However, the relationship between the expression level of GSN and the TGF-β signaling for EMT progression in breast cancer cells is not clear. Results TGF-β1 acted on MDA-MB231 breast cancer cells by decreasing cell proliferation, changing cell morphology to a fibroblast-like shape, increasing expressions for CD44 and GSN, and increasing EMT expression and cell migration/invasion. Study with GSN overexpression (GSN op) in both MDA-MB231 and MCF-7 cells demonstrated that increased GSN expression resulted in alterations of cell proliferation and cell cycle progression, modification of the actin filament assembly associated with altering cell surface elasticity and cell detachment in these breast cancer cells. In addition, increased cell migration was found in GSN op MDA-MB231 cells. Studies with GSN op and silencing by small interfering RNA verified that GSN could modulate the expression of vimentin. Sorted by flow cytometry, TGF-β1 increased subpopulation of CD44+/CD22- cells increasing their expressions for GSN, Nanog, Sox2, Oct4, N-cadherin, and vimentin but decreasing the E-cadherin expression. Methylation specific PCR analysis revealed that TGF-β1 decreased 50 % methylation but increased 3-fold unmethylation on the GSN promoter in CD44+/CD22- cells. Two DNA methyltransferases, DNMT1and DNMT3B were also inhibited by TGF-β1. Conclusions TGF-β1 induced epigenetic modification of GSN could alter the EMT process in breast cancer cells.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | - Pei-Wen Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Dar-Bin Shieh
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Kuan-Ying Chiu
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
22
|
Mullen GE, Yet L. Progress in the development of fatty acid synthase inhibitors as anticancer targets. Bioorg Med Chem Lett 2015; 25:4363-9. [DOI: 10.1016/j.bmcl.2015.08.087] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
|
23
|
Chen LL, Han WF, Geng Y, Su JS. A genome-wide study of DNA methylation modified by epigallocatechin-3-gallate in the CAL-27 cell line. Mol Med Rep 2015; 12:5886-90. [PMID: 26239270 DOI: 10.3892/mmr.2015.4118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 03/03/2015] [Indexed: 11/05/2022] Open
Abstract
In order to gain greater understanding of the mechanisms underlying the effect of epigallocatechin-3-gallate (EGCG) on DNA methylation and its chemopreventative action in oral squamous cell carcinoma (OSCC), a genome‑wide methylation and mRNA expression screen was performed in the CAL‑27 cell line with and without EGCG (100 µM) treatment. A total of 761 differentially methylated gene loci were identified following treatment with EGCG. Comparison of gene expression profiling in OSCC samples revealed 184 transcripts with a significant difference (P<0.05) and a fold change difference >2 compared with controls. Gene ontology analysis of differentially methylated loci and functional annotation of the differentially expressed genes indicated that the main pathways involved were metabolic, mitogen‑activated protein kinase (MAPK), wnt, and cell cycle pathways. In conclusion, the present study indicates that EGCG can affect the methylation status and gene expression in the CAL‑27 cell line. Additionally, the changes in several important signaling pathways may reveal the antitumor mechanism of EGCG.
Collapse
Affiliation(s)
- Li-Li Chen
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| | - Wen-Fei Han
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| | - Ying Geng
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| | - Jian-Sheng Su
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
24
|
Zapf MAC, Kothari AN, Weber CE, Arffa ML, Wai PY, Driver J, Gupta GN, Kuo PC, Mi Z. Green tea component epigallocatechin-3-gallate decreases expression of osteopontin via a decrease in mRNA half-life in cell lines of metastatic hepatocellular carcinoma. Surgery 2015; 158:1039-47; discussion 1047-8. [PMID: 26189955 DOI: 10.1016/j.surg.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Osteopontin (OPN) mediates metastasis and invasion of hepatocellular carcinoma (HCC). Epigallocatechin-3-gallate (EGCG), found in green tea, suppresses HCC tumor growth in vitro. We sought to investigate the role of EGCG in modulating OPN in cell lines of metastatic HCC. METHODS Experimental HCC cell lines included HepG2 and MHCC-97H HCC cells, which express high levels of OPN, and the Hep3B cells, which express lesser levels of OPN. Cells were treated with EGCG (0.02-20 μg/mL) before measurement of OPN with enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. Scratch assay measured cell migration. Binding of the OPN promoter to RNA pol II was evaluated by the use of Chromatin-IP assay after EGCG treatment. Transcriptional regulation of OPN was investigated with luciferase reporter plasmids containing various deletion fragments of the human OPN promoter. Measurement of the half-life of OPN mRNA was conducted using actinomycin D. RESULTS Treatment of MHCC-97H and HepG2 cells with 2 μg/mL and 20 μg/mL EGCG caused a ∼6-fold and ∼90-fold decrease in secreted protein levels of OPN (All P < .001). OPN mRNA was decreased with EGCG concentrations of 0.2-20 μg/ml (All P < .001). The 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (ie, MTT) assay revealed that differences in OPN expression were not due to viability of the HCC cell lines. Promoter assay and chromatin immunoprecipitation analysis revealed no effect of EGCG on the transcriptional regulation of OPN. Posttranscriptionally, EGCG decreased the half-life of OPN mRNA from 16.8 hours (95% confidence interval 9.0-125.1) to 2.5 hours (95% confidence interval 2.1-3.2) (P < .001). Migration was decreased in EGCG treated cells at 24 hours (8.0 ± 2.4% vs 21.2 ± 10.8%, P < .01) and at 48 hours (13.2 ± 3.6% vs 53.5 ± 19.8%, P < .001). CONCLUSION We provide evidence that EGCG decreases OPN mRNA and secreted OPN protein levels by decreasing the half-life of OPN mRNA in MHCC-97H cells. The translatability of EGCG for patients with HCC is promising, because EGCG is an inexpensive, easily accessible chemical with an extensive history of safety.
