1
|
Marceau JB, Le Balle J, Ta DM, Aguilar A, Loiseau A, Martel R, Bon P, Voituriez R, Recher G, Gaufrès E. Activated Diffusion of 1D J-Aggregates in Boron Nitride Nanotubes by Curvature Patterning. ACS NANO 2025. [PMID: 40346029 DOI: 10.1021/acsnano.4c16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The directed assembly of molecules into micrometer-scale patterns and advanced materials holds broad relevance across fields such as life sciences, photovoltaics, and quantum photonics. However, these processes are often challenged by competing forces such as Brownian motion, capillary interactions, drift, and nonspecific adsorption. Here, we demonstrate a reactivated and guided diffusion mechanism of luminescent dye aggregates after encapsulation within boron nitride nanotubes (BNNTs). Correlative analyses between BNNT curvature and molecular positioning along the nanotube axis reveal efficient long-range migration of dye molecules from curved to straight sections of the BNNT. This curvature-activated diffusion leads to the formation of J-aggregate clusters, arranged in periodic patterns with precise spacings and defined lengths. A phenomenological model of curvature-guided molecular motility is developed to describe 1D diffusion within BNNTs, accurately predicting the size and spacing of J-aggregates as a function of the nanotube length. Finally, this mechanism is exploited using different substrates, such as exfoliated MoS2 topological steps or micropatterned gratings on the photonic device, to induce local bending of the BNNTs and deterministically control molecular cluster formation.
Collapse
Affiliation(s)
- Jean-Baptiste Marceau
- Laboratoire Photonique Numérique et Nanosciences, Institut d'Optique, CNRS UMR5298, Université de Bordeaux, F-33400 Talence, France
| | - Juliette Le Balle
- Laboratoire Photonique Numérique et Nanosciences, Institut d'Optique, CNRS UMR5298, Université de Bordeaux, F-33400 Talence, France
- Université Paris-Saclay, ONERA-CNRS, Laboratoire d'Étude des Microstructures, 92322 Châtillon, France
| | - Duc-Minh Ta
- Université de Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | - Alberto Aguilar
- Université de Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | - Annick Loiseau
- Université Paris-Saclay, ONERA-CNRS, Laboratoire d'Étude des Microstructures, 92322 Châtillon, France
| | - Richard Martel
- Département de Chimie et Institut Courtois, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Pierre Bon
- Université Paris-Saclay, ONERA-CNRS, Laboratoire d'Étude des Microstructures, 92322 Châtillon, France
| | - Raphael Voituriez
- Laboratoire Jean Perrin et Laboratoire de Physique Théorique de la Matière Condensée CNRS Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Gaëlle Recher
- Laboratoire Photonique Numérique et Nanosciences, Institut d'Optique, CNRS UMR5298, Université de Bordeaux, F-33400 Talence, France
| | - Etienne Gaufrès
- Laboratoire Photonique Numérique et Nanosciences, Institut d'Optique, CNRS UMR5298, Université de Bordeaux, F-33400 Talence, France
| |
Collapse
|
2
|
Heatlie JK, Lazniewska J, Moore CR, Johnson IRD, Nturubika BD, Williams R, Ward MP, O’Leary JJ, Butler LM, Brooks DA. Extracellular Vesicles and Tunnelling Nanotubes as Mediators of Prostate Cancer Intercellular Communication. Biomolecules 2024; 15:23. [PMID: 39858418 PMCID: PMC11762852 DOI: 10.3390/biom15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/27/2025] Open
Abstract
Prostate cancer (PCa) pathogenesis relies on intercellular communication, which can involve tunnelling nanotubes (TNTs) and extracellular vesicles (EVs). TNTs and EVs have been reported to transfer critical cargo involved in cellular functions and signalling, prompting us to investigate the extent of organelle and protein transfer in PCa cells and the potential involvement of the androgen receptor. Using live cell imaging microscopy, we observed extensive formation of TNTs and EVs operating between PCa, non-malignant, and immune cells. PCa cells were capable of transferring lysosomes, mitochondria, lipids, and endoplasmic reticulum, as well as syndecan-1, sortilin, Glut1, and Glut4. In mechanistic studies, androgen-sensitive PCa cells exhibited changes in cell morphology when stimulated by R1881 treatment. Overexpression assays of a newly designed androgen receptor (AR) plasmid revealed its novel localization in PCa cellular vesicles, which were also transferred to neighbouring cells. Selected molecular machinery, thought to be involved in intercellular communication, was investigated by knockdown studies and Western blotting/immunofluorescence/scanning electron microscopy (SEM). PCa TNTs and EVs transported proteins and organelles, which may contain specialist signalling, programming, and energy requirements that support cancer growth and progression. This makes these important intercellular communication systems ideal potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica K. Heatlie
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Joanna Lazniewska
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Courtney R. Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Bukuru D. Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Ruth Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Mark P. Ward
- Department of Histopathology, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Lisa M. Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5005, Australia
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Doug A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Department of Histopathology, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
3
|
Barutta F, Corbetta B, Bellini S, Gambino R, Bruno S, Kimura S, Hase K, Ohno H, Gruden G. Protective effect of mesenchymal stromal cells in diabetic nephropathy: the In vitro and In vivo role of the M-Sec-tunneling nanotubes. Clin Sci (Lond) 2024; 138:1537-1559. [PMID: 39535903 DOI: 10.1042/cs20242064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Mitochondrial dysfunction plays an important role in the development of podocyte injury in diabetic nephropathy (DN). Tunnelling nanotubes (TNTs) are long channels that connect cells and allow organelle exchange. Mesenchymal stromal cells (MSCs) can transfer mitochondria to other cells through the M-Sec-TNTs system. However, it remains unexplored whether MSCs can form heterotypic TNTs with podocytes, thereby enabling the replacement of diabetes-damaged mitochondria. In this study, we analysed TNT formation, mitochondrial transfer, and markers of cell injury in podocytes that were pre-exposed to diabetes-related insults and then co-cultured with diabetic or non-diabetic MSCs. Furthermore, to assess the in vivo relevance, we treated DN mice with exogenous MSCs, either expressing or lacking M-Sec, carrying fluorescent-tagged mitochondria. MSCs formed heterotypic TNTs with podocytes, allowing mitochondrial transfer, via a M-Sec-dependent mechanism. This ameliorated mitochondrial function, nephrin expression, and reduced apoptosis in recipient podocytes. However, MSCs isolated from diabetic mice failed to confer cytoprotection due to Miro-1 down-regulation. In experimental DN, treatment with exogenous MSCs significantly improved DN, but no benefit was observed in mice treated with MSCs lacking M-Sec. Mitochondrial transfer from exogenous MSCs to podocytes occurred in vivo in a M-Sec-dependent manner. These findings demonstrate that the M-Sec-TNT-mediated transfer of mitochondria from healthy MSCs to diabetes-injured podocytes can ameliorate podocyte damage. Moreover, M-Sec expression in exogenous MSCs is essential for providing renoprotection in vivo in experimental DN.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Stefania Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Baldari CT. Nanotube-mediated mitochondrial transfer: power to the T cells! Trends Immunol 2024; 45:917-919. [PMID: 39572338 DOI: 10.1016/j.it.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024]
Abstract
The success of T cell-based immunotherapies is limited by exhaustion, which is associated with mitochondrial dysfunction. Baldwin and colleagues show that bone marrow stromal cells (BMSCs) use nanotubes to transfer mitochondria to T cells, which increases mitochondria mass and fitness and boosts antitumor efficacy. The results pave the way to organelle-based therapies against cancer.
