1
|
The Exciting Realities and Possibilities of iPS-Derived Cardiomyocytes. Bioengineering (Basel) 2023; 10:bioengineering10020237. [PMID: 36829731 PMCID: PMC9952364 DOI: 10.3390/bioengineering10020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become a prevalent topic after their discovery, advertised as an ethical alternative to embryonic stem cells (ESCs). Due to their ability to differentiate into several kinds of cells, including cardiomyocytes, researchers quickly realized the potential for differentiated cardiomyocytes to be used in the treatment of heart failure, a research area with few alternatives. This paper discusses the differentiation process for human iPSC-derived cardiomyocytes and the possible applications of said cells while answering some questions regarding ethical issues.
Collapse
|
2
|
Haridhasapavalan KK, Sundaravadivelu PK, Joshi N, Das NJ, Mohapatra A, Voorkara U, Kaveeshwar V, Thummer RP. Generation of a recombinant version of a biologically active cell-permeant human HAND2 transcription factor from E. coli. Sci Rep 2022; 12:16129. [PMID: 36167810 PMCID: PMC9515176 DOI: 10.1038/s41598-022-19745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Transcription factor HAND2 has a significant role in vascularization, angiogenesis, and cardiac neural crest development. It is one of the key cardiac factors crucial for the enhanced derivation of functional and mature myocytes from non-myocyte cells. Here, we report the generation of the recombinant human HAND2 fusion protein from the heterologous system. First, we cloned the full-length human HAND2 gene (only protein-coding sequence) after codon optimization along with the fusion tags (for cell penetration, nuclear translocation, and affinity purification) into the expression vector. We then transformed and expressed it in Escherichia coli strain, BL21(DE3). Next, the effect (in terms of expression) of tagging fusion tags with this recombinant protein at two different terminals was also investigated. Using affinity chromatography, we established the one-step homogeneous purification of recombinant human HAND2 fusion protein; and through circular dichroism spectroscopy, we established that this purified protein had retained its secondary structure. We then showed that this purified human protein could transduce the human cells and translocate to its nucleus. The generated recombinant HAND2 fusion protein showed angiogenic potential in the ex vivo chicken embryo model. Following transduction in MEF2C overexpressing cardiomyoblast cells, this purified recombinant protein synergistically activated the α-MHC promoter and induced GFP expression in the α-MHC-eGFP reporter assay. Prospectively, the purified bioactive recombinant HAND2 protein can potentially be a safe and effective molecular tool in the direct cardiac reprogramming process and other biological applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nayan Jyoti Das
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Udayashree Voorkara
- Department of Obstetrics and Gynaecology, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Sivaraman S, Hedrick J, Ismail S, Slavin C, Rao RR. Generation and Characterization of Human Mesenchymal Stem Cell-Derived Smooth Muscle Cells. Int J Mol Sci 2021; 22:ijms221910335. [PMID: 34638675 PMCID: PMC8508589 DOI: 10.3390/ijms221910335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. A completely autologous treatment can be achieved by using elastogenic mesenchymal stem cell (MSC)-derived smooth muscle cells (SMC) at the affected tissue site of vascular diseases such as abdominal aortic aneurysms (AAA). Thus, our work focused on evaluating the efficacy of (a) the combination of various growth factors, (b) different time periods and (c) different MSC lines to determine the treatment combination that generated SMCs that exhibited the greatest elastogenicity among the tested groups using Western blotting and flow cytometry. Additionally, total RNA sequencing was used to confirm that post-differentiation cells were upregulating SMC-specific gene markers. Results indicated that MSCs cultured for four days in PDGF + TGFβ1 (PT)-infused differentiation medium showed significant increases in SMC markers and decreases in MSC markers compared to MSCs cultured without differentiation factors. RNA Seq analysis confirmed the presence of vascular smooth muscle formation in MSCs differentiated in PT medium over a seven-day period. Overall, our results indicated that origin, growth factor treatment and culture period played a major role in influencing MSC differentiation to SMCs.
Collapse
Affiliation(s)
| | | | | | | | - Raj R. Rao
- Correspondence: ; Tel.: +1-(479)-575-8610
| |
Collapse
|
4
|
Identification of Optimal Expression Parameters and Purification of a Codon-Optimized Human GLIS1 Transcription Factor from Escherichia coli. Mol Biotechnol 2021; 64:42-56. [PMID: 34528219 DOI: 10.1007/s12033-021-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.
Collapse
|
5
|
Ray A, Joshi JM, Sundaravadivelu PK, Raina K, Lenka N, Kaveeshwar V, Thummer RP. An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 17:1954-1974. [PMID: 34100193 DOI: 10.1007/s12015-021-10200-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Human induced Pluripotent Stem Cells (iPSCs) have enormous potential in understanding developmental biology, disease modeling, drug discovery, and regenerative medicine. The initial human iPSC studies used fibroblasts as a starting cell source to reprogram them; however, it has been identified to be a less appealing somatic cell source by numerous studies due to various reasons. One of the important criteria to achieve efficient reprogramming is determining an appropriate starting somatic cell type to induce pluripotency since the cellular source has a major influence on the reprogramming efficiency, kinetics, and quality of iPSCs. Therefore, numerous groups have explored various somatic cell sources to identify the promising sources for reprogramming into iPSCs with different reprogramming factor combinations. This review provides an overview of promising easily accessible somatic cell sources isolated in non-invasive or minimally invasive manner such as keratinocytes, urine cells, and peripheral blood mononuclear cells used for the generation of human iPSCs derived from healthy and diseased subjects. Notably, iPSCs generated from one of these cell types derived from the patient will offer ethical and clinical advantages. In addition, these promising somatic cell sources have the potential to efficiently generate bona fide iPSCs with improved reprogramming efficiency and faster kinetics. This knowledge will help in establishing strategies for safe and efficient reprogramming and the generation of patient-specific iPSCs from these cell types.
