1
|
Triangga AFR, Asmara W, Magetsari R, Bachtiar I, Fazatamma DA, Saraswati PA, Huwaidi AF, Wirohadidjojo YW. Infrapatellar Fat Pad-Derived Non-Cellular Products in Therapy for Musculoskeletal Diseases: A Scoping Review. Orthop Rev (Pavia) 2024; 16:125841. [PMID: 39686964 PMCID: PMC11646799 DOI: 10.52965/001c.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
Background The complex nature of musculoskeletal diseases and the limitations of existing treatments have driven researchers to explore innovative solutions, particularly those involving stem cells and their derivatives. The utilization of the IPFP as a source of MSC-derived non-cellular products for the treatment of musculoskeletal diseases has gained recognition in recent years. This study aimed to identify the progress of IPFP-derived acellular biologics use in the treatment of orthopedic conditions such as osteoarthritis and ligament and/or tendon injuries. Methods A literature search was conducted through PubMed, Scopus and Google Scholar databases including studies over the past 10 years. This scoping review includes studies discussing the development of intercellular messenger signaling molecules (non-cellular products) in the form of exosomes, secretomes, and conditioned medium derived from the IPFP in the management of musculoskeletal diseases. The PRISMA-ScR guidelines were utilized in this review. Results Six studies met the inclusion criteria. Most studies reported the beneficial anti-inflammatory effects of IPFP-derived noncellular products in musculoskeletal conditions. The effects of IPFP-derived exosomes, secretomes, and conditioned medium administration are mostly reported in microscopic changes through cellular and matrix changes. Additionally, quantitative analyses involved assessing levels of anti-inflammatory and pro-inflammatory markers, proteins, fatty acids, and gene expression. Conclusions The use of IPFP-derived non-cellular products has shown significant promise in the regenerative therapy for musculoskeletal diseases. These agents have demonstrated beneficial effects, particularly in reducing inflammation, promoting cellular changes, and enhancing tissue regeneration. However, further research is needed to fully understand the characteristics and explore the potential applications of IPFP-derived non-cellular products in musculoskeletal cases.
Collapse
Affiliation(s)
- Aditya Fuad Robby Triangga
- Department of Orthopaedics and Traumatology, RSUP Dr. Sardjito, Yogyakarta, Indonesia
- Division of Adult Reconstructive Surgery and Sports Injury, RSUP Dr. Sardjito, Yogyakarta, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Widya Asmara
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rahadyan Magetsari
- Department of Orthopaedics and Traumatology, RSUP Dr. Sardjito, Yogyakarta, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Dandy Ardhan Fazatamma
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Paramita Ayu Saraswati
- Department of Orthopaedics and Traumatology, RSUP Dr. Sardjito, Yogyakarta, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - A Faiz Huwaidi
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yohanes Widodo Wirohadidjojo
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Dermatology and Venereology, RSUP Dr. Sardjito, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Huang X, Niu X, Ma Y, Wang X, Su T, He Y, Lu F, Gao J, Chang Q. Hierarchical double-layer microneedles accomplish multicenter skin regeneration in diabetic full-thickness wounds. J Adv Res 2024; 66:237-249. [PMID: 38218581 PMCID: PMC11674785 DOI: 10.1016/j.jare.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Managing large chronic wounds presents significant challenges because of inadequate donor sites, infection, and lack of structural support from dermal substitutes. Hydrogels are extensively used in various forms to promote chronic wound healing and provide a three-dimensional spatial structure, through growth factors or cell transport. OBJECTIVES We present a novel multicenter regenerative model that is capable of regenerating and merging simultaneously to form a complete layer of skin. This method significantly reduces wound healing time compared to the traditional centripetal healing model. We believe that our model can improve clinical outcomes and pave the way for further research into regenerative medicine. METHODS We prepared a novel multi-island double-layer microneedle (MDMN) using gelatin-methacryloylchitosan (GelMA-CS). The MDMN was loaded with keratinocytes (KCs) and dermal fibroblasts (FBs). Our aim in this study was to explore the therapeutic potential of MDMN in a total skin excision model. RESULTS The MDMN model replicated the layered structure of full-thickness skin and facilitated tissue regeneration and healing via dual omni-bearing. Multi-island regeneration centres accomplished horizontal multicentric regeneration, while epidermal and dermal cells migrated synchronously from each location. This produced a healing area approximately 4.7 times greater than that of the conventional scratch tests. The MDMN model exhibited excellent antibacterial properties, attributed to the chitosan layer. During wound healing in diabetic mice, the MDMN achieved earlier epidermal coverage and faster wound healing through multi-island regeneration centres and the omnidirectional regeneration mode. The MDMN group displayed an accelerated wound healing rate upon arrival at the destination (0.96 % ± 0.58 % vs. 4.61 % ± 0.32 %). Additionally, the MDMN group exhibited superior vascularization and orderly collagen deposition. CONCLUSION The present study presents a novel skin regeneration model using microneedles as carriers of autologous keratinocytes and dermal fibroblasts, which allows for omni-directional, multi-center, and full-thickness skin regeneration.