Collapse
Affiliation(s)
- Matthew A C Zapf
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Anai N Kothari
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Cynthia E Weber
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Matthew L Arffa
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Phillip Y Wai
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Joseph Driver
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Gopal N Gupta
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Paul C Kuo
- Department of Surgery, Loyola University Medical Center, Maywood, IL.
| | - Zhiyong Mi
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| |
Collapse
|
25
|
Huang W, Kim HRC. Dynamic regulation of platelet-derived growth factor D (PDGF-D) activity and extracellular spatial distribution by matriptase-mediated proteolysis. J Biol Chem 2015; 290:9162-70. [PMID: 25678707 DOI: 10.1074/jbc.m114.610865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 01/17/2023] Open
Abstract
The oncogenic roles of PDGF-D and its proteolytic activator, matriptase, have been strongly implicated in human prostate cancer. Latent full-length PDGF-D (FL-D) consists of a CUB domain, a growth factor domain (GFD), and the hinge region in between. Matriptase processes the FL-D dimer into a GFD dimer (GFD-D) in a stepwise manner, involving generation of a hemidimer (HD), an intermediate product containing one FL-D subunit and one GFD subunit. Although the HD is a pro-growth factor that can be processed into the GFD-D by matriptase, the HD can also act as a dominant-negative ligand that prevents PDGF-B-mediated β-PDGF receptor activation in fibroblasts. The active GFD-D can be further cleaved into a smaller and yet inactive form if matriptase-mediated proteolysis persists. Through mutagenesis and functional analyses, we found that the R(340)R(341)GR(343)A (P4-P1/P1') motif within the GFD is the matriptase cleavage site through which matriptase can deactivate PDGF-D. Comparative sequence analysis based on the published crystal structure of PDGF-B predicted that the matriptase cleavage site R(340)R(341)GR(343)A is within loop III of the GFD, a critical structural element for its binding with the β-PDGF receptor. Interestingly, we also found that matriptase processing regulates the deposition of PDGF-D dimer species into the extracellular matrix (ECM) with increased binding from the FL-D dimer, to the HD, and to the GFD-D. Furthermore, we provide evidence that R(340)R(341)GR(343)A within the GFD is critical for PDGF-D deposition and binding to the ECM. In this study, we report a structural element crucial for the biological function and ECM deposition of PDGF-D and provide molecular insight into the dynamic functional interplay between the serine protease matriptase and PDGF-D.
Collapse
Affiliation(s)
- Wei Huang
- From the Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Hyeong-Reh Choi Kim
- From the Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
26
|
Lu YC, Luo PC, Huang CW, Leu YL, Wang TH, Wei KC, Wang HE, Ma YH. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction. NANOSCALE 2014; 6:10297-10306. [PMID: 25069428 DOI: 10.1039/c4nr00617h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.
Collapse
Affiliation(s)
- Yi-Ching Lu
- Department of Physiology and Pharmacology, Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kuei-Shan, Tao-Yuan 33302, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014; 25:1-18. [PMID: 24314860 DOI: 10.1016/j.jnutbio.2013.09.001] [Citation(s) in RCA: 650] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Collapse
|
28
|
Chen WC, Hsieh SR, Chiu CH, Hsu BD, Liou YM. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts. J Biomed Sci 2014; 21:56. [PMID: 24913014 PMCID: PMC4070642 DOI: 10.1186/1423-0127-21-56] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Results Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Conclusions Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity through the modulation of PIP3 synthesis leading to the subsequent inactivation of GSK-3β mediated cardiac cell injury.