Collapse
|
5
|
Zhang M, Wu J, Cai K, Liu Y, Lu B, Zhang J, Xu J, Gu C, Chen T. From dysfunction to healing: advances in mitochondrial therapy for Osteoarthritis. J Transl Med 2024; 22:1013. [PMID: 39529128 PMCID: PMC11552139 DOI: 10.1186/s12967-024-05799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint condition characterised by cartilage deterioration and changes in bone morphology, resulting in pain and impaired joint mobility. Investigation into the pathophysiological mechanisms underlying OA has highlighted the significance of mitochondrial dysfunction in its progression. Mitochondria, which are cellular organelles, play a crucial role in regulating energy metabolism, generating reactive oxygen species, and facilitating essential biological processes including apoptosis. In recent years, the utilisation of exogenous drugs and MT to improve mitochondrial function in chondrocytes has shown great promise in OA treatment. Numerous studies have investigated the potential of stem cells and extracellular vesicles in mitochondrial transfer. This review aims to explore the underlying mechanisms of mitochondrial dysfunction in OA and assess the progress in utilising mitochondrial transfer as a therapeutic approach for this disease.
Collapse
Affiliation(s)
- Minghang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Junfeng Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Kehan Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Botao Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Jiaojiao Zhang
- Department of Gynaecology and Obstetrics Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Chenxi Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China.
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China.
| |
Collapse
|
6
|
Chen M, Zhao D. Invisible Bridges: Unveiling the Role and Prospects of Tunneling Nanotubes in Cancer Therapy. Mol Pharm 2024; 21:5413-5429. [PMID: 39373242 PMCID: PMC11539062 DOI: 10.1021/acs.molpharmaceut.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Tunneling nanotubes (TNTs) are essential intercellular communication channels that significantly impact cancer pathophysiology, affecting tumor progression and resistance. This review methodically examines the mechanisms of TNTs formation, their structural characteristics, and their functional roles in material and signal transmission between cells. Highlighting their regulatory functions within the tumor microenvironment, TNTs are crucial for modulating cell survival, proliferation, drug resistance, and immune evasion. The review critically evaluates the therapeutic potential of TNTs, focusing on their applications in targeted drug delivery and gene therapy. It also proposes future research directions to thoroughly understand TNTs biogenesis, identify cell-specific molecular targets, and develop advanced technologies for the real-time monitoring of TNTs. By integrating insights from molecular biology, nanotechnology, and immunology, this review highlights the transformative potential of TNTs in advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Meiru Chen
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
- Department
of Gastroenterology, Hengshui People’s
Hospital, Hengshui, Hebei 053000, China
| | - Dongqiang Zhao
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
7
|
Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. J Transl Med 2024; 22:941. [PMID: 39407249 PMCID: PMC11475785 DOI: 10.1186/s12967-024-05752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong medical University, zhanjiang, 524000, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Qiao X, Huang N, Meng W, Liu Y, Li J, Li C, Wang W, Lai Y, Zhao Y, Ma Z, Li J, Zhang X, Weng Z, Wu C, Li L, Li B. Beyond mitochondrial transfer, cell fusion rescues metabolic dysfunction and boosts malignancy in adenoid cystic carcinoma. Cell Rep 2024; 43:114652. [PMID: 39217612 DOI: 10.1016/j.celrep.2024.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer cells with mitochondrial dysfunction can be rescued by cells in the tumor microenvironment. Using human adenoid cystic carcinoma cell lines and fibroblasts, we find that mitochondrial transfer occurs not only between human cells but also between human and mouse cells both in vitro and in vivo. Intriguingly, spontaneous cell fusion between cancer cells and fibroblasts could also emerge; specific chromosome loss might be essential for nucleus reorganization and the post-hybrid selection process. Both mitochondrial transfer through tunneling nanotubes (TNTs) and cell fusion "selectively" revive cancer cells, with mitochondrial dysfunction as a key motivator. Beyond mitochondrial transfer, cell fusion significantly enhances cancer malignancy and promotes epithelial-mesenchymal transition. Mechanistically, mitochondrial dysfunction in cancer cells causes L-lactate secretion to attract fibroblasts to extend TNTs and TMEM16F-mediated phosphatidylserine externalization, facilitating TNT formation and cell-membrane fusion. Our findings offer insights into mitochondrial transfer and cell fusion, highlighting potential cancer therapy targets.