Collapse
Affiliation(s)
| | | | | | - Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yu He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
3
|
Hui Y, Mao J, Rui M, Huang Y, Jiang X, Xu Y, Wang W, Wu J, Zhou L, Xi K, Huang L, Chen L. Hydrogel Microsphere-Encapsulated Bimetallic Nanozyme for Promoting Diabetic Bone Regeneration via Glucose Consumption and ROS Scavenging. Adv Healthc Mater 2024; 13:e2402596. [PMID: 39252661 DOI: 10.1002/adhm.202402596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Indexed: 09/11/2024]
Abstract
The healing of bone defects among diabetic patients presents a critical challenge due to the pathological microenvironment, characterized by hyperglycemia, excessive reactive oxygen species (ROS) production, and inflammation. Herein, multifunctional composite microspheres, termed GMAP are developed, using a microfluidic technique by incorporating Au@Pt nanoparticles (NPs) and GelMA hydrogel to modulate the diabetic microenvironment for promoting bone regeneration. The GMAP enables the sustained release of Au@Pt NPs, which function as bimetallic nanozymes with dual enzyme-like activities involving glucose oxidase and catalase. The synergistic effect allows for efficient glucose consumption and ROS elimination concurrently. Thus, the GMAP effectively protects the proliferation of bone marrow mesenchymal stem cells (BMSCs) under adverse high-glucose conditions. Furthermore, it also promotes the osteogenic differentiation and paracrine capabilities of BMSCs, and subsequently inhibits inflammation and enhances angiogenesis. In vivo diabetic rats bone defect model, it is demonstrated that GMAP microspheres significantly improve bone regeneration, as verified by micro-computed tomography and histological examinations. This study provides a novel strategy for bone regeneration by modulating the diabetic microenvironment, presenting a promising approach for addressing the complex challenges associated with bone healing in diabetic patients.
Collapse
Affiliation(s)
- Yujian Hui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Jiangyin Clinical College of Xuzhou Medical University, No.163 Shoushan Road, Jiangyin, 214400, P. R. China
| | - Jiannan Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Jiangyin Clinical College of Xuzhou Medical University, No.163 Shoushan Road, Jiangyin, 214400, P. R. China
| | - Min Rui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Jiangyin Clinical College of Xuzhou Medical University, No.163 Shoushan Road, Jiangyin, 214400, P. R. China
| | - Yiyang Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Xinzhao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yichang Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
4
|
Assi MM, Grawish ME, Elsabaa HM, Helal ME, Ezzat SK. Therapeutic potential of hyaluronic acid hydrogel combined with bone marrow stem cells-conditioned medium on arthritic rats' TMJs. Sci Rep 2024; 14:26828. [PMID: 39500985 PMCID: PMC11538243 DOI: 10.1038/s41598-024-77325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Conditioned media (CM) is derived from mesenchymal stem cells (MSC) culture and contains biologically active components. CM is easy to handle and reduces inflammation while repairing injured joints. Combination therapy of the CM with cross-linked hyaluronic acid (HA) could ameliorate the beneficial effect of HA in treating degenerative changes of articulating surfaces associated with arthritic rats' temporomandibular joints (TMJs). This study aimed to evaluate the therapeutic potential of HA hydrogel combined with bone marrow stem cells-conditioned medium (BMSCs-CM) on the articulating surfaces of TMJs associated with complete Freund's adjuvant (CFA)-induced arthritis. Fifty female Sprague-Dawley rats were divided randomly into five equal groups. Rats of group I served as the negative controls and received intra-articular (IA) injections of 50 µl saline solution, whereas rats of group II were subjected to twice IA injections of 50 µg CFA in 50 µl; on day 1 of the experiment to induce persistent inflammation and on day 14 to induce arthritis. Rats of group III and IV were handled as group II and instead, they received an IA injection of 50 µl HA hydrogel and 50 µl of BMSCs-CM, respectively. Rats of group V were given combined IA injections of 50 µl HA hydrogel and BMSCs-CM. All rats were euthanized after the 4th week of inducing arthritis. The joints were processed for sectioning and histological staining using hematoxylin and eosin, Masson's trichrome and toluidine blue special staining, and immunohistochemical staining for nuclear factor-kappa B (NF-κB). SPSS software was used to analyze the data and one-way analysis of variance followed by post-hoc Tukey statistical tests were used to test the statistical significance at 0.05 for alpha and 0.2 for beta. In the pooled BMSC-CM, 197.14 pg/ml of platelet-derived growth factor and 112.22 pg/ml of interleukin-10 were detected. Compared to TMJs of groups III and IV, TMJs of group V showed significant improvements (P = 0.001) in all parameters tested as the disc thickness was decreased (331.79 ± 0.73), the fibrocartilaginous layer was broadened (0.96 ± 0.04), and the amount of the trabecular bone was distinctive (19.35 ± 1.07). The mean values for the collagen amount were increased (12.29 ± 1.38) whereas the mean values for the NF-κB expression were decreased (0.62 ± 0.15). Combination therapy of HA hydrogel and BMSCs-CM is better than using HA hydrogel or BMSCs-CM, separately to repair degenerative changes in rats' TMJs associated with CFA-induced arthritis.
Collapse
Affiliation(s)
- Mai M Assi
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt.
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Dakahlia, Egypt.