Collapse
Affiliation(s)
| | | | | | - Ban-Dar Hsu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | |
Collapse
|
29
|
Mounier C, Bouraoui L, Rassart E. Lipogenesis in cancer progression (review). Int J Oncol 2014; 45:485-92. [PMID: 24827738 DOI: 10.3892/ijo.2014.2441] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/10/2014] [Indexed: 11/06/2022] Open
Abstract
In normal tissues, energy-providing lipids come principally from circulating lipids. However, in growing tumors, energy supply is mainly provided by lipids coming from de novo synthesis. It is not surprising to see elevated expression of several lipogenic genes in tumors from different origins. The role of lipogenic genes in the establishment of the primary tumor has been clearly established. A large number of studies demonstrate a role of fatty acid synthase in the activation of cell cycle and inhibition of apoptosis in tumor cells. Other lipogenic genes such as the acetyl CoA carboxylase (ACC) and the stearoyl CoA desaturase 1 (SCD1) are highly expressed in primary tumors and also appear to play a role in their development. However, the role of lipogenesis in the metastatic process is less clear. In the present review, we aim to present the most recent evidences for the key role of lipogenic enzymes in the metastatic process and in epithelial to mesenchymal transition.
Collapse
Affiliation(s)
| | - Lamia Bouraoui
- Biomed-Biological Sciences Department, UQÀM, Montréal, PQ, Canada
| | - Eric Rassart
- Biomed-Biological Sciences Department, UQÀM, Montréal, PQ, Canada
| |
Collapse
|
30
|
Sun L, Zhang C, Li P. Copolymeric micelles for delivery of EGCG and cyclopamine to pancreatic cancer cells. Nutr Cancer 2014; 66:896-903. [PMID: 24798568 DOI: 10.1080/01635581.2014.904908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Our objective was to synthesize a copolymer for delivery and protection of (-)-epigallocatechin gallate (EGCG). Methoxy poly(ethylene glycol)-b-poly[5-methyl-5-(3, 4, 5-trimethoxybenzoyol)-1, 3-dioxan-2-one-co-lactide] [mPEG-b-P(TM-co-LA)] copolymer was synthesized and characterized. The use of gallate containing monomer resulted in a copolymer that could show enhanced drug loading, stability, and sustained release of EGCG from mPEG-b-P(TM-co-LA) micelles as determined using LC/MS. The combination of EGCG and cyclopamine (CyA) displayed remarkable effects on growth inhibition of Mia PaCa-2 pancreatic cancer cells and induction of apoptosis. Although the expression level of Gli-1 was markedly downregulated by cyclopamine treatment, treatment with EGCG significantly inhibited the phosphorylation of EGFR in Mia PaCa-2 cells. Gallate containing copolymer can be used for micellar delivery of EGCG and CyA and the combination of these drugs can target 2 signaling pathways, thereby providing an effective way to treat pancreatic cancer.
Collapse
Affiliation(s)
- Liming Sun
- a School of Life Sciences and Technology , Tongji University, Shanghai, People's Republic of China and Petrochemical Research Institute, PetroChina Company Limited , Beijing , People's Republic of China
| | | | | |
Collapse
|
31
|
Wang F, Chang Z, Fan Q, Wang L. Epigallocatechin‑3‑gallate inhibits the proliferation and migration of human ovarian carcinoma cells by modulating p38 kinase and matrix metalloproteinase‑2. Mol Med Rep 2014; 9:1085-9. [PMID: 24452912 DOI: 10.3892/mmr.2014.1909] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 01/20/2014] [Indexed: 11/05/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG), a major catechin in green tea, has recently been reported to exhibit anticancer effects on a number of types of cancer cells in vitro; however, the molecular mechanisms of this anticancer effect remain poorly understood. In the current study, the effects of EGCG on the proliferation and migration of the OVCAR‑3 human ovarian carcinoma cell line were investigated. Cells were treated with EGCG and their proliferation rates were determined by an MTT assay. In addition, cell migration was detected by transwell assay. The activity of mitogen‑activated protein kinases (MAPKs) and the expression of matrix metalloproteinase‑2/9 (MMP‑2/9) were examined by western blotting. The results showed that EGCG significantly inhibited (P<0.05) the proliferation of OVCAR‑3 cells in a time‑ and concentration‑dependent manner. EGCG (100 µM) time‑dependently increased (P<0.05) the activity of p38, but not extracellular signal‑regulated kinases 1/2. SB203580, a specific p38 MAPK inhibitor, completely diminished EGCG‑induced phosphorylation of p38 and partially blocked EGCG‑inhibited OVCAR‑3 cell proliferation. Furthermore, EGCG (0‑100 µM) dose‑dependently inhibited (P<0.05) OVCAR‑3 cell migration. The protein expression levels of MPP‑2, but not MMP‑9, were dose‑dependently decreased following treatment with EGCG (0‑100 µM) for 48 h. These data indicated that EGCG inhibited OVCAR‑3 cell proliferation and migration, potentially mediated via the activation of p38 MAPK and downregulation of the protein expression of MMP2. Thus, the therapeutic potential of EGCG for ovarian cancer requires further investigation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
32
|
Christodoulou MS, Thomas A, Poulain S, Vidakovic M, Lahtela-Kakkonen M, Matulis D, Bertrand P, Bartova E, Blanquart C, Mikros E, Fokialakis N, Passarella D, Benhida R, Martinet N. Can we use the epigenetic bioactivity of caloric restriction and phytochemicals to promote healthy ageing? MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00268g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Why is it relevant to propose epigenetic “Nutricures” to prevent diseases linked with ageing?