Collapse
Affiliation(s)
- Xianghe Qiao
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Nengwen Huang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunkun Liu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinjin Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenxuan Wang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Lai
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Yongjiang Zhao
- Genetics and Prenatal Diagnostic Center, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Zhengzhou 450052, China
| | - Zhongkai Ma
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingya Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuan Zhang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijie Weng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenzhou Wu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Sun Y, Zhang H, Zavodnik IB, Zhao H, Feng X. Mechanical properties of intercellular tunneling nanotubes formed by different mechanisms. Heliyon 2024; 10:e36265. [PMID: 39263182 PMCID: PMC11386031 DOI: 10.1016/j.heliyon.2024.e36265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Tunneling nanotubes (TNTs) that connect cells have been recognized as a pathway for long-range intercellular transport of diverse cargoes, including viruses, lysosomes or other organelles, Ca2+ and electrical signals. TNTs can initially be formed from thin finger-like actin assembly-driven protrusions or cell contacts and dislodgment. However, it remains unclear whether the mechanical properties of TNTs formed by these two mechanisms are the same. Here, we developed novel microoperation methods to investigate the mechanical properties of TNTs in HEK293 cells, in which the TNTs form from thin finger-like actin assembly-driven protrusions and C2C12 cells, in which the TNTs form through contact and cell dislodgment. We found that TNTs formed by the two mechanisms represent elastic elements with similar tensile strength. In both the HEK and C2C12 cells, the tensile strength of TNTs exhibited a distinct size dependence on their lengths and diameters. Disturbing the cytoskeleton or removing extracellular Ca2+ also changed their tensile strength. In addition, the stiffening of the extracellular matrix (ECM) enhanced the length, diameter and tensile strength of TNTs both in both HEK and C2C12 cells. Finally, a theoretical model was established to reveal the changes in the TNT's mechanical properties with its length, diameter and individual tunneling nanotubes (iTNT) number. This work not only gains insights into the properties of TNTs but also helps understand the dynamics of various cells.
Collapse
Affiliation(s)
- Yanli Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, 230030, Grodno, Belarus
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiqiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Gerdes C, Basmanav FB. Intercellular transfer of plasmid DNA between in vitro cultured HEK293 cells following transient transfection. Plasmid 2024; 131-132:102729. [PMID: 38876373 DOI: 10.1016/j.plasmid.2024.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Gene overexpression by transient transfection of in vitro cultured model cell lines with plasmid DNA is a commonly used method for studying molecular aspects of human biology and pathobiology. However, there is accumulating evidence suggesting that human cells may actively secrete fragments of DNA and the implications of this phenomenon for in vitro cultured cells transiently transfected with foreign nucleic acids has been overlooked. Therefore, in the current study we investigated whether a cell-to-cell transmission of acquired plasmid DNA takes place in a commonly used human cell line model. We transiently transfected HEK293 cells with EGFP encoding plasmids to serve as donor cells and either co-cultured these with stably mCherry expressing recipient cells in different set-ups or transferred their culture medium to the recipient cells. We found that recipient cells produced EGFP after being co-cultured with donor cells but not when they were exposed to their culture medium. The employment of different co-culture set-ups excluded that the observed effect stemmed from technical artefacts and provided evidence that an intercellular plasmid transfer takes place requiring physical proximity between living cells. This phenomenon could represent a significant biological artefact for certain studies such as those addressing protein transmissions in prion diseases.
Collapse
Affiliation(s)
- Christoph Gerdes
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, D-37073 Göttingen, Germany; Hannover Medical School, Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - F Buket Basmanav
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, D-37073 Göttingen, Germany; Campus Laboratory for Advanced Imaging, Microscopy and Spectroscopy, University of Göttingen, D-37073 Göttingen, Germany; Institute of X-ray Physics, University of Göttingen, 37073 Göttingen, Germany; Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Liu H, Mao H, Ouyang X, Lu R, Li L. Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases. Traffic 2024; 25:e12951. [PMID: 39238078 DOI: 10.1111/tra.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui Mao
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xueqian Ouyang
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
12
|
Pichler V, Dalkilic L, Shoaib G, Shapira T, Rankine-Wilson L, Boudehen YM, Chao JD, Sexton D, Prieto M, Quon BS, Tocheva EI, Kremer L, Hsiao W, Av-Gay Y. The diversity of clinical Mycobacterium abscessus isolates in morphology, glycopeptidolipids and infection rates in a macrophage model. J Med Microbiol 2024; 73. [PMID: 39158416 DOI: 10.1099/jmm.0.001869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Introduction. Mycobacterium abscessus (MABS) is a pathogenic bacterium that can cause severe lung infections, particularly in individuals with cystic fibrosis. MABS colonies can exhibit either a smooth (S) or rough (R) morphotype, influenced by the presence or absence of glycopeptidolipids (GPLs) on their surface, respectively. Despite the clinical significance of these morphotypes, the relationship between GPL levels, morphotype and the pathogenesis of MABS infections remains poorly understood.Gap statement. The mechanisms and implications of GPL production and morphotypes in clinical MABS infections are unclear. There is a gap in understanding their correlation with infectivity and pathogenicity, particularly in patients with underlying lung disease.Aim. This study aimed to investigate the correlation between MABS morphology, GPL and infectivity by analysing strains from cystic fibrosis patients' sputum samples.Methodology. MABS was isolated from patient sputum samples and categorized by morphotype, GPL profile and replication rate in macrophages. A high-content ex vivo infection model using THP-1 cells assessed the infectivity of both clinical and laboratory strains.Results. Our findings revealed that around 50 % of isolates displayed mixed morphologies. GPL analysis confirmed a consistent relationship between GPL content and morphotype that was only found in smooth isolates. Across morphotype groups, no differences were observed in vitro, yet clinical R strains were observed to replicate at higher levels in the THP-1 infection model. Moreover, the proportion of infected macrophages was notably higher among clinical R strains compared to their S counterparts at 72 h post-infection. Clinical variants also infected THP-1 cells at significantly higher rates compared to laboratory strains, highlighting the limited translatability of lab strain infection data to clinical contexts.Conclusion. Our study confirmed the general correlation between morphotype and GPL levels in smooth strains yet unveiled more variability within morphotype groups than previously recognized, particularly during intracellular infection. As the R morphotype is the highest clinical concern, these findings contribute to the expanding knowledge base surrounding MABS infections, offering insights that can steer diagnostic methodologies and treatment approaches.