Collapse
Affiliation(s)
- Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Ganeshkhind, Maharashtra, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Generation of biologically active recombinant human OCT4 protein from E. coli. 3 Biotech 2021; 11:207. [PMID: 33927995 DOI: 10.1007/s13205-021-02758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (OCT4) is vital for early embryonic development and is a master regulator of pluripotency in embryonic stem cells. Notably, OCT4 is a key reprogramming factor to derive induced pluripotent stem cells, which have tremendous prospects in regenerative medicine. In the current study, we report heterologous expression and purification of human OCT4 in E. coli to produce pure recombinant protein under native conditions. To achieve this, the 1083 bp coding sequence of the human OCT4 gene was codon-optimized for heterologous expression in E. coli. The codon-optimized sequence was fused with fusion tags, namely a cell-penetrating peptide sequence for intracellular delivery, a nuclear localization sequence for intranuclear delivery, and a His-tag for affinity purification. Subsequently, the codon-optimized sequence and the fusion tags were cloned in the protein expression vector, pET28a(+), and transformed into E. coli strain BL21(DE3) for expression. The recombinant OCT4 protein was purified from the soluble fraction under native conditions using immobilized metal ion affinity chromatography in a facile manner, and its identity was confirmed by Western blotting and mass spectrometry. Furthermore, the secondary structure of the recombinant protein was analyzed using far ultraviolet circular dichroism spectroscopy, which confirmed that the purified fusion protein maintained a secondary structure conformation, and it predominantly composed of α-helices. Next, the recombinant OCT4 protein was applied to human cells, and was found that it was able to enter the cells and translocate to the nucleus. Furthermore, the biological activity of the transduced OCT4 protein was also demonstrated on human cells. This recombinant tool can substitute for genetic and viral forms of OCT4 to enable the derivation of integration-free pluripotent cells. It can also be used to elucidate its biological role in various cellular processes and diseases and for structural and biochemical studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02758-z.
Collapse
|
7
|
Haridhasapavalan KK, Ranjan SH, Bhattacharyya S, Thummer RP. Soluble expression, purification, and secondary structure determination of human MESP1 transcription factor. Appl Microbiol Biotechnol 2021; 105:2363-2376. [PMID: 33651130 DOI: 10.1007/s00253-021-11194-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Transcription factor MESP1 is a crucial factor regulating cardiac, hematopoietic, and skeletal myogenic development. Besides, it also contributes to the generation of functional cardiomyocytes. Here, we report the soluble expression and purification of the full-length human MESP1 protein from the heterologous system, which can be delivered into the target mammalian cells. To generate this biological macromolecule, we cloned its codon-optimized gene sequence fused to a nuclear localization sequence, a cell-penetrating peptide, and a His-tag into the protein expression vector and expressed in the bacterial system (E. coli strain BL21(DE3)). Subsequently, we have screened and identified the optimal expression parameters to obtain this recombinant fusion protein in soluble form from E. coli and examined its expression concerning the placement of fusion tags at either terminal. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Notably, this purified fusion protein has maintained its secondary structure after purification, primarily comprising α-helices and random coils. This molecular tool can potentially replace its genetic and viral forms in the cardiac reprogramming of fibroblasts to induce a cardiac transcriptional profile in an integration-free manner and elucidating its role in various biological processes and diseases. KEY POINTS: • Screening of the suitable gene construct was performed and identified. • Screening of optimal expression conditions was performed and identified. • Native purification of recombinant human MESP1 protein from E. coli was performed. • Recombinant MESP1 protein has retained its secondary structure after purification.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujal Harsh Ranjan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Thool M, Dey C, Bhattacharyya S, Sudhagar S, Thummer RP. Generation of a Recombinant Stem Cell-Specific Human SOX2 Protein from Escherichia coli Under Native Conditions. Mol Biotechnol 2021; 63:327-338. [PMID: 33570706 DOI: 10.1007/s12033-021-00305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The stem cell-specific SOX2 transcription factor is critical for early embryonic development and the maintenance of embryonic and neural stem cell identity. It is also crucial for the generation of induced pluripotent and neural stem cells, thus providing immense prospect in patient-specific therapies. Here, we report soluble expression and purification of human SOX2 protein under native conditions from a bacterial system. To generate this macromolecule, we codon-optimized the protein-coding sequence and fused it to a nuclear localization signal, a protein transduction domain, and a His-tag. This was then cloned into a protein expression vector and was expressed in Escherichia coli. Subsequently, we have screened and identified the optimal expression conditions to obtain recombinant fusion protein in a soluble form and studied its expression concerning the position of fusion tags at either terminal. Furthermore, we purified two versions of recombinant SOX2 fusion proteins to homogeneity under native conditions and demonstrated that they maintained their secondary structure. This molecular tool can substitute genetic and viral forms of SOX2 to facilitate the derivation of integration-free induced pluripotent and neural stem cells. Furthermore, it can be used in elucidating its role in stem cells, various cellular processes and diseases, and for structural and biochemical studies.