| | - Heba Mahmoud Elsabaa
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
- Department of Oral Biology and Pathology, Faculty of Dentistry, Badr University in Cairo, Cairo, Egypt
| | - Mohamad E Helal
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Samah K Ezzat
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
5
|
Shanbhag S, Al-Sharabi N, Kampleitner C, Mohamed-Ahmed S, Kristoffersen EK, Tangl S, Mustafa K, Gruber R, Sanz M. The use of mesenchymal stromal cell secretome to enhance guided bone regeneration in comparison with leukocyte and platelet-rich fibrin. Clin Oral Implants Res 2024; 35:141-154. [PMID: 37964421 DOI: 10.1111/clr.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Einar K Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Bousnaki M, Bakopoulou A, Grivas I, Bekiari C, Pich A, Rizk M, Keklikoglou K, Papachristou E, Papadopoulos GC, Kritis A, Mikos AG, Koidis P. Managing Temporomandibular Joint Osteoarthritis by Dental Stem Cell Secretome. Stem Cell Rev Rep 2023; 19:2957-2979. [PMID: 37751010 PMCID: PMC10661765 DOI: 10.1007/s12015-023-10628-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/27/2023]
Abstract
The potential therapeutic role of the Dental Pulp Stem Cells Secretome (SECR) in a rat model of experimentally induced Temporomandibular Joint (TMJ) Osteoarthritis (OA) was evaluated. Proteomic profiling of the human SECR under specific oxygen tension (5% O2) and stimulation with Tumor Necrosis Factor-alpha (TNF-α) was performed. SECR and respective cell lysates (CL) samples were collected and subjected to SDS-PAGE, followed by LC-MS/MS analysis. The identified proteins were analyzed with Bioinformatic tools. The anti-inflammatory properties of SECR were assessed via an in vitro murine macrophages model, and were further validated in vivo, in a rat model of chemically-induced TMJ-OA by weekly recording of the head withdrawal threshold, the food intake, and the weight change, and radiographically and histologically at 4- and 8-weeks post-treatment. SECR analysis revealed the presence of 50 proteins that were enriched and/or statistically significantly upregulated compared to CL, while many of those proteins were involved in pathways related to "extracellular matrix organization" and "immune system". SECR application in vitro led to a significant downregulation on the expression of pro-inflammatory genes (MMP-13, MMP-9, MMP-3 and MCP-1), while maintaining an increased expression of IL-10 and IL-6. SECR application in vivo had a significant positive effect on all the clinical parameters, resulting in improved food intake, weight, and pain suppression. Radiographically, SECR application had a significant positive effect on trabecular bone thickness and bone density compared to the saline-treated group. Histological analysis indicated that SECR administration reduced inflammation, enhanced ECM and subchondral bone repair and regeneration, thus alleviating TMJ degeneration.
Collapse
Affiliation(s)
- Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Ioannis Grivas
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Chrysa Bekiari
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Andreas Pich
- Research Core Unit Proteomics &, Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Marta Rizk
- Department for Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Kleoniki Keklikoglou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Thalassocosmos, P.O. Box 2214, 71003, Heraklion, Crete, Greece
- Biology Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Eleni Papachristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Georgios C Papadopoulos
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Petros Koidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.
| |
Collapse
|
7
|
Al-Sharabi N, Gruber R, Sanz M, Mohamed-Ahmed S, Kristoffersen EK, Mustafa K, Shanbhag S. Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin. Int J Mol Sci 2023; 24:13057. [PMID: 37685865 PMCID: PMC10487446 DOI: 10.3390/ijms241713057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.
Collapse
Affiliation(s)
- Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| |
Collapse
|
8
|
Ghiasi M, Hashemi M, Salimi A, Jadidi K, Tavallaie M, Aghamollaei H. Combination of natural scaffolds and conditional medium to induce the differentiation of adipose-derived mesenchymal stem cells into keratocyte-like cells and its safety evaluation in the animal cornea. Tissue Cell 2023; 82:102117. [PMID: 37267821 DOI: 10.1016/j.tice.2023.102117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
Keratocytes are the main cellular components of the corneal stroma. This cell is quiescent and cannot be cultured easily. The aim of this study was to investigate differentiate human adipose mesenchymal stem cells (hADSCs) into corneal keratocyte cells by combining natural scaffolds and conditioned medium (CM) and evaluating their safety in the rabbit's cornea. Keratocytes were cultured in an optimal culture medium and this medium was collected and kept as a CM. hADSCs were cultured on the decellularized human small incision lenticule extraction (SMILE) lenticule (SL), amniotic membrane (AM), and collagen-coated plates, and were exposed to keratocyte-CM (KCM) for 7, 14, and 21 days. Differentiation was evaluated using Real-time PCR and immunocytochemistry (ICC). hADSCs were cultured on the SL scaffolds and implanted in the corneal stroma of 8 New Zealand male rabbits. Rabbits were followed for 3 months and the safety was evaluated by clinical and histological variables. Real-time PCR results showed a significant increase in the expression of keratocyte-specific markers on the 21 day of differentiation compared to the control group. ICC also confirmed the induction of differentiation. Implantation of SLs containing differentiated cells in the cornea of animals showed no serious complications including neovascularization, corneal opacity, inflammation, or signs of tissue rejection. Furthermore, the evaluation of the presence of keratocyte-like cells after three months in the rabbit stroma was confirmed by Real-time PCR and immunohistochemistry (IHC) analysis. Our results showed that combination of combination of corneal extracellular matrix and KCM can induced keratocytes differentiation of hADSC and can be introduced as a alternative method to supply the required keratocytes in corneal tissue engineering.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injures Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Muhammad Firdaus FI, Nashihah AK, Mohd Fauzi MB, Manira M, Aminuddin S, Lokanathan Y. Application of Conditioned Medium for In Vitro Modeling and Repair of Respiratory Tissue. APPLIED SCIENCES 2023; 13:5862. [DOI: 10.3390/app13105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: The idea of exploring respiratory therapy in vitro predominantly guided by cell-secreted substances has gained ground in recent years. A conditioned medium (CM) consists of protein milieu that contains a diverse spectrum of cytokines, chemokines, angiogenic agents, and growth factors. This review evaluated the efficacy of using CM collected in an in vitro respiratory epithelial model. Methods: Twenty-six papers were included in this review: twenty-one cellular response studies on respiratory secretome application and five studies involving animal research. Results: The CM produced by differentiated cells from respiratory and non-respiratory systems, such as mesenchymal stem cells (MSC), exhibited the similar overall effect of improving proliferation and regeneration. Not only could differentiated cells from respiratory tissues increase proliferation, migration, and attachment, but the CM was also able to protect the respiratory epithelium against cytotoxicity. Most non-respiratory tissue CM was used as a treatment model to determine the effects of the therapy, while only one study used particle-based CM and reported decreased epithelial cell tight junctions, which harmed the epithelial barrier. Conclusion: As it resolves the challenges related to cell development and wound healing while simultaneously generally reducing the danger of immunological compatibility and tumorigenicity, CM might be a potential regenerative therapy in numerous respiratory illnesses. However, additional research is required to justify using CM in respiratory epithelium clinical practice.