Collapse
Affiliation(s)
- Virginia Pichler
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- INSERM, IRIM, 34293 Montpellier, France
| | - Lara Dalkilic
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ghazaleh Shoaib
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Leah Rankine-Wilson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - Joseph D Chao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Danielle Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Miguel Prieto
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bradley S Quon
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - William Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Yossef Av-Gay
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Wang ZG, Hu Y, Liu HY, Wen HY, Qi BP, Liu SL. Electrochemiluminescence-Based Single-Particle Tracking of the Biomolecules Moving along Intercellular Membrane Nanotubes between Live Cells. Anal Chem 2024; 96:7231-7239. [PMID: 38656982 DOI: 10.1021/acs.analchem.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrochemiluminescence (ECL) imaging, a rapidly evolving technology, has attracted significant attention in the field of cellular imaging. However, its primary limitation lies in its inability to analyze the motion behaviors of individual particles in live cellular environments. In this study, we leveraged the exceptional ECL properties of quantum dots (QDs) and the excellent electrochemical properties of carbon dots (CDs) to develop a high-brightness ECL nanoprobe (CDs-QDs) for real-time ECL imaging between living cells. This nanoprobe has excellent signal-to-noise ratio imaging capabilities for the single-particle tracking (SPT) of biomolecules. Our finding elucidated the enhanced ECL mechanism of CDs-QDs in the presence of reactive oxygen species through photoluminescence, electrochemistry, and ECL techniques. We further tracked the movement of single particles on membrane nanotubes between live cells and confirmed that the ECL-based SPT technique using CD-QD nanoparticles is an effective approach for monitoring the transport behaviors of biomolecules on membrane nanotubes between live cells. This opens a promising avenue for the advancement of ECL-based single-particle detection and the dynamic quantitative imaging of biomolecules.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Bao-Ping Qi
- Institute of selenium science and industry, Hubei Minzu University, Enshi 445000, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, PR China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
14
|
Matejka N, Amarlou A, Neubauer J, Rudigkeit S, Reindl J. High-Resolution Microscopic Characterization of Tunneling Nanotubes in Living U87 MG and LN229 Glioblastoma Cells. Cells 2024; 13:464. [PMID: 38474428 PMCID: PMC10931022 DOI: 10.3390/cells13050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Tunneling nanotubes (TNTs) are fine, nanometer-sized membrane connections between distant cells that provide an efficient communication tool for cellular organization. TNTs are thought to play a critical role in cellular behavior, particularly in cancer cells. The treatment of aggressive cancers such as glioblastoma remains challenging due to their high potential for developing therapy resistance, high infiltration rates, uncontrolled cell growth, and other aggressive features. A better understanding of the cellular organization via cellular communication through TNTs could help to find new therapeutic approaches. In this study, we investigate the properties of TNTs in two glioblastoma cell lines, U87 MG and LN229, including measurements of their diameter by high-resolution live-cell stimulated emission depletion (STED) microscopy and an analysis of their length, morphology, lifetime, and formation by live-cell confocal microscopy. In addition, we discuss how these fine compounds can ideally be studied microscopically. In particular, we show which membrane-labeling method is suitable for studying TNTs in glioblastoma cells and demonstrate that live-cell studies should be preferred to explore the role of TNTs in cellular behavior. Our observations on TNT formation in glioblastoma cells suggest that TNTs could be involved in cell migration and serve as guidance.
Collapse
Affiliation(s)
- Nicole Matejka
- Institute for Applied Physics and Measurement Technology, University of the Bundeswehr Munich, 85577 Neubiberg, Germany; (A.A.); (J.N.); (S.R.); (J.R.)
| | | | | | | | | |
Collapse
|
15
|
Thathapudi NC, Callai-Silva N, Malhotra K, Basu S, Aghajanzadeh-Kiyaseh M, Zamani-Roudbaraki M, Groleau M, Lombard-Vadnais F, Lesage S, Griffith M. Modified host defence peptide GF19 slows TNT-mediated spread of corneal herpes simplex virus serotype I infection. Sci Rep 2024; 14:4096. [PMID: 38374240 PMCID: PMC10876564 DOI: 10.1038/s41598-024-53662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
Corneal HSV-1 infections are a leading cause of infectious blindness globally by triggering tissue damage due to the intense inflammation. HSV-1 infections are treated mainly with antiviral drugs that clear the infections but are inefficient as prophylactics. The body produces innate cationic host defence peptides (cHDP), such as the cathelicidin LL37. Various epithelia, including the corneal epithelium, express LL37. cHDPs can cause disintegration of pathogen membranes, stimulate chemokine production, and attract immune cells. Here, we selected GF17, a peptide containing the LL37 fragment with bioactivity but with minimal cytotoxicity, and added two cell-penetrating amino acids to enhance its activity. The resulting GF19 was relatively cell-friendly, inducing only partial activation of antigen presenting immune cells in vitro. We showed that HSV-1 spreads by tunneling nanotubes in cultured human corneal epithelial cells. GF19 given before infection was able to block infection, most likely by blocking viral entry. When cells were sequentially exposed to viruses and GF19, the infection was attenuated but not arrested, supporting the contention that the GF19 mode of action was to block viral entry. Encapsulation into silica nanoparticles allowed a more sustained release of GF19, enhancing its activity. GF19 is most likely suitable as a prevention rather than a virucidal treatment.
Collapse
Affiliation(s)
- Neethi C Thathapudi
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Natalia Callai-Silva
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Kamal Malhotra
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Sankar Basu
- Department of Microbiology, Asutosh College, (Affiliated With University of Calcutta), Kolkata, 700026, India
| | - Mozhgan Aghajanzadeh-Kiyaseh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Mostafa Zamani-Roudbaraki
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Marc Groleau
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | | | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada.
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
16
|
Hu C, Shi Z, Liu X, Sun C. The Research Progress of Mitochondrial Transplantation in the Treatment of Mitochondrial Defective Diseases. Int J Mol Sci 2024; 25:1175. [PMID: 38256247 PMCID: PMC10816172 DOI: 10.3390/ijms25021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles that are involved in energy production, apoptosis, and signaling in eukaryotic cells. Several studies conducted over the past decades have correlated mitochondrial dysfunction with various diseases, including cerebral ischemia, myocardial ischemia-reperfusion, and cancer. Mitochondrial transplantation entails importing intact mitochondria from healthy tissues into diseased tissues with damaged mitochondria to rescue the injured cells. In this review, the different mitochondrial transplantation techniques and their clinical applications have been discussed. In addition, the challenges and future directions pertaining to mitochondrial transplantation and its potential in the treatment of diseases with defective mitochondria have been summarized.