Collapse
Affiliation(s)
- Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
9
|
Generation of cell-permeant recombinant human transcription factor GATA4 from E. coli. Bioprocess Biosyst Eng 2021; 44:1131-1146. [PMID: 33559005 DOI: 10.1007/s00449-021-02516-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/17/2021] [Indexed: 12/11/2022]
Abstract
Transcription factor GATA4 is expressed during early embryogenesis and is vital for proper development. In addition, it is a crucial reprogramming factor for deriving functional cardiomyocytes and was recently identified as a tumor suppressor protein in various cancers. To generate a safe and effective molecular tool that can potentially be used in a cell reprogramming process and as an anti-cancer agent, we have identified optimal expression parameters to obtain soluble expression of human GATA4 in E. coli and purified the same to homogeneity under native conditions using immobilized metal ion affinity chromatography. The identity of GATA4 protein was confirmed using western blotting and mass spectrometry. Using circular dichroism spectroscopy, it was demonstrated that the purified recombinant protein has maintained its secondary structure, primarily comprising of random coils and α-helices. Subsequently, this purified recombinant protein was applied to human cells and was found that it was non-toxic and able to enter the cells as well as translocate to the nucleus. Prospectively, this cell- and nuclear-permeant molecular tool is suitable for cell reprogramming experiments and can be a safe and effective therapeutic agent for cancer therapy.
Collapse
|
10
|
Zhang Y, Xie X, Hu J, Afreen KS, Zhang CL, Zhuge Q, Yang J. Prospects of Directly Reprogrammed Adult Human Neurons for Neurodegenerative Disease Modeling and Drug Discovery: iN vs. iPSCs Models. Front Neurosci 2020; 14:546484. [PMID: 33328842 PMCID: PMC7710799 DOI: 10.3389/fnins.2020.546484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
A reliable disease model is critical to the study of specific disease mechanisms as well as for the discovery and development of new drugs. Despite providing crucial insights into the mechanisms of neurodegenerative diseases, translation of this information to develop therapeutics in clinical trials have been unsuccessful. Reprogramming technology to convert adult somatic cells to induced Pluripotent Stem Cells (iPSCs) or directly reprogramming adult somatic cells to induced Neurons (iN), has allowed for the creation of better models to understand the molecular mechanisms and design of new drugs. In recent times, iPSC technology has been commonly used for modeling neurodegenerative diseases and drug discovery. However, several technological challenges have limited the application of iN. As evidence suggests, iN for the modeling of neurodegenerative disorders is advantageous compared to those derived from iPSCs. In this review, we will compare iPSCs and iN models for neurodegenerative diseases and their potential applications in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyang Xie
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,International Department of The Affiliated High School of South China Normal University (HFI), Guangzhou, China
| | - Jiangnan Hu
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kazi Sabrina Afreen
- Department of Microbiology & Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Chun-Li Zhang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Rev Rep 2020; 15:286-313. [PMID: 30417242 DOI: 10.1007/s12015-018-9861-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade ago, a pioneering study reported generation of induced Pluripotent Stem Cells (iPSCs) by ectopic expression of a cocktail of reprogramming factors in fibroblasts. This study has revolutionized stem cell research and has garnered immense interest from the scientific community globally. iPSCs hold tremendous potential for understanding human developmental biology, disease modeling, drug screening and discovery, and personalized cell-based therapeutic applications. The seminal study identified Oct4, Sox2, Klf4 and c-Myc as a potent combination of genes to induce reprogramming. Subsequently, various reprogramming factors were identified by numerous groups. Most of these studies have used integrating viral vectors to overexpress reprogramming factors in somatic cells to derive iPSCs. However, these techniques restrict the clinical applicability of these cells as they may alter the genome due to random viral integration resulting in insertional mutagenesis and tumorigenicity. To circumvent this issue, alternative integration-free reprogramming approaches are continuously developed that eliminate the risk of genomic modifications and improve the prospects of iPSCs from lab to clinic. These methods establish that integration of transgenes into the genome is not essential to induce pluripotency in somatic cells. This review provides a comprehensive overview of the most promising DNA-free reprogramming techniques that have the potential to derive integration-free iPSCs without genomic manipulation, such as sendai virus, recombinant proteins, microRNAs, synthetic messenger RNA and small molecules. The understanding of these approaches shall pave a way for the generation of clinical-grade iPSCs. Subsequently, these iPSCs can be differentiated into desired cell type(s) for various biomedical applications.
Collapse
Affiliation(s)
- Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Poulomi Adhikari
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
12
|
Anwar A, Siddiqui R, Khan NA. Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation. BIOLOGY 2020; 9:E79. [PMID: 32316619 PMCID: PMC7235994 DOI: 10.3390/biology9040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
Cancer recurrence has remained a significant challenge, despite advances in therapeutic approaches. In part, this is due to our incomplete understanding of the biology of cancer stem cells and the underlying molecular mechanisms. The phenomenon of differentiation and dedifferentiation (phenotypic switching) is not only unique to stem cells but it is also observed in several other organisms, as well as evolutionary-related microbes. Here, we propose the use of a primitive eukaryotic unicellular organism, Acanthamoeba castellanii, as a model to study the molecular mechanisms of cellular differentiation and dedifferentiation.