Collapse
Affiliation(s)
- Fairuz Izan Muhammad Firdaus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ab. Karim Nashihah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh. Busra Mohd Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maarof Manira
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Saim Aminuddin
- Graduate School of Medicine, KPJ Healthcare University College, Kota Seriemas, Nilai 71800, Malaysia
- KPJ Ampang Puteri Specialist Hospital, Ampang 68000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int J Mol Sci 2023; 24:ijms24055053. [PMID: 36902477 PMCID: PMC10002910 DOI: 10.3390/ijms24055053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.
Collapse
Affiliation(s)
- Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| |
Collapse
|
11
|
Shanbhag S, Kampleitner C, Al-Sharabi N, Mohamed-Ahmed S, Apaza Alccayhuaman KA, Heimel P, Tangl S, Beinlich A, Rana N, Sanz M, Kristoffersen EK, Mustafa K, Gruber R. Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects. Cells 2023; 12:cells12050767. [PMID: 36899904 PMCID: PMC10001262 DOI: 10.3390/cells12050767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel 'off-the-shelf' strategy for GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (S.S.); (R.G.); Tel.: +47-55586059 (S.S.); +43-(0)69910718472 (R.G.)
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | | | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Beinlich
- Department of Earth Science, Faculty of Mathematics and Natural Sciences, University of Bergen, 5009 Bergen, Norway
| | - Neha Rana
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Correspondence: (S.S.); (R.G.); Tel.: +47-55586059 (S.S.); +43-(0)69910718472 (R.G.)
| |
Collapse
|
12
|
Shanbhag S, Al-Sharabi N, Mohamed-Ahmed S, Gruber R, Kristoffersen EK, Mustafa K. Brief communication: Effects of conditioned media from human platelet lysate cultured MSC on osteogenic cell differentiation in vitro. Front Bioeng Biotechnol 2022; 10:969275. [PMID: 36246352 PMCID: PMC9556861 DOI: 10.3389/fbioe.2022.969275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Culturing mesenchymal stromal cells (MSC) in human platelet lysate (HPL) supplemented media can enhance their osteogenic differentiation potential. The objective of this study was to test the hypothesis that conditioned media (CM) derived from HPL-cultured MSC also have pro-osteogenic effects. Pooled CM was prepared from HPL-cultured human bone marrow MSC (BMSC) of multiple donors and applied on BMSC of different donors (than those used for CM preparation), with or without additional supplementation [HPL, fetal bovine serum (FBS)] and osteogenic stimulation. At various time-points, cell proliferation, alkaline phosphatase (ALP) activity, osteogenic gene expression and in vitro mineralization were assessed. BMSC in standard unstimulated growth media served as controls. After 3–7 days, CM alone did not promote BMSC proliferation or ALP activity; supplementation of CM with HPL slightly improved these effects. After 2 and 7 days, CM alone, but not CM supplemented with HPL, promoted osteogenic gene expression. After 14 days, only CM supplemented with FBS and osteogenic stimulants supported in vitro BMSC mineralization; CM alone and CM supplemented with HPL did not support mineralization, regardless of osteogenic stimulation. In summary, CM from HPL-cultured BMSC promoted osteogenic gene expression but not in vitro mineralization in allogeneic BMSC even when supplemented with HPL and/or osteogenic stimulants. Future studies should investigate the role and relevance of supplementation and osteogenic induction in in vitro assays using CM from MSC.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- *Correspondence: Siddharth Shanbhag,
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Roseti L, Grigolo B. Current concepts and perspectives for articular cartilage regeneration. J Exp Orthop 2022; 9:61. [PMID: 35776217 PMCID: PMC9249961 DOI: 10.1186/s40634-022-00498-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Articular cartilage injuries are common in the population. The increment in the elderly people and active life results in an increasing demand for new technologies and good outcomes to satisfy longer and healthier life expectancies. However, because of cartilage's low regenerative capacity, finding an efficacious treatment is still challenging for orthopedics. Since the pioneering studies based on autologous cell transplantation, regenerative medicine has opened new approaches for cartilage lesion treatment. Tissue engineering combines cells, biomaterials, and biological factors to regenerate damaged tissues, overcoming conventional therapeutic strategies. Cells synthesize matrix structural components, maintain tissue homeostasis by modulating metabolic, inflammatory, and immunologic pathways. Scaffolds are well acknowledged by clinicians in regenerative applications since they provide the appropriate environment for cells, can be easily implanted, reduce surgical morbidity, allow enhanced cell proliferation, maturation, and an efficient and complete integration with surrounding articular cartilage. Growth factors are molecules that facilitate tissue healing and regeneration by stimulating cell signal pathways. To date, different cell sources and a wide range of natural and synthetic scaffolds have been used both in pre-clinical and clinical studies with the aim to find the suitable solution for recapitulating cartilage microenvironment and inducing the formation of a new tissue with the biochemical and mechanical properties of the native one. Here, we describe the current concepts for articular cartilage regeneration, highlighting the key actors of this process trying to identify the best perspectives.