Collapse
Affiliation(s)
- Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Zhang H, Li B. A novel computational tool for tracking cancer energy hijacking from immune cells. Clin Transl Med 2024; 14:e1533. [PMID: 38193607 PMCID: PMC10775179 DOI: 10.1002/ctm2.1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024] Open
Abstract
Recent studies revealed a new biological process that malignant cancer cells hijack mitochondria from nearby T cells, providing another potential mechanism for immune evasion. We further confirmed this process at the single-cell genomic level through MERCI, a novel algorithm for tracking mitochondrial (MT) transfer. Applied to human cancer samples, MERCI identified a new cancer phenotype linked to MT hijacking, correlating with rapid tumour proliferation and poor patient survival. This discovery offers insights into the limitations of current cancer immunotherapies and suggests new therapeutic avenues targeting MT transfer to enhance cancer treatment efficacy.
Collapse
Affiliation(s)
- Hongyi Zhang
- Center for Computational and Genomic MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Bo Li
- Center for Computational and Genomic MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
18
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
19
|
Pericoli G, Galardi A, Paolini A, Petrilli LL, Pepe G, Palma A, Colletti M, Ferretti R, Giorda E, Levi Mortera S, Burford A, Carai A, Mastronuzzi A, Mackay A, Putignani L, Jones C, Pascucci L, Peinado H, Helmer-Citterich M, de Billy E, Masotti A, Locatelli F, Di Giannatale A, Vinci M. Inhibition of exosome biogenesis affects cell motility in heterogeneous sub-populations of paediatric-type diffuse high-grade gliomas. Cell Biosci 2023; 13:207. [PMID: 37957701 PMCID: PMC10641969 DOI: 10.1186/s13578-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Paediatric-type diffuse High-Grade Gliomas (PDHGG) are highly heterogeneous tumours which include distinct cell sub-populations co-existing within the same tumour mass. We have previously shown that primary patient-derived and optical barcoded single-cell-derived clones function as interconnected networks. Here, we investigated the role of exosomes as a route for inter-clonal communication mediating PDHGG migration and invasion. RESULTS A comprehensive characterisation of seven optical barcoded single-cell-derived clones obtained from two patient-derived cell lines was performed. These analyses highlighted extensive intra-tumour heterogeneity in terms of genetic and transcriptional profiles between clones as well as marked phenotypic differences including distinctive motility patterns. Live single-cell tracking analysis of 3D migration and invasion assays showed that the single-cell-derived clones display a higher speed and longer travelled distance when in co-culture compared to mono-culture conditions. To determine the role of exosomes in PDHGG inter-clonal cross-talks, we isolated exosomes released by different clones and characterised them in terms of marker expression, size and concentration. We demonstrated that exosomes are actively internalized by the cells and that the inhibition of their biogenesis, using the phospholipase inhibitor GW4689, significantly reduced the cell motility in mono-culture and more prominently when the cells from the clones were in co-culture. Analysis of the exosomal miRNAs, performed with a miRNome PCR panel, identified clone-specific miRNAs and a set of miRNA target genes involved in the regulation of cell motility/invasion/migration. These genes were found differentially expressed in co-culture versus mono-culture conditions and their expression levels were significantly modulated upon inhibition of exosome biogenesis. CONCLUSIONS In conclusion, our study highlights for the first time a key role for exosomes in the inter-clonal communication in PDHGG and suggests that interfering with the exosome biogenesis pathway may be a valuable strategy to inhibit cell motility and dissemination for these specific diseases.
Collapse
Affiliation(s)
- Giulia Pericoli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Galardi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Gerardo Pepe
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Marta Colletti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Roberta Ferretti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Ezio Giorda
- Core Facilities research laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Burford
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Andrea Carai
- Oncological Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alan Mackay
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Lorenza Putignani
- Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chris Jones
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Emmanuel de Billy
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Masotti
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.
| |
Collapse
|
20
|
Alarcon-Martinez L, Shiga Y, Villafranca-Baughman D, Cueva Vargas JL, Vidal Paredes IA, Quintero H, Fortune B, Danesh-Meyer H, Di Polo A. Neurovascular dysfunction in glaucoma. Prog Retin Eye Res 2023; 97:101217. [PMID: 37778617 DOI: 10.1016/j.preteyeres.2023.101217] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Retinal ganglion cells, the neurons that die in glaucoma, are endowed with a high metabolism requiring optimal provision of oxygen and nutrients to sustain their activity. The timely regulation of blood flow is, therefore, essential to supply firing neurons in active areas with the oxygen and glucose they need for energy. Many glaucoma patients suffer from vascular deficits including reduced blood flow, impaired autoregulation, neurovascular coupling dysfunction, and blood-retina/brain-barrier breakdown. These processes are tightly regulated by a community of cells known as the neurovascular unit comprising neurons, endothelial cells, pericytes, Müller cells, astrocytes, and microglia. In this review, the neurovascular unit takes center stage as we examine the ability of its members to regulate neurovascular interactions and how their function might be altered during glaucomatous stress. Pericytes receive special attention based on recent data demonstrating their key role in the regulation of neurovascular coupling in physiological and pathological conditions. Of particular interest is the discovery and characterization of tunneling nanotubes, thin actin-based conduits that connect distal pericytes, which play essential roles in the complex spatial and temporal distribution of blood within the retinal capillary network. We discuss cellular and molecular mechanisms of neurovascular interactions and their pathophysiological implications, while highlighting opportunities to develop strategies for vascular protection and regeneration to improve functional outcomes in glaucoma.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Jorge L Cueva Vargas
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Isaac A Vidal Paredes
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Heberto Quintero
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Helen Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada.
| |
Collapse
|
21
|
Melwani PK, Pandey BN. Tunneling nanotubes: The intercellular conduits contributing to cancer pathogenesis and its therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189028. [PMID: 37993000 DOI: 10.1016/j.bbcan.2023.189028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tunneling nanotubes (TNTs) are intercellular conduits which meet the communication needs of non-adjacent cells situated in the same tissue but at distances up to a few hundred microns. TNTs are unique type of membrane protrusion which contain F-actin and freely hover over substratum in the extracellular space to connect the distant cells. TNTs, known to form through actin remodeling mechanisms, are intercellular bridges that connect cytoplasm of two cells, and facilitate the transfer of organelles, molecules, and pathogens among the cells. In tumor microenvironment, TNTs act as communication channel among cancer, normal, and immune cells to facilitate the transfer of calcium waves, mitochondria, lysosomes, and proteins, which in turn contribute to the survival, metastasis, and chemo-resistance in cancer cells. Recently, TNTs were shown to mediate the transfer of nanoparticles, drugs, and viruses between cells, suggesting that TNTs could be exploited as a potential route for delivery of anti-cancer agents and oncolytic viruses to the target cells. The present review discusses the emerging concepts and role of TNTs in the context of chemo- and radio-resistance with implications in the cancer therapy.