Collapse
Affiliation(s)
- Areeba Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia;
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City 26666, UAE;
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City 26666, UAE;
| |
Collapse
|
13
|
Ekerdt BL, Fuentes CM, Lei Y, Adil MM, Ramasubramanian A, Segalman RA, Schaffer DV. Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel Systems for 3D Stem Cell Culture. Adv Healthc Mater 2018; 7:e1800225. [PMID: 29717823 PMCID: PMC6289514 DOI: 10.1002/adhm.201800225] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer considerable potential for biomedical applications including drug screening and cell replacement therapies. Clinical translation of hPSCs requires large quantities of high quality cells, so scalable methods for cell culture are needed. However, current methods are limited by scalability, the use of animal-derived components, and/or low expansion rates. A thermoresponsive 3D hydrogel for scalable hPSC expansion and differentiation into several defined lineages is recently reported. This system would benefit from increased control over material properties to further tune hPSC behavior, and here a scalable 3D biomaterial with the capacity to tune both the chemical and the mechanical properties is demonstrated to promote hPSC expansion under defined conditions. This 3D biomaterial, comprised of hyaluronic acid and poly(N-isopropolyacrylamide), has thermoresponsive properties that readily enable mixing with cells at low temperatures, physical encapsulation within the hydrogel upon elevation at 37 °C, and cell recovery upon cooling and reliquefaction. After optimization, the resulting biomaterial supports hPSC expansion over long cell culture periods while maintaining cell pluripotency. The capacity to modulate the mechanical and chemical properties of the hydrogel provides a new avenue to expand hPSCs for future therapeutic application.
Collapse
Affiliation(s)
- Barbara L. Ekerdt
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Christina M. Fuentes
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, 207 Othmer, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Maroof M. Adil
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Anusuya Ramasubramanian
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Rachel A. Segalman
- Department of Chemical Engineering, 3333 Engineering IIUniversity of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - David V. Schaffer
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- Department of Molecular and Cell Biology, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- The Helen Wills Neuroscience Institute, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| |
Collapse
|
14
|
Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35:77-94. [PMID: 28007615 PMCID: PMC5237393 DOI: 10.1016/j.biotechadv.2016.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Winnie Leung
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Michael A Laflamme
- Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
15
|
Kehler J, Greco M, Martino V, Pachiappan M, Yokoe H, Chen A, Yang M, Auerbach J, Jessee J, Gotte M, Milanesi L, Albertini A, Bellipanni G, Zucchi I, Reinbold RA, Giordano A. RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy. J Cell Physiol 2016; 232:1262-1269. [DOI: 10.1002/jcp.25597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Affiliation(s)
- James Kehler
- ITB-CNR; Segrate Milan Italy
- National Institutes of Health; NIDDK; Laboratory of Cell and Molecular Biology; Rockville Pike Bethesda Maryland
- MTI-GlobalStem; Gaithersburg Maryland
| | | | | | | | | | | | | | | | | | - Martin Gotte
- Department of Gynecology and Obstetrics; Muenster University Hospital; Muenster Germany
| | | | | | - Gianfranco Bellipanni
- Department of Biology; College of Science and Technology; Temple University; Philadelphia Pennsylvania
- Sbarro Institute for Cancer Research and Molecular Medicine; College of Science and Technology; Temple University; Philadelphia Pennsylvania
| | | | | | - Antonio Giordano
- Department of Biology; College of Science and Technology; Temple University; Philadelphia Pennsylvania
- Sbarro Institute for Cancer Research and Molecular Medicine; College of Science and Technology; Temple University; Philadelphia Pennsylvania
| |
Collapse
|
16
|
Lee H, Kim GM, Choi JH, Park MH, Bae JS, Jin HK. Highly efficient reprogramming and characterization of induced pluripotent stem cells by using a microwell array. Tissue Eng Regen Med 2016; 13:691-700. [PMID: 30603450 DOI: 10.1007/s13770-016-0015-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) enables the possibility of generating patient-specific cells. However, the low efficiency issue associated with iPSCs generation has limited iPSCs usage in research and clinical applications. In this study, we developed a high efficiency system to generate iPSCs by using a polydimethylsiloxane stencil. This device could be applied to the localization and reprogramming of human fibroblasts. Herein, a well-defined culture system based on a stencil, which supported efficient reprogramming of fibroblasts into iPSCs with 2-4 fold increase in efficacy over conventional methods, is presented. Subsequently, we prepared a multiple analysis system, which used a micro-patterned scissile microarray to characterize iPSCs. The results showed that iPSCs could be cultured into micro-patterns in a precisely controlled manner on the scissile poly(ethylene terephthalate) sheet, which was cut into pieces for subsequent analyses, indicating that this method allows multiple analyses to establish iPSC pluripotency in the same sample. Our approach provides a simple, cost-effective, but highly efficient system for the generation and characterization of iPSCs, and will serve as a powerful tool for establishing patient- and disease-specific pluripotent stem cells. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-0015-0 and is accessible for authorized users.
Collapse
Affiliation(s)
- Hyun Lee
- 1Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea.,2Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Gyu Man Kim
- 3School of Mechanical Engineering, Kyungpook National University, Daegu, Korea
| | - Jin Ho Choi
- 3School of Mechanical Engineering, Kyungpook National University, Daegu, Korea
| | - Min Hee Park
- 1Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea.,4Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Korea.,5Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| | - Jae-Sung Bae
- 1Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea.,4Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Korea.,5Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea.,7Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, 41944 Daegu, Korea
| | - Hee Kyung Jin
- 1Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea.,2Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,6Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-gu, 41566 Daegu, Korea
| |
Collapse
|
17
|
Pareja-Galeano H, Sanchis-Gomar F, Pérez LM, Emanuele E, Lucia A, Gálvez BG, Gallardo ME. iPSCs-based anti-aging therapies: Recent discoveries and future challenges. Ageing Res Rev 2016; 27:37-41. [PMID: 26921478 DOI: 10.1016/j.arr.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
The main biological hallmarks of the aging process include stem cell exhaustion and cellular senescence. Consequently, research efforts to treat age-related diseases as well as anti-aging therapies in general have recently focused on potential 'reprogramming' regenerative therapies. These new approaches are based on induced pluripotent stem cells (iPSCs), including potential in vivo reprogramming for tissue repair. Another possibility is targeting pathways of cellular senescence, e.g., through modulation of p16INK4a signaling and especially inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we reviewed and discussed these recent developments together with their possible usefulness for future treatments against sarcopenia, a major age-related condition.