Collapse
Affiliation(s)
- Livia Roseti
- IRCCS Istituto Ortopedico Rizzoli Bologna, Bologna, Italy
| | | |
Collapse
|
14
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
15
|
Wang YL, Zheng CM, Lee YH, Cheng YY, Lin YF, Chiu HW. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int J Mol Sci 2021; 22:4787. [PMID: 33946416 PMCID: PMC8124422 DOI: 10.3390/ijms22094787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
With rapid industrialization, humans produce an increasing number of products. The composition of these products is usually decomposed. However, some substances are not easily broken down and gradually become environmental pollutants. In addition, these substances may cause bioaccumulation, since the substances can be fragmented into micro- and nanoparticles. These particles or their interactions with other toxic matter circulate in humans via the food chain or air. Whether these micro- and nanoparticles interfere with extracellular vesicles (EVs) due to their similar sizes is unclear. Micro- and nanoparticles (MSs and NSs) induce several cell responses and are engulfed by cells depending on their size, for example, particulate matter with a diameter ≤2.5 μm (PM2.5). Autophagy is a mechanism by which pathogens are destroyed in cells. Some artificial materials are not easily decomposed in organisms. How do these cells or tissues respond? In addition, autophagy operates through two pathways (increasing cell death or cell survival) in tumorigenesis. Many MSs and NSs have been found that induce autophagy in various cells and tissues. As a result, this review focuses on how these particles interfere with cells and tissues. Here, we review MSs, NSs, and PM2.5, which result in different autophagy-related responses in various tissues or cells.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan;
| | - Ya-Yun Cheng
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
16
|
Fu G, Lu L, Pan Z, Fan A, Yin F. Adipose-derived stem cell exosomes facilitate rotator cuff repair by mediating tendon-derived stem cells. Regen Med 2021; 16:359-372. [PMID: 33871287 DOI: 10.2217/rme-2021-0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To evaluate the potential capability of adipose-derived stem cell exosomes (ADSC-exos) on rotator cuff repair by mediating the tendon-derived stem cells (TDSCs) and explored the mechanism. Methods: First, we investigated the growth, survival and migration of TDSCs in the presence of ADSC-exos in vitro. Using a rat rotator cuff injury model to analyze the ability of the ADSC-exos to promote rotator cuff healing in vivo. Results: The hydrogel with ADSC-exos significantly improved the osteogenic and adipogenesis differentiation and enhanced the expression of RUNX2, Sox-9, TNMD, TNC and Scx and the mechanical properties of the articular portion. Conclusion: The ADSC-exos have the potential to promote the rotator cuff repair by mediating the TDSCs.
Collapse
Affiliation(s)
- Guojian Fu
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China.,Department of Joint Surgery, Nanjing Jiangbei Hospital, Nantong University, Nanjing, 210048, PR China
| | - Liangyu Lu
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China
| | - Zhangyi Pan
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China
| | - Aoyuan Fan
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China
| |
Collapse
|
17
|
Autocrine and Paracrine Effects of Vascular Endothelial Cells Promote Cutaneous Wound Healing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6695663. [PMID: 33937411 PMCID: PMC8055399 DOI: 10.1155/2021/6695663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/31/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
Background When vascular endothelial cells are subjected to external stimuli, paracrine hormones and cytokines act on adjacent cells. The regulation of the biological behaviour of cells is closely related to the maintenance of organ function and the occurrence and development of disease. However, it is unclear whether vascular endothelial cells affect the biological behaviour of cells involved in wound repair through autocrine and paracrine mechanisms and ultimately play a role in wound healing. We aimed to verify the effect of the autocrine and paracrine functions of vascular endothelial cells on wound healing. Materials and Methods ELISA was used to detect platelet-derived growth factor, basic fibroblast growth factor, epidermal growth factor, and vascular endothelial growth factor in human umbilical vascular endothelial cell-conditioned medium (HUVEC-CM). Different concentrations of HUVEC-CM were used to treat different stem cells. CCK-8 and scratch assays were used to detect the proliferation and migration ability of each cell. A full-thickness dorsal skin defect model was established in mice, and skin wound healing was observed after the local injection of HUVEC-CM, endothelial cell medium (ECM), or normal saline. H&E staining and immunofluorescence were used to observe the gross morphology of the wound tissue, the epithelial cell migration distance, and the expression of CD3 and CD31. Results HUVEC-CM promotes the proliferation and migration of epidermal stem cells, skin fibroblasts, bone marrow mesenchymal stem cells, and HUVECs themselves. Furthermore, HUVEC-CM can promote angiogenesis in mouse skin wounds and granulation tissue formation and can accelerate wound surface epithelialization and collagen synthesis, thereby promoting wound healing. Conclusion Our results clearly suggest that it is practicable and effective to promote wound healing with cytokines secreted by vascular endothelial cells in a mouse model.
Collapse
|
18
|
Sartori M, Graziani G, Sassoni E, Pagani S, Boi M, Maltarello MC, Baldini N, Fini M. Nanostructure and biomimetics orchestrate mesenchymal stromal cell differentiation: An in vitro bioactivity study on new coatings for orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112031. [PMID: 33812646 DOI: 10.1016/j.msec.2021.112031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 02/09/2023]
Abstract
The choice of the appropriate material having suitable compositional and morphological surface characteristics, is a crucial step in the development of orthopedic implants. The purpose of this paper is to elucidate, on this regard, the influence of two important hits, i.e., biogenic apatite with bone-like composition and nanostructured morphology, providing the evidence of the efficacy of nanostructured biogenic apatite coatings in favoring adhesion, growth, proliferation, and in vitro osteogenic differentiation of human mesenchymal stromal cells (hMSCs) isolated from the bone marrow. The specific features of this coating in terms of topographical and biochemical cues, obtained by Ionized Jet Deposition, are perceived by hMSCs, as suggested by changes in different morphologic parameters as Aspect Ratio or Elongation index, suggesting the impact exerted by the nanostructure on early adhesion events, cytoskeleton organization, and cells fate. In addition, the nanostructured CaP coating sustained the metabolic activity of the cells and facilitated the osteogenic differentiation of MSC by supporting the osteogenesis-related gene expression. These findings support the use of a combined approach between technological advancement and instructive surfaces, both from the topographical and the biochemical point of view, in order to manufacture smart biomaterials able to respond to different needs of the orthopedic practice.