Collapse
Affiliation(s)
- Pooja Kamal Melwani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
22
|
Feng L, Zhang PY, Gao W, Yu J, Robson SC. Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Front Oncol 2023; 13:1244280. [PMID: 37746249 PMCID: PMC10513429 DOI: 10.3389/fonc.2023.1244280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.
Collapse
Affiliation(s)
- Lili Feng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Y. Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Canton, MA, United States
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Wang K, Zhou L, Mao H, Liu J, Chen Z, Zhang L. Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage. Cell Prolif 2023; 56:e13442. [PMID: 37086012 PMCID: PMC10472516 DOI: 10.1111/cpr.13442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 04/23/2023] Open
Abstract
Mitochondrial transfer is emerging as a promising therapeutic strategy for tissue repair, but whether it protects against pulpitis remains unclear. Here, we show that hyperactivated nucleotide-binding domain and leucine-rich repeat protein3 (NLRP3) inflammasomes with pyroptotic cell death was present in pulpitis tissues, especially in the odontoblast layer, and mitochondrial oxidative stress (OS) was involved in driving this NLRP3 inflammasome-induced pathology. Using bone marrow mesenchymal stem cells (BMSCs) as mitochondrial donor cells, we demonstrated that BMSCs could donate their mitochondria to odontoblasts via tunnelling nanotubes (TNTs) and, thus, reduce mitochondrial OS and the consequent NLRP3 inflammasome-induced pyroptosis in odontoblasts. These protective effects of BMSCs were mostly blocked by inhibitors of the mitochondrial function or TNT formation. In terms of the mechanism of action, TNF-α secreted from pyroptotic odontoblasts activates NF-κB signalling in BMSCs via the paracrine pathway, thereby promoting the TNT formation in BMSCs and enhancing mitochondrial transfer efficiency. Inhibitions of NF-κB signalling and TNF-α secretion in BMSCs suppressed their mitochondrial donation capacity and TNT formation. Collectively, these findings demonstrated that TNT-mediated mitochondrial transfer is a potential protective mechanism of BMSCs under stress conditions, suggesting a new therapeutic strategy of mitochondrial transfer for dental pulp repair.
Collapse
Affiliation(s)
- Konghuai Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lu Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hanqing Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jiayi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Endodontics, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Endodontics, School and Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
24
|
Stögerer T, Silva-Barrios S, Carmona-Pérez L, Swaminathan S, Mai LT, Leroux LP, Jaramillo M, Descoteaux A, Stäger S. Leishmania donovani Exploits Tunneling Nanotubes for Dissemination and Propagation of B Cell Activation. Microbiol Spectr 2023; 11:e0509622. [PMID: 37404188 PMCID: PMC10434010 DOI: 10.1128/spectrum.05096-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/08/2023] [Indexed: 07/06/2023] Open
Abstract
Polyclonal B cell activation and the resulting hypergammaglobulinemia are a detrimental consequence of visceral leishmaniasis (VL); however, the mechanisms underlying this excessive production of nonprotective antibodies are still poorly understood. Here, we show that a causative agent of VL, Leishmania donovani, induces CD21-dependent formation of tunneling nanotubule (TNT)-like protrusions in B cells. These intercellular connections are used by the parasite to disseminate among cells and propagate B cell activation, and close contact both among the cells and between B cells and parasites is required to achieve this activation. Direct contact between cells and parasites is also observed in vivo, as L. donovani can be detected in the splenic B cell area as early as 14 days postinfection. Interestingly, Leishmania parasites can also glide from macrophages to B cells via TNT-like protrusions. Taken together, our results suggest that, during in vivo infection, B cells may acquire L. donovani from macrophages via TNT-like protrusions, and these connections are subsequently exploited by the parasite to disseminate among B cells, thus propagating B cell activation and ultimately leading to polyclonal B cell activation. IMPORTANCE Leishmania donovani is a causative agent of visceral leishmaniasis, a potentially lethal disease characterized by strong B cell activation and the subsequent excessive production of nonprotective antibodies, which are known to worsen the disease. How Leishmania activates B cells is still unknown, particularly because this parasite mostly resides inside macrophages and would not have access to B cells during infection. In this study, we describe for the first time how the protozoan parasite Leishmania donovani induces and exploits the formation of protrusions that connect B lymphocytes with each other or with macrophages and glides on these structures from one cell to another. In this way, B cells can acquire Leishmania from macrophages and become activated upon contact with the parasites. This activation will then lead to antibody production. These findings provide an explanation for how the parasite may propagate B cell activation during infection.
Collapse
Affiliation(s)
- Tanja Stögerer
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| | - Sasha Silva-Barrios
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| | - Liseth Carmona-Pérez
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| | - Sharada Swaminathan
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| | - Linh Thuy Mai
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique (INRS) – Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, Laval, Quebec, Canada
| |
Collapse
|
25
|
Padmanabhan S, Manjithaya R. Leaderless secretory proteins of the neurodegenerative diseases via TNTs: a structure-function perspective. Front Mol Neurosci 2023; 16:983108. [PMID: 37396786 PMCID: PMC10308029 DOI: 10.3389/fnmol.2023.983108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Neurodegenerative disease-causing proteins such as alpha-synuclein, tau, and huntingtin are known to traverse across cells via exosomes, extracellular vesicles and tunneling nanotubes (TNTs). There seems to be good synergy between exosomes and TNTs in intercellular communication. Interestingly, many of the known major neurodegenerative proteins/proteolytic products are leaderless and are also reported to be secreted out of the cell via unconventional protein secretion. Such classes contain intrinsically disordered proteins and regions (IDRs) within them. The dynamic behavior of these proteins is due to their heterogenic conformations that is exhibited owing to various factors that occur inside the cells. The amino acid sequence along with the chemical modifications has implications on the functional roles of IDRs inside the cells. Proteins that form aggregates resulting in neurodegeneration become resistant to degradation by the processes of autophagy and proteasome system thus leading to Tunneling nanotubes, TNT formation. The proteins that traverse across TNTs may or may not be dependent on the autophagy machinery. It is not yet clear whether the conformation of the protein plays a crucial role in its transport from one cell to another without getting degraded. Although there is some experimental data, there are many grey areas which need to be revisited. This review provides a different perspective on the structural and functional aspects of these leaderless proteins that get secreted outside the cell. In this review, attention has been focused on the characteristic features that lead to aggregation of leaderless secretory proteins (from structural-functional aspect) with special emphasis on TNTs.