Collapse
Affiliation(s)
- Helios Pareja-Galeano
- European University of Madrid, Spain; Research Institute of Hospital 12 de Octubre ("i+12"), Madrid, Spain.
| | | | - Laura M Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Alejandro Lucia
- European University of Madrid, Spain; Research Institute of Hospital 12 de Octubre ("i+12"), Madrid, Spain
| | - Beatriz G Gálvez
- European University of Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Esther Gallardo
- Research Institute of Hospital 12 de Octubre ("i+12"), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (UAM-CSIC) and Centro de Investigación Biomédica en Red (CIBERER), Spain
| |
Collapse
|
18
|
Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Gallardo ME, Lucia A. IPSCs, a Promising Tool to Restore Muscle Atrophy. J Cell Physiol 2015. [DOI: 10.1002/jcp.25114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Helios Pareja-Galeano
- European University of Madrid; Spain
- Research Institute of Hospital 12 de Octubre (“i+12”); Madrid Spain
| | | | | | - María Esther Gallardo
- Research Institute of Hospital 12 de Octubre (“i+12”); Madrid Spain
- Departamento de Bioquímica; Instituto de Investigaciones Biom; é; dicas “Alberto Sols“, Facultad de Medicina, (UAM-CSIC) and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) Madrid; Spain
| | - Alejandro Lucia
- European University of Madrid; Spain
- Research Institute of Hospital 12 de Octubre (“i+12”); Madrid Spain
| |
Collapse
|
19
|
Schuster J, Halvardson J, Pilar Lorenzo L, Ameur A, Sobol M, Raykova D, Annerén G, Feuk L, Dahl N. Transcriptome Profiling Reveals Degree of Variability in Induced Pluripotent Stem Cell Lines: Impact for Human Disease Modeling. Cell Reprogram 2015; 17:327-37. [PMID: 26348590 DOI: 10.1089/cell.2015.0009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology has become an important tool for disease modeling. Insufficient data on the variability among iPSC lines derived from a single somatic parental cell line have in practice led to generation and analysis of several, usually three, iPSC sister lines from each parental cell line. We established iPSC lines from a human fibroblast line (HDF-K1) and used transcriptome sequencing to investigate the variation among three sister lines (iPSC-K1A, B, and C). For comparison, we analyzed the transcriptome of an iPSC line (iPSC-K5B) derived from a different fibroblast line (HDF-K5), a human embryonic stem cell (ESC) line (ESC-HS181), as well as the two parental fibroblast lines. All iPSC lines fulfilled stringent criteria for pluripotency. In an unbiased cluster analysis, all stem cell lines (four iPSCs and one ESC) clustered together as opposed to the parental fibroblasts. The transcriptome profiles of the three iPSC sister lines were indistinguishable from each other, and functional pathway analysis did not reveal any significant hits. In contrast, the expression profiles of the ESC line and the iPSC-K5B line were distinct from that of the sister lines iPSC-K1A, B, and C. Differentiation to embryoid bodies and subsequent analysis of germ layer markers in the five stem cell clones confirmed that the distribution of their expression profiles was retained. Taken together, our observations stress the importance of using iPSCs of different parental origin rather than several sister iPSC lines to distinguish disease-associated mechanisms from genetic background effects in disease modeling.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Laureanne Pilar Lorenzo
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Doroteya Raykova
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| |
Collapse
|
20
|
Schuetz C, Markmann JF. Immunogenicity of β-cells for autologous transplantation in type 1 diabetes. Pharmacol Res 2015; 98:60-8. [DOI: 10.1016/j.phrs.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/15/2022]
|
21
|
Prigione A, Ruiz-Pérez MV, Bukowiecki R, Adjaye J. Metabolic restructuring and cell fate conversion. Cell Mol Life Sci 2015; 72:1759-77. [PMID: 25586562 PMCID: PMC11113500 DOI: 10.1007/s00018-015-1834-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
Accumulating evidence implicates mitochondrial and metabolic pathways in the establishment of pluripotency, as well as in the control of proliferation and differentiation programs. From classic studies in mouse embryos to the latest findings in adult stem cells, human embryonic and induced pluripotent stem cells, an increasing number of evidence suggests that mitochondrial and metabolic-related processes might intertwine with signaling networks and epigenetic rewiring, thereby modulating cell fate decisions. This review summarizes the progresses in this exciting field of research. Dissecting these complex mitochondrial and metabolic mechanisms may lead to a more comprehensive understanding of stemness biology and to potential improvements in stem cell applications for biomedicine, cell therapy, and disease modeling.
Collapse
Affiliation(s)
- Alessandro Prigione
- Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Str. 10, 13125, Berlin, Germany,
| | | | | | | |
Collapse
|
22
|
Abstract
Recent studies link changes in energy metabolism with the fate of pluripotent stem cells (PSCs). Safe use of PSC derivatives in regenerative medicine requires an enhanced understanding and control of factors that optimize in vitro reprogramming and differentiation protocols. Relative shifts in metabolism from naïve through "primed" pluripotent states to lineage-directed differentiation place variable demands on mitochondrial biogenesis and function for cell types with distinct energetic and biosynthetic requirements. In this context, mitochondrial respiration, network dynamics, TCA cycle function, and turnover all have the potential to influence reprogramming and differentiation outcomes. Shifts in cellular metabolism affect enzymes that control epigenetic configuration, which impacts chromatin reorganization and gene expression changes during reprogramming and differentiation. Induced PSCs (iPSCs) may have utility for modeling metabolic diseases caused by mutations in mitochondrial DNA, for which few disease models exist. Here, we explore key features of PSC energy metabolism research in mice and man and the impact this work is starting to have on our understanding of early development, disease modeling, and potential therapeutic applications.