Collapse
Affiliation(s)
- Maria Sartori
- IRCCS - Istituto Ortopedico Rizzoli, Surgical Sciences and Technologies Complex Structure, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Gabriela Graziani
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory of Nanobiotechnology, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Enrico Sassoni
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, via Terracini 28, 40131 Bologna, Italy
| | - Stefania Pagani
- IRCCS - Istituto Ortopedico Rizzoli, Surgical Sciences and Technologies Complex Structure, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marco Boi
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory of Nanobiotechnology, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maria Cristina Maltarello
- IRCCS - Istituto Ortopedico Rizzoli, BST Biomedical Science and Technologies Laboratory, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory of Nanobiotechnology, via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS - Istituto Ortopedico Rizzoli, BST Biomedical Science and Technologies Laboratory, via di Barbiano 1/10, 40136 Bologna, Italy; University of Bologna, Department of Biomedical and Neuromotor Sciences, Via Massarenti 9, 40128 Bologna, Italy
| | - Milena Fini
- IRCCS - Istituto Ortopedico Rizzoli, Surgical Sciences and Technologies Complex Structure, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
19
|
Stanisic D, Jeremic N, Majumder S, Pushpakumar S, George A, Singh M, Tyagi SC. High Fat Diet Dysbiotic Mechanism of Decreased Gingival Blood Flow. Front Physiol 2021; 12:625780. [PMID: 33746772 PMCID: PMC7965981 DOI: 10.3389/fphys.2021.625780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
The gut microbiome has a very important role in human health and its influence on the development of numerous diseases is well known. In this study, we investigated the effect of high fat diet (HFD) on the onset of dysbiosis, gingival blood flow decreases, and the periodontal matrix remodeling. We established a dysbiosis model (HFD group) and probiotic model by Lactobacillus rhamnosus GG (LGG) treatment for 12weeks. Fecal samples were collected 24h before mice sacrificing, while short chain fatty acids (SCFA) analysis, DNA extraction, and sequencing for metagenomic analysis were performed afterwards. After sacrificing the animals, we collected periodontal tissues and conducted comprehensive morphological and genetic analyses. While HFD reduced Bacteroidetes, SCFA, and gingival blood flow, this type of diet increased Firmicutes, lipopolysaccharide (LPS) binding protein, TLR4, pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), matrix metalloproteinases (MMP-2 and MMP-9) expression, and also altered markers of bone resorption (OPG and RANKL). However, LGG treatment mitigated these effects. Thus, it was observed that HFD increased molecular remodeling via inflammation, matrix degradation, and functional remodeling and consequently cause reduced gingival blood flow. All of these changes may lead to the alveolar bone loss and the development of periodontal disease.
Collapse
Affiliation(s)
- Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Nevena Jeremic
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suravi Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Sathnur Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Akash George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Suresh C. Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
20
|
Uchikawa E, Yoshizawa M, Li X, Matsumura N, Li N, Chen K, Kagami H. Tooth transplantation with a β-tricalcium phosphate scaffold accelerates bone formation and periodontal tissue regeneration. Oral Dis 2020; 27:1226-1237. [PMID: 32881188 DOI: 10.1111/odi.13634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Although tooth transplantation is a useful treatment option as a substitute for a missing tooth, transplantation to a narrow alveolar ridge is not feasible. In this study, we tested a tissue engineering approach simultaneously with tooth transplantation using a scaffold or a combination with cells to accelerate bone formation and periodontal tissue regeneration. MATERIALS AND METHODS Bone marrow mononuclear cells (BM-MNCs) were harvested from C57BL/6J mice. The upper first or the second molar of 3-week-old C57BL/6J mice and a β-tricalcium phosphate (β-TCP) scaffold were transplanted with BM-MNCs (MNC group) or without BM-MNCs (β-TCP group) into the thigh muscle of syngeneic mice. The tooth alone was also transplanted (control group). After 4 weeks, the transplants were harvested and analyzed. RESULTS Bone volume was significantly larger in the MNC and the β-TCP groups than that in the control group, and the newly formed bone was observed on the lateral wall of the root. Compared with the control group, the MNC group showed a larger trabecular thickness and fractal dimension. CONCLUSION This study showed accelerated bone formation and periodontal tissue regeneration when tooth transplantation was performed with a β-TCP scaffold. BM-MNCs may accelerate bone maturation, while the effect on bone formation was limited.
Collapse
Affiliation(s)
- Eri Uchikawa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Michiko Yoshizawa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Nahomi Matsumura
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Xu XY, Tian BM, Xia Y, Xia YL, Li X, Zhou H, Tan YZ, Chen FM. Exosomes derived from P2X7 receptor gene-modified cells rescue inflammation-compromised periodontal ligament stem cells from dysfunction. Stem Cells Transl Med 2020; 9:1414-1430. [PMID: 32597574 PMCID: PMC7581448 DOI: 10.1002/sctm.19-0418] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/24/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Although cellular therapy has been proposed for inflammation‐related disorders such as periodontitis for decades, clinical application has been unsuccessful. One explanation for these disappointing results is that the functions of stem cells are substantially compromised when they are transplanted into an inflammatory in vivo milieu. Considering the previous finding that P2X7 receptor (P2X7R) gene modification is able to reverse inflammation‐mediated impairment of periodontal ligament stem cells (PDLSCs), we further hypothesized that cells subjected to P2X7R gene transduction also exert influences on other cells within an in vivo milieu via an exosome‐mediated paracrine mechanism. To define the paracrine ability of P2X7R gene‐modified cells, P2X7R gene‐modified stem cell‐derived conditional medium (CM‐Ad‐P2X7) and exosomes (Exs‐Ad‐P2X7) were used to incubate PDLSCs. In an inflammatory osteogenic microenvironment, inflammation‐mediated changes in PDLSCs were substantially reduced, as shown by quantitative real‐time PCR (qRT‐PCR) analysis, Western blot analysis, alkaline phosphatase (ALP) staining/activity assays, and Alizarin red staining. In addition, the Agilent miRNA microarray system combined with qRT‐PCR analysis revealed that miR‐3679‐5p, miR‐6515‐5p, and miR‐6747‐5p were highly expressed in Exs‐Ad‐P2X7. Further functional tests and luciferase reporter assays revealed that miR‐3679‐5p and miR‐6747‐5p bound directly to the GREM‐1 protein, while miR‐6515‐5p bound to the GREM‐1 protein indirectly; these effects combined to rescue inflammation‐compromised PDLSCs from dysfunction. Thus, in addition to maintaining their robust functionality under inflammatory conditions, P2X7R gene‐modified stem cells may exert positive influences on their neighbors via a paracrine mechanism, pointing to a novel strategy for modifying the harsh local microenvironment to accommodate stem cells and promote improved tissue regeneration.