Collapse
|
26
|
García-Sánchez D, González-González A, Alfonso-Fernández A, Del Dujo-Gutiérrez M, Pérez-Campo FM. Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: Impact on disease progression. World J Stem Cells 2023; 15:421-437. [PMID: 37342223 PMCID: PMC10277973 DOI: 10.4252/wjsc.v15.i5.421] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow (BM). The interaction between MM cells and the BM microenvironment, and specifically BM mesenchymal stem cells (BM-MSCs), has a key role in the pathophysiology of this disease. Multiple data support the idea that BM-MSCs not only enhance the proliferation and survival of MM cells but are also involved in the resistance of MM cells to certain drugs, aiding the progression of this hematological tumor. The relation of MM cells with the resident BM-MSCs is a two-way interaction. MM modulate the behavior of BM-MSCs altering their expression profile, proliferation rate, osteogenic potential, and expression of senescence markers. In turn, modified BM-MSCs can produce a set of cytokines that would modulate the BM microenvironment to favor disease progression. The interaction between MM cells and BM-MSCs can be mediated by the secretion of a variety of soluble factors and extracellular vesicles carrying microRNAs, long non-coding RNAs or other molecules. However, the communication between these two types of cells could also involve a direct physical interaction through adhesion molecules or tunneling nanotubes. Thus, understanding the way this communication works and developing strategies to interfere in the process, would preclude the expansion of the MM cells and might offer alternative treatments for this incurable disease.
Collapse
Affiliation(s)
- Daniel García-Sánchez
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Alberto González-González
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Ana Alfonso-Fernández
- Servicio de Traumatología y Cirugía Ortopédica, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, Santander 39008, Cantabria, Spain
| | - Mónica Del Dujo-Gutiérrez
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Flor M Pérez-Campo
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain.
| |
Collapse
|
27
|
Clemente-Suárez VJ, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24108848. [PMID: 37240194 DOI: 10.3390/ijms24108848] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of numerous diseases, including neurodegenerative disorders, metabolic disorders, and cancer. Mitochondrial transfer, the transfer of mitochondria from one cell to another, has recently emerged as a potential therapeutic approach for restoring mitochondrial function in diseased cells. In this review, we summarize the current understanding of mitochondrial transfer, including its mechanisms, potential therapeutic applications, and impact on cell death pathways. We also discuss the future directions and challenges in the field of mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
28
|
Mahadik P, Patwardhan S. ECM stiffness-regulated exosomal thrombospondin-1 promotes tunneling nanotubes-based cellular networking in breast cancer cells. Arch Biochem Biophys 2023; 742:109624. [PMID: 37146866 DOI: 10.1016/j.abb.2023.109624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
Intercellular communication is pivotal in various stages of cancer progression. For smart and effective communication, cancer cells employ diverse modes of messaging that may be further fine-tuned by the microenvironmental changes. Extracellular matrix (ECM) stiffening due to excess deposition and crosslinking of collagen is one of the crucial tumor-microenvironmental changes that influence a plethora of cellular processes, including cell-cell communication. We herein studied the crosstalk between exosomes and tunneling nanotubes (TNT), the two distinct means of cell-cell communication under varying ECM-stiffness conditions. We show that exosomes promote the formation of tunneling nanotubes in breast cancer cells, which results in cellular internet. Interestingly, exosomes drastically increased the fraction of cells connected by TNT; however, they elicited no effect on the number of TNTs per pair of connected cells or the length of TNT. The observed pro-TNT effects of exosomes were found to be ECM-stiffness dependent. ECM-stiffness tuned exosomes were found to promote TNT formation predominantly via the 'cell dislodgment model'. At the molecular level, exosomal thrombospondin-1 was identified as a critical pro-TNT factor. These findings underline the influence of ECM stiffening on two diverse modes of cell communication and their interdependence, which may have significant implications in cancer biomedical research.
Collapse
Affiliation(s)
- Pratiksha Mahadik
- Patwardhan Lab, Advanced Centre for Treatment, Research and Education in Cancer, (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Sejal Patwardhan
- Patwardhan Lab, Advanced Centre for Treatment, Research and Education in Cancer, (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
29
|
Polyakova N, Kalashnikova M, Belyavsky A. Non-Classical Intercellular Communications: Basic Mechanisms and Roles in Biology and Medicine. Int J Mol Sci 2023; 24:ijms24076455. [PMID: 37047428 PMCID: PMC10095225 DOI: 10.3390/ijms24076455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In multicellular organisms, interactions between cells and intercellular communications form the very basis of the organism’s survival, the functioning of its systems, the maintenance of homeostasis and adequate response to the environment. The accumulated experimental data point to the particular importance of intercellular communications in determining the fate of cells, as well as their differentiation and plasticity. For a long time, it was believed that the properties and behavior of cells were primarily governed by the interactions of secreted or membrane-bound ligands with corresponding receptors, as well as direct intercellular adhesion contacts. In this review, we describe various types of other, non-classical intercellular interactions and communications that have recently come into the limelight—in particular, the broad repertoire of extracellular vesicles and membrane protrusions. These communications are mediated by large macromolecular structural and functional ensembles, and we explore here the mechanisms underlying their formation and present current data that reveal their roles in multiple biological processes. The effects mediated by these new types of intercellular communications in normal and pathological states, as well as therapeutic applications, are also discussed. The in-depth study of novel intercellular interaction mechanisms is required for the establishment of effective approaches for the control and modification of cell properties both for basic research and the development of radically new therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Maria Kalashnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
30
|
Konstantinidis E, Dakhel A, Beretta C, Erlandsson A. Long-term effects of amyloid-beta deposits in human iPSC-derived astrocytes. Mol Cell Neurosci 2023; 125:103839. [PMID: 36907531 DOI: 10.1016/j.mcn.2023.103839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Growing evidence indicates that astrocytes are tightly connected to Alzheimer's disease (AD) pathogenesis. However, the way in which astrocytes participate in AD initiation and progression remains to be clarified. Our previous data show that astrocytes engulf large amounts of aggregated amyloid-beta (Aβ) but are unable to successfully degrade the material. In this study, we aimed to evaluate how intracellular Aβ-accumulation affects the astrocytes over time. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aβ-fibrils and then cultured further for one week or ten weeks in Aβ-free medium. Cells from both time points were analyzed for lysosomal proteins and astrocyte reactivity markers and the media were screened for inflammatory cytokines. In addition, the overall health of cytoplasmic organelles was investigated by immunocytochemistry and electron microscopy. Our data demonstrate that long-term astrocytes retained frequent Aβ-inclusions that were enclosed within LAMP1-positive organelles and sustained markers associated with reactivity. Furthermore, Aβ-accumulation resulted in endoplasmic reticulum and mitochondrial swelling, increased secretion of the cytokine CCL2/MCP-1 and formation of pathological lipid structures. Taken together, our results provide valuable information of how intracellular Aβ-deposits affect astrocytes, and thereby contribute to the understanding of the role of astrocytes in AD progression.