Collapse
Affiliation(s)
- Tara Teslaa
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Michael A Teitell
- Molecular Biology Institute, University of California, Los Angeles, CA, USA Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA Department of Bioengineering, University of California, Los Angeles, CA, USA Department of Pediatrics, University of California, Los Angeles, CA, USA California NanoSystems Institute, University of California, Los Angeles, CA, USA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Awe JP, Vega-Crespo A, Byrne JA. Derivation and characterization of a transgene-free human induced pluripotent stem cell line and conversion into defined clinical-grade conditions. J Vis Exp 2014:e52158. [PMID: 25490111 DOI: 10.3791/52158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However, traces of potentially oncogenic genes remaining in actively transcribed regions of the genome, limit their potential for use in human therapeutic applications. Additionally, non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context. In this video, we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR), which has an advantage over less sensitive techniques previously used to detect gene expression differences. Full conversion into clinical-grade good manufacturing practice (GMP) conditions, allows human clinical relevance. Our protocol offers another methodology--provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications--for deriving GMP-grade hiPSCs, which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
Collapse
Affiliation(s)
- Jason P Awe
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA)
| | - Agustin Vega-Crespo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA)
| | - James A Byrne
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA); Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles (UCLA);
| |
Collapse
|
24
|
Byun YS, Tibrewal S, Kim E, Yco L, Sarkar J, Ivanir Y, Liu CY, Sano CM, Jain S. Keratocytes derived from spheroid culture of corneal stromal cells resemble tissue resident keratocytes. PLoS One 2014; 9:e112781. [PMID: 25384043 PMCID: PMC4226584 DOI: 10.1371/journal.pone.0112781] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/15/2014] [Indexed: 01/04/2023] Open
Abstract
Purpose Corneal stromal cells transform to precursor cells in spheroid culture. We determined whether keratocytes derived from spheroid culture of murine corneal stromal cells resemble tissue resident keratocytes. Methods Spheroid culture was performed by seeding dissociated stromal cells onto ultra-low attachment plates containing serum-free mesenchymal stem cell culture medium. Spheroids were characterized with phenotype specific markers and stemness transcription factor genes. Spheroids and adherent cells in culture were induced to differentiate to keratocytes using keratocyte induction medium (KIM) and compared with tissue resident keratocytes. Results Stromal cells formed spheroids in ultra-low attachment plates, but not in polystyrene tissue culture dishes. Keratocan expression and abundance was significantly higher in spheroids as compared to adherent cells whereas alpha-smooth muscle actin (α-SMA) was significantly lower. As compared to adherent culture-derived cells, the expressions of keratocan, aldehyde dehydrogenase (ALDH3A1) and α-SMA in spheroid-derived cells approximated much more closely the levels of these genes in tissue resident keratocytes. Of the stemness genes, Nanog and Oct4 were upregulated in the spheroids. Conclusion Stemness transcription factor genes are upregulated in spheroids. Keratocytes derived from spheroids resemble tissue resident keratocytes, thus increasing manifolds the quantity of these cells for in-vitro experiments.
Collapse
Affiliation(s)
- Yong-Soo Byun
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America; Catholic Institute for Visual Science, Department of Ophthalmology and Visual Science, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Sapna Tibrewal
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Eunjae Kim
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lisette Yco
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Joy Sarkar
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yair Ivanir
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chia-Yang Liu
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Cecile M Sano
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sandeep Jain
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
25
|
Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases. Mol Neurobiol 2014; 52:244-55. [DOI: 10.1007/s12035-014-8867-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022]
|
26
|
Graham B, Stevens J, Wells P, Sims J, Rogers C, Leggett SS, Ekunwe S, Ndebele K. Enhancement of arsenic trioxide-mediated changes in human induced pluripotent stem cells (IPS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7524-36. [PMID: 25054231 PMCID: PMC4113892 DOI: 10.3390/ijerph110707524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 01/08/2023]
Abstract
Induced pluripotent stem cells (IPS) are an artificially derived type of pluripotent stem cell, showing many of the same characteristics as natural pluripotent stem cells. IPS are a hopeful therapeutic model; however there is a critical need to determine their response to environmental toxins. Effects of arsenic on cells have been studied extensively; however, its effect on IPS is yet to be elucidated. Arsenic trioxide (ATO) has been shown to inhibit cell proliferation, induce apoptosis and genotoxicity in many cells. Based on ATOs action in other cells, we hypothesize that it will induce alterations in morphology, inhibit cell viability and induce a genotoxic effect on IPS. Cells were treated for 24 hours with ATO (0-9 µg/mL). Cell morphology, viability and DNA damage were documented. Results indicated sufficient changes in morphology of cell colonies mainly in cell ability to maintain grouping and ability to remain adherent. Cell viability decreased in a dose dependent manner. There were significant increases in tail length and moment as well as destruction of intact DNA as concentration increased. Exposure to ATO resulted in a reproducible dose dependent sequence of events marked by changes in morphology, decrease of cell viability, and induction of genotoxicity in IPS.