Collapse
Affiliation(s)
- Xin-Yue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu Xia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yun-Long Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Huan Zhou
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi-Zhou Tan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
22
|
The Efficacy of Stem Cells Secretome Application in Osteoarthritis: A Systematic Review of In Vivo Studies. Stem Cell Rev Rep 2020; 16:1222-1241. [DOI: 10.1007/s12015-020-09980-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
24
|
Shoma Suresh K, Bhat S, Guru BR, Muttigi MS, Seetharam RN. A nanocomposite hydrogel delivery system for mesenchymal stromal cell secretome. Stem Cell Res Ther 2020; 11:205. [PMID: 32460846 PMCID: PMC7251860 DOI: 10.1186/s13287-020-01712-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stromal cell conditioned medium (MSC-CM) contains a cocktail of bioactive factors that act synergistically to induce therapeutic effects. This has been clearly demonstrated by in vivo applications of MSC-CM, but the establishment of controlled delivery systems is an unmet requirement for clinical translation. Methods We developed a nanocomposite-hydrogel (NP-H) comprised of poly-L-lactide nanoparticles (NPs) embedded in gelatin/hyaluronic acid (Gel/HA) hydrogel as a delivery vehicle for MSC-CM. First, we optimized the culture conditions for bone marrow-derived MSCs using serum-containing medium (SCM) and serum-free medium (SFM) and characterized the corresponding CM (serum-containing conditioned medium (ScCM) and serum-free conditioned medium (SfCM), respectively) for its potency and xeno markers. Then we prepared a composite matrix followed by physiochemical characterization and functional assays were performed. Results Nanocomposite hydrogel displayed an even distribution of NPs along with high porosity (> 60%) and swelling ratios > 1500%, while its protein release pattern corresponded to a mix of degradation and diffusion kinetics. Functional evaluation of the composites was determined using MSCs and human fibroblasts (HFFs). The cells seeded directly onto the composites displayed increasing metabolic activities over time, with ScCM-NP-H groups having maximum activity. The cells treated in vitro with 5% and 10% extracts of ScCM-NP-H and SfCM-NP-H exhibited a dose- and duration-dependent response. Cell activities reduced considerably for all groups, except 10% ScCM-NP-H, which displayed a significant increase over time. Conclusion We observed that sustained release of MSC-CM is required to prevent dose-dependent cytotoxicity. The proposed nanocomposite hydrogel for MSC-CM delivery can open up a new array for its clinical application.
Collapse
Affiliation(s)
- K Shoma Suresh
- Stempeutics Research Private Limited, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India.,Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Samatha Bhat
- Stempeutics Research Private Limited, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manjunatha S Muttigi
- Stempeutics Research Private Limited, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India.
| | - Raviraja N Seetharam
- Stempeutics Research Private Limited, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India. .,Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
25
|
Saveh-Shemshaki N, S.Nair L, Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomater 2019; 94:64-81. [PMID: 31128319 DOI: 10.1016/j.actbio.2019.05.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/27/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
The rotator cuff consists of a cuff of soft tissue responsible for rotating the shoulder. Rotator cuff tendon tears are responsible for a significant source of disability and pain in the adult population. Most rotator cuff tendon tears occur at the bone-tendon interface. Tear size, patient age, fatty infiltration of muscle, have a major influence on the rate of retear after surgical repair. The high incidence of retears (up to 94% in some studies) after surgery makes rotator cuff injuries a critical musculoskeletal problem to address. The limitations of current treatments motivate regenerative engineering approaches for rotator cuff regeneration. Various fiber-based matrices are currently being investigated due to their structural similarity with native tendons and their ability to promote regeneration. This review will discuss the current approaches for rotator cuff regeneration, recent advances in fabrication and enhancement of nanofiber-based matrices and the development and use of complex nano/microstructures for rotator cuff regeneration. STATEMENT OF SIGNIFICANCE: Regeneration paradigms for musculoskeletal tissues involving the rotator cuff of the shoulder have received great interest. Novel technologies based on nanomaterials have emerged as possible robust solutions for rotator cuff injury and treatment due to structure/property relationships. The aim of the review submitted is to comprehensively describe and evaluate the development and use of nano-based material technologies for applications to rotator cuff tendon healing and regeneration.