Collapse
|
33
|
Hsieh SR, Hsu CS, Lu CH, Chen WC, Chiu CH, Liou YM. Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3β/caveolin signalling in H9c2 rat cardiomyoblasts. J Biomed Sci 2013; 20:86. [PMID: 24251870 PMCID: PMC3871020 DOI: 10.1186/1423-0127-20-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/18/2013] [Indexed: 12/30/2022] Open
Abstract
Background Epigallocatechin-3-gallate (EGCg) with its potent anti-oxidative capabilities is known for its beneficial effects ameliorating oxidative injury to cardiac cells. Although studies have provided convincing evidence to support the cardioprotective effects of EGCg, it remains unclear whether EGCg affect trans-membrane signalling in cardiac cells. Here, we have demonstrated the potential mechanism for cardioprotection of EGCg against H2O2-induced oxidative stress in H9c2 cardiomyoblasts. Results Exposing H9c2 cells to H2O2 suppressed cell viability and altered the expression of adherens and gap junction proteins with increased levels of intracellular reactive oxygen species and cytosolic Ca2+. These detrimental effects were attenuated by pre-treating cells with EGCg for 30 min. EGCg also attenuated H2O2-mediated cell cycle arrest at the G1-S phase through the glycogen synthase kinase-3β (GSK-3β)/β-catenin/cyclin D1 signalling pathway. To determine how EGCg targets H9c2 cells, enhanced green fluorescence protein (EGFP) was ectopically expressed in these cells. EGFP-emission fluorescence spectroscopy revealed that EGCg induced dose-dependent fluorescence changes in EGFP expressing cells, suggesting that EGCg signalling events might trigger proximity changes of EGFP expressed in these cells. Proteomics studies showed that EGFP formed complexes with the 67 kD laminin receptor, caveolin-1 and -3, β-actin, myosin 9, vimentin in EGFP expressing cells. Using in vitro oxidative stress and in vivo myocardial ischemia models, we also demonstrated the involvement of caveolin in EGCg-mediated cardioprotection. In addition, EGCg-mediated caveolin-1 activation was found to be modulated by Akt/GSK-3β signalling in H2O2-induced H9c2 cell injury. Conclusions Our data suggest that caveolin serves as a membrane raft that may help mediate cardioprotective EGCg transmembrane signalling.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
34
|
Yoon JW, Lee JS, Kim BM, Ahn J, Yang KM. Catechin-7-O-xyloside induces apoptosis via endoplasmic reticulum stress and mitochondrial dysfunction in human non-small cell lung carcinoma H1299 cells. Oncol Rep 2013; 31:314-20. [PMID: 24213951 DOI: 10.3892/or.2013.2840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
Abstract
The medicinal plant Ulmus davidiana var. japonica has significant potential as a cancer chemoprevention agent. Catechin-7-O-xyloside (C7Ox) was purified from ultrafine U. davidiana var. japonica ethanol extract. In the present study, we investigated the apoptotic effect of C7Ox in the non-small cell lung cancer (NSCLC) cell line H1299. C7Ox treatment induced cell death and decreased plasma membrane integrity, an event typical of apoptosis. C7Ox-induced apoptosis was associated with the proteolytic activation of caspase-6, cleavage of poly(ADP-ribose) polymerase (PARP) and loss of mitochondrial membrane potential. C7Ox also induced the endoplasmic reticulum (ER) stress-regulated pro-apoptotic transcription factor CHOP. The suppression of CHOP expression significantly decreased C7Ox-induced cell death, LDH leakage and caspase-6 activation. Antitumor effects, evaluated based on protracted tumor regression, were observed when nude-mice bearing H1299 xenografts were treated with C7Ox. C7Ox-induced tumor regression was accompanied by enhanced expression of CHOP mRNA. Our data suggest that C7Ox can trigger mitochondrial-mediated apoptosis, and that ER stress is critical for C7Ox-induced apoptosis in H1299 NSCLC cells.