Collapse
Affiliation(s)
- Barbara Graham
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Jacqueline Stevens
- RCMI Molecular Core Lab, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Phatia Wells
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Jennifer Sims
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Christian Rogers
- Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Sophia S Leggett
- Department of Behavioral and Environmental Health, Jackson State University, Jackson, MS 39217, USA.
| | - Stephen Ekunwe
- Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Kenneth Ndebele
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
27
|
Garreta E, Melo E, Navajas D, Farré R. Low oxygen tension enhances the generation of lung progenitor cells from mouse embryonic and induced pluripotent stem cells. Physiol Rep 2014; 2:2/7/e12075. [PMID: 25347858 PMCID: PMC4187564 DOI: 10.14814/phy2.12075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Whole-organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging from 1 to 5%. By contrast, in vitro ESC and iPSC differentiation protocols are usually carried out at room-air oxygen tension. Here, we sought to determine the role played by oxygen tension on the derivation of Nkx2.1+ lung/thyroid progenitor cells from mouse ESC and iPSC. A step-wise differentiation protocol was used to generate Nkx2.1+ lung/thyroid progenitors under 20% and 5% oxygen tension. On day 12, gene expression analysis revealed that Nkx2.1 and Foxa2 (endodermal and early lung epithelial cell marker) were significantly upregulated at 5% oxygen tension in ESC and iPSC differentiated cultures compared to 20% oxygen conditions. In addition, quantification of Foxa2+Nkx2.1+Pax8- cells corresponding to the lung field, with exclusion of the potential thyroid fate identified by Pax8 expression, confirmed that the low physiologic oxygen tension exerted a significant positive effect on early pulmonary differentiation of ESC and iPSC. In conclusion, we found that 5% oxygen tension enhanced the derivation of lung progenitors from mouse ESC and iPSC compared to 20% room-air oxygen tension.
Collapse
Affiliation(s)
- Elena Garreta
- Facultat de Medicina, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain Institut Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centre de Medicina Regenerativa de Barcelona (CMRB), Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader88 7ª Planta, Barcelona, 08003, Spain
| | - Esther Melo
- Facultat de Medicina, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain Institut Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain F. Hoffmann-La Roche, AG, NORD DTABldg. 69/331, Basel, CH-4070, Switzerland
| | - Daniel Navajas
- Facultat de Medicina, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Ramon Farré
- Facultat de Medicina, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain Institut Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
28
|
Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 2014; 15:244-53. [PMID: 24531722 DOI: 10.1002/embr.201338254] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regenerative medicine aims to replace the lost or damaged cells in the human body through a new source of healthy transplanted cells or by endogenous repair. Although human embryonic stem cells were first thought to be the ideal source for cell therapy and tissue repair in humans, the discovery by Yamanaka and colleagues revolutionized the field. Almost any differentiated cell can be sent back in time to a pluripotency state by expressing the appropriate transcription factors. The process of somatic reprogramming using Yamanaka factors, many of which are oncogenes, offers a glimpse into how cancer stem cells may originate. In this review we discuss the similarities between tumor dedifferentiation and somatic cell reprogramming and how this may pose a risk to the application of this new technology in regenerative medicine.
Collapse
|
29
|
Lu HF, Chai C, Lim TC, Leong MF, Lim JK, Gao S, Lim KL, Wan ACA. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 2014; 35:2816-26. [PMID: 24411336 DOI: 10.1016/j.biomaterials.2013.12.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/24/2022]
Abstract
A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However, standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium, imposing a significant obstacle to clinical translation. Here, we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation. Using an excisable polycistronic vector and optimized culture conditions, we achieved up to 0.15%-0.3% reprogramming efficiencies. Subsequently, transgene-free hiPSCs were obtained by Cre-mediated excision of the reprogramming factors. The derived iPSCs maintained long-term self-renewal, normal karyotype and pluripotency, as demonstrated by the expression of stem cell markers and ability to form derivatives of three germ layers both in vitro and in vivo. Importantly, we demonstrated that Parkinson's patient transgene-free iPSCs derived using the same system could be directed towards differentiation into dopaminergic neurons under xeno-free culture conditions. Our approach provides a safe and robust platform for the generation of patient-specific iPSCs and derivatives for clinical and translational applications.
Collapse
Affiliation(s)
- Hong Fang Lu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Chou Chai
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tze Chiun Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Meng Fatt Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jia Kai Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Kah Leong Lim
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
30
|
Awe JP, Lee PC, Ramathal C, Vega-Crespo A, Durruthy-Durruthy J, Cooper A, Karumbayaram S, Lowry WE, Clark AT, Zack JA, Sebastiano V, Kohn DB, Pyle AD, Martin MG, Lipshutz GS, Phelps PE, Pera RAR, Byrne JA. Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status. Stem Cell Res Ther 2013; 4:87. [PMID: 23890092 PMCID: PMC3854769 DOI: 10.1186/scrt246] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction The reprogramming of a patient’s somatic cells back into induced pluripotent stem cells (iPSCs) holds significant promise for future autologous cellular therapeutics. The continued presence of potentially oncogenic transgenic elements following reprogramming, however, represents a safety concern that should be addressed prior to clinical applications. The polycistronic stem cell cassette (STEMCCA), an excisable lentiviral reprogramming vector, provides, in our hands, the most consistent reprogramming approach that addresses this safety concern. Nevertheless, most viral integrations occur in genes, and exactly how the integration, epigenetic reprogramming, and excision of the STEMCCA reprogramming vector influences those genes and whether these cells still have clinical potential are not yet known. Methods In this study, we used both microarray and sensitive real-time PCR to investigate gene expression changes following both intron-based reprogramming and excision of the STEMCCA cassette during the generation of human iPSCs from adult human dermal fibroblasts. Integration site analysis was conducted using nonrestrictive linear amplification PCR. Transgene-free iPSCs were fully characterized via immunocytochemistry, karyotyping and teratoma formation, and current protocols were implemented for guided differentiation. We also utilized current good manufacturing practice guidelines and manufacturing facilities for conversion of our iPSCs into putative clinical grade conditions. Results We found that a STEMCCA-derived iPSC line that contains a single integration, found to be located in an intronic location in an actively transcribed gene, PRPF39, displays significantly increased expression when compared with post-excised stem cells. STEMCCA excision via Cre recombinase returned basal expression levels of PRPF39. These cells were also shown to have proper splicing patterns and PRPF39 gene sequences. We also fully characterized the post-excision iPSCs, differentiated them into multiple clinically relevant cell types (including oligodendrocytes, hepatocytes, and cardiomyocytes), and converted them to putative clinical-grade conditions using the same approach previously approved by the US Food and Drug Administration for the conversion of human embryonic stem cells from research-grade to clinical-grade status. Conclusion For the first time, these studies provide a proof-of-principle for the generation of fully characterized transgene-free human iPSCs and, in light of the limited availability of current good manufacturing practice cellular manufacturing facilities, highlight an attractive potential mechanism for converting research-grade cell lines into putatively clinical-grade biologics for personalized cellular therapeutics.