Collapse
|
26
|
Long-Lasting Anti-Inflammatory Activity of Human Microfragmented Adipose Tissue. Stem Cells Int 2019; 2019:5901479. [PMID: 30915125 PMCID: PMC6399530 DOI: 10.1155/2019/5901479] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Over the last few years, human microfragmented adipose tissue (MFAT), containing significant levels of mesenchymal stromal cells (MSCs) and obtained from fat lipoaspirate (LP) through a minimal manipulation in a closed system device, has been successfully used in aesthetic medicine as well as in orthopedic and general surgery. Interestingly, in orthopedic diseases, this ready-to-use adipose tissue cell derivative seems to have a prolonged time efficacy even upon a single shot injection into osteoarthritic tissues. Here, we investigated the long-term survival and content of MSCs as well the anti-inflammatory activity of LP and its derived MFAT in vitro, with the aim to better understand a possible in vivo mechanism of action. MFAT and LP specimens from 17 human donors were investigated side by side. During a long-term culture in serum-free medium, we found that the total cell number as well the MSC content in MFAT decreased more slowly if compared to those from LP specimens. The analysis of cytokines and growth factors secreted into the conditioned medium (CM) was similar in MFAT and LP during the first week of culture, but the total amount of cytokines secreted by LP decreased much more rapidly than those produced by MFAT during prolonged culture (up to 28 days). Similarly, the addition of MFAT-CM recovered at early (3-7 days) and late stage (14-28 days) of culture strongly inhibited inflammatory function of U937 monocyte cell line, whereas the anti-inflammatory activity of LP-CM was drastically reduced after only 7 days of culture. We conclude that MFAT is an effective preparation with a long-lasting anti-inflammatory activity probably mediated by a long-term survival of their MSC content that releases a combination of cytokines that affect several mechanisms involved in inflammation processes.
Collapse
|
27
|
Jacobs FA, van de Vyver M, Ferris WF. Isolation and Characterization of Different Mesenchymal Stem Cell Populations from Rat Femur. Methods Mol Biol 2019; 1916:133-147. [PMID: 30535691 DOI: 10.1007/978-1-4939-8994-2_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purified mesenchymal stem cells (MSCs) may be used for a multitude of applications, from the study of biological processes such as cell division and coordinated gene expression to tissue engineering and regenerative medicine. However, although highly similar, MSCs isolated and purified from different tissues may be biologically different in the ability of the cells to respond to environmental cues that instigate and propagate changes in cell fate such as differentiation, proliferation, apoptosis, and senescence. Selecting which MSC subtype to study may therefore profoundly influence the outcome of the investigation. Here we outline the isolation, purification, and differentiation of three different MSC subtypes derived from various depots within rat bone. These include MSCs from bone marrow, compact bone, and the proximal femur. Osteoblastic and adipogenic differentiation exemplify differences between these cells.
Collapse
Affiliation(s)
- Frans Alexander Jacobs
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mari van de Vyver
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - William Frank Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
28
|
Li Y, Yin P, Guo Z, Lv H, Deng Y, Chen M, Gu Y, Tang P, Zhang L. Bone-Derived Extracellular Vesicles: Novel Players of Interorgan Crosstalk. Front Endocrinol (Lausanne) 2019; 10:846. [PMID: 31920965 PMCID: PMC6914759 DOI: 10.3389/fendo.2019.00846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Abstract
An increasing number of studies have shown that bone plays an active role in regulating glucose metabolism, affects renal, and cardiovascular diseases and even influences the development of offspring. These novel findings have indicated that bone plays a much more important role in the human body than only providing physical support. However, further investigations of the mechanisms underlying the effects of bone are needed. Recently, extracellular vesicles (EVs) have received increased attention because they can transfer functional proteins, mRNAs, and miRNAs between cells/organs. After reviewing the existing evidence, we hypothesized that bone may be involved in interorgan communication via EVs. Further research exploring bone-derived EVs may facilitate the understanding of bone as a multifunctional organ.
Collapse
|
29
|
Bone marrow concentrate and expanded mesenchymal stromal cell surnatants as cell-free approaches for the treatment of osteochondral defects in a preclinical animal model. INTERNATIONAL ORTHOPAEDICS 2018; 43:25-34. [PMID: 30324310 DOI: 10.1007/s00264-018-4202-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/08/2018] [Indexed: 11/25/2022]
|
30
|
Bok JS, Byun SH, Park BW, Kang YH, Lee SL, Rho GJ, Hwang SC, Woo DK, Lee HJ, Byun JH. The Role of Human Umbilical Vein Endothelial Cells in Osteogenic Differentiation of Dental Follicle-Derived Stem Cells in In Vitro Co-cultures. Int J Med Sci 2018; 15:1160-1170. [PMID: 30123053 PMCID: PMC6097253 DOI: 10.7150/ijms.27318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/30/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis and vascularization are essential for the growth and survival of most tissues. Engineered bone tissue requires an active blood vessel network for survival and integration with mature host tissue. Angiogenesis also has an effect on cell growth and differentiation in vitro. However, the effect of angiogenic factors on osteoprogenitor cell differentiation remains unclear. We studied the effects of human umbilical vein endothelial cells (HUVECs) on osteogenic differentiation of dental follicle-derived stem cells (DFSCs) in vitro by co-culturing DFSCs and HUVECs. Cell viability, based on metabolic activity and DNA content, was highest for co-cultures with a DFSC/HUVEC ratio of 50:50 in a 1:1 mixture of mesenchymal stem cell growth medium and endothelial cell growth medium. Osteoblastic and angiogenic phenotypes were enhanced in co-cultures with a DFSC/HUVEC ratio of 50:50 compared with DFSC monocultures. Increased expression of angiogenic phenotypes and vascular endothelial growth factor (VEGF) levels were observed over time in both 50:50 DFSC/HUVEC co-cultures and DFSC monocultures during culture period. Our results showed that increased angiogenic activity in DFSC/HUVEC co-cultures may stimulate osteoblast maturation of DFSCs. Therefore, the secretion of angiogenic factors from HUVECs may play a role in the osteogenic differentiation of DFSCs.
Collapse
Affiliation(s)
- Jung-Suk Bok
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|