Collapse
Affiliation(s)
- Jang Won Yoon
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Abstract
The major factor in the morbidity and mortality of cancer patients is metastasis. There exists a relative lack of specific therapeutic approaches to control metastasis, and this is a fruitful area for investigation. A healthy diet and lifestyle not only can inhibit tumorigenesis but also can have a major impact on cancer progression and survival. Many chemicals found in edible plants are known to inhibit metastatic progression of cancer. While the mechanisms underlying antimetastatic activity of some phytochemicals are being delineated, the impact of diet, dietary components, and various phytochemicals on metastasis suppressor genes is underexplored. Epigenetic regulation of metastasis suppressor genes promises to be a potentially important mechanism by which dietary components can impact cancer metastasis since many dietary constituents are known to modulate gene expression. The review addresses this area of research as well as the current state of knowledge regarding the impact of diet, dietary components, and phytochemicals on metastasis suppressor genes.
Collapse
|
36
|
Sharma C, Nusri QEA, Begum S, Javed E, Rizvi TA, Hussain A. (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac J Cancer Prev 2013; 13:4815-22. [PMID: 23167425 DOI: 10.7314/apjcp.2012.13.9.4815] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Invasion and metastasis are the major causes of cancer-related death. Pharmacological or therapeutic interventions such as chemoprevention of the progression stages of neoplastic development could result in substantial reduction in the incidence of cancer mortality. (-)-Epigallocatechin-3-gallate (EGCG), a promising chemopreventive agent, has attracted extensive interest for cancer therapy utilizing its antioxidant, anti- proliferative and inhibitory effects on angiogenesis and tumor cell invasion. In this study, we assessed the influence of EGCG on the proliferative potential of HeLa cells by cell viability assay and authenticated the results by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Further we analyzed the anti-invasive properties of EGCG by wound migration assay and gene expression of MMP-9 and TIMP-1 in HeLa cells. Our results indicated that EGCG induced growth inhibition of HeLa cells in a dose- and time- dependent manner. It was observed that cell death mediated by EGCG was through apoptosis. Interestingly, EGCG effectively inhibited invasion and migration of HeLa cells and modulated the expression of related genes (MMP-9 and TIMP-1) . These results indicate that EGCG may effectively suppress promotion and progression stages of cervical cancer development.
Collapse
Affiliation(s)
- Chhavi Sharma
- Department of Biotechnology, Manipal University, Dubai, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
37
|
de Pace RCC, Liu X, Sun M, Nie S, Zhang J, Cai Q, Gao W, Pan X, Fan Z, Wang S. Anticancer activities of (-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J Liposome Res 2013; 23:187-96. [PMID: 23600473 DOI: 10.3109/08982104.2013.788023] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The chemopreventive actions exerted by green tea are thought to be due to its major polyphenol, (-)-epigallocatechin-3-gallate (EGCG). However, the low level of stability and bioavailability in the body makes administering EGCG at chemopreventive doses unrealistic. We synthesized EGCG encapsulated chitosan-coated nanoliposomes (CSLIPO-EGCG), and observed their antiproliferative and proapoptotic effect in MCF7 breast cancer cells. CSLIPO-EGCG significantly enhanced EGCG stability, improved sustained release, increased intracellular EGCG content in MCF7 cells, induced apoptosis of MCF7 cells, and inhibited MCF7 cell proliferation compared to native EGCG and void CSLIPO. The CSLIPO-EGCG retained its antiproliferative and proapoptotic effectiveness at 10 μM or lower, at which native EGCG does not have any beneficial effects. This study portends a potential breakthrough in the prevention or even treatment of breast cancer by using biocompatible and biodegradable CSLIPO-EGCG with enhanced chemopreventive efficacy and minimized immunogenicity and side-effects.
Collapse
|
38
|
Nery LR, Rodrigues MM, Rosemberg DB, Bogo MR, De Farias CB, Abujamra AL, Schwartsmann G, Roesler R, Vianna MR. Regulation of E-cadherin expression by growth factor receptors in cancer cells. J Surg Oncol 2011; 104:220-1. [DOI: 10.1002/jso.21898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 11/08/2022]
|