Collapse
|
31
|
Fisher MB, Mauck RL. Tissue engineering and regenerative medicine: recent innovations and the transition to translation. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:1-13. [PMID: 23253031 DOI: 10.1089/ten.teb.2012.0723] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of tissue engineering and regenerative medicine (TERM) has exploded in the last decade. In this Year (or so) in Review, we highlight some of the high impact advances within the field over the past several years. Using the past as our guide and starting with an objective premise, we attempt so to identify recent "hot topics" and transformative publications within the field. Through this process, several key themes emerged: (1) tissue engineering: grafts and materials, (2) regenerative medicine: scaffolds and factors that control endogenous tissue formation, (3) clinical trials, and (4) novel cell sources: induced pluripotent stem cells. Within these focus areas, we summarize the highly impactful articles that emerged from our objective analysis and review additional recent publications to augment and expand upon these key themes. Finally, we discuss where the TERM field may be headed and how to monitor such a broad-based and ever-expanding community.
Collapse
Affiliation(s)
- Matthew B Fisher
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
32
|
Abstract
Stem cells live long lives, renew themselves, and differentiate into more mature, less potent, specialized cells, such as epidermal keratinocytes and dermal fibroblasts. Stem cells can be embryonic, if derived from an embryo, or adult/somatic if derived from postembryonic tissue. By producing new skin cells, stem cell division and differentiation can potentially rejuvenate skin and restore hair. To reproduce, stem cells can undergo symmetric nondifferentiative or differentiative divisions, or asymmetric differentiative divisions. Asymmetric divisions reproduce the stem cell and provide a more differentiated, but less potent transient amplifying cell. Divisions and differentiation of transient amplifying cells regenerate tissues by producing cells of a specific lineage, for example, keratinocytes. Epidermal stem cells lie in niches in the interfollicular epidermis, sebaceous gland, and in the bulge regions of hair follicles. These epidermal stem cells renew the epidermis, the sebaceous glands, and hair follicles after mature cells die. Dermal stem cells lie in the hair papillae, around pericytes, and elsewhere among other dermal cells. These form pericytes, myoblasts, fibroblasts, chondrocytes, and other specialized dermal cells. Along with other signaling pathways, the Wnt signaling pathway controls stem cell fate. Wnt signals enlist two functionally and chemically different gene coactivators to direct the time and type of replicative divisions. Stem cells may help to heal wounds, repair damaged tissues, regenerate aged skin, and reinvigorate growth of skin, hair, nails, and mucous membranes.
Collapse
Affiliation(s)
- Mark V Dahl
- Department of Dermatology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
33
|
Tzouvelekis A, Ntolios P, Bouros D. Stem cell treatment for chronic lung diseases. Respiration 2013; 85:179-92. [PMID: 23364286 DOI: 10.1159/000346525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronic lung diseases such as idiopathic pulmonary fibrosis and cystic fibrosis or chronic obstructive pulmonary disease and asthma are leading causes of morbidity and mortality worldwide with a considerable human, societal and financial burden. In view of the current disappointing status of available pharmaceutical agents, there is an urgent need for alternative more effective therapeutic approaches that will not only help to relieve patient symptoms but will also affect the natural course of the respective disease. Regenerative medicine represents a promising option with several fruitful therapeutic applications in patients suffering from chronic lung diseases. Nevertheless, despite relative enthusiasm arising from experimental data, application of stem cell therapy in the clinical setting has been severely hampered by several safety concerns arising from the major lack of knowledge on the fate of exogenously administered stem cells within chronically injured lung as well as the mechanisms regulating the activation of resident progenitor cells. On the other hand, salient data arising from few 'brave' pilot investigations of the safety of stem cell treatment in chronic lung diseases seem promising. The main scope of this review article is to summarize the current state of knowledge regarding the application status of stem cell treatment in chronic lung diseases, address important safety and efficacy issues and present future challenges and perspectives. In this review, we argue in favor of large multicenter clinical trials setting realistic goals to assess treatment efficacy. We propose the use of biomarkers that reflect clinically inconspicuous alterations of the disease molecular phenotype before rigid conclusions can be safely drawn.
Collapse
Affiliation(s)
- Argyris Tzouvelekis
- Department of Pneumonology, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| | | | | |
Collapse
|