Collapse
Affiliation(s)
- Evangelos Konstantinidis
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Abdulkhalek Dakhel
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Chiara Beretta
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Anna Erlandsson
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden.
| |
Collapse
|
31
|
Suzuki R, Ogiya D, Ogawa Y, Kawada H, Ando K. Targeting CAM-DR and Mitochondrial Transfer for the Treatment of Multiple Myeloma. Curr Oncol 2022; 29:8529-8539. [PMID: 36354732 PMCID: PMC9689110 DOI: 10.3390/curroncol29110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The prognosis of patients with multiple myeloma (MM) has improved dramatically with the introduction of new therapeutic drugs, but the disease eventually becomes drug-resistant, following an intractable and incurable course. A myeloma niche (MM niche) develops in the bone marrow microenvironment and plays an important role in the drug resistance mechanism of MM. In particular, adhesion between MM cells and bone marrow stromal cells mediated by adhesion molecules induces cell adhesion-mediated drug resistance (CAM-DR). Analyses of the role of mitochondria in cancer cells, including MM cells, has revealed that the mechanism leading to drug resistance involves exchange of mitochondria between cells (mitochondrial transfer) via tunneling nanotubes (TNTs) within the MM niche. Here, we describe the discovery of these drug resistance mechanisms and the identification of promising therapeutic agents primarily targeting CAM-DR, mitochondrial transfer, and TNTs.
Collapse
Affiliation(s)
- Rikio Suzuki
- Correspondence: ; Tel.: +81-463-93-1121; Fax: +81-463-92-4511
| | | | | | | | | |
Collapse
|
32
|
Tarasiuk O, Scuteri A. Role of Tunneling Nanotubes in the Nervous System. Int J Mol Sci 2022; 23:12545. [PMID: 36293396 PMCID: PMC9604327 DOI: 10.3390/ijms232012545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022] Open
Abstract
Cellular communication and the transfer of information from one cell to another is crucial for cell viability and homeostasis. During the last decade, tunneling nanotubes (TNTs) have attracted scientific attention, not only as a means of direct intercellular communication, but also as a possible system to transport biological cargo between distant cells. Peculiar TNT characteristics make them both able to increase cellular survival capacities, as well as a potential target of neurodegenerative disease progression. Despite TNT formation having been documented in a number of cell types, the exact mechanisms triggering their formation are still not completely known. In this review, we will summarize and highlight those studies focusing on TNT formation in the nervous system, as well as their role in neurodegenerative diseases. Moreover, we aim to stress some possible mechanisms and important proteins probably involved in TNT formation in the nervous system.
Collapse
Affiliation(s)
| | - Arianna Scuteri
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
33
|
Huang L, Zhang J, Wu Z, Zhou L, Yu B, Jing Y, Lin D, Qu J. Revealing the structure and organization of intercellular tunneling nanotubes (TNTs) by STORM imaging. NANOSCALE ADVANCES 2022; 4:4258-4262. [PMID: 36321151 PMCID: PMC9552758 DOI: 10.1039/d2na00415a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Tunneling nanotubes (TNTs) are nanoscale, actin-rich, transient intercellular tubes for cell-to-cell communication, which transport various cargoes between distant cells. The structural complexity and spatial organization of the involved components of TNTs remain unknown. In this work, the STORM super-resolution imaging technique was applied to elucidate the structural organization of microfilaments and microtubules in intercellular TNTs at the nanometer scale. Our results reveal different distributions of microfilaments and intertwined structures of microtubules in TNTs, which promote the knowledge of TNT communications.
Collapse
Affiliation(s)
- Lilin Huang
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Jiao Zhang
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Zekai Wu
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Liangliang Zhou
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Bin Yu
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Yingying Jing
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Danying Lin
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Junle Qu
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
34
|
Chelladurai R, Debnath K, Jana NR, Basu JK. Spontaneous formation and growth kinetics of lipid nanotubules induced by passive nanoparticles. SOFT MATTER 2022; 18:7082-7090. [PMID: 36043324 DOI: 10.1039/d2sm00900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid nanotubules (LNTs) are conduits that form on the membranes of cells and organelles, and they are ubiquitous in all forms of life from archaea and bacteria to plants and mammals. The formation, shape and dynamics of these LNTs are critical for cellular functions, supporting the transport of myriad cellular cargoes as well as communication within and between cells, and they are also widely believed to be responsible for exploitation of host cells by pathogens for the spread of infection and diseases. In vitro kinetic control of LNT formation can considerably enhance the scope of utilization of these structures for disease control and therapy. Here we report a new paradigm for spontaneous lipid nanotubulation, capturing the dynamical regimes of growth, stabilization and retraction of the tubes through the binding of synthetic nanoparticles on supported lipid bilayers (SLBs). The tubulation is determined by the spontaneous binding-unbinding of nanoparticles on the LNTs. The presented methodology could be used to rectify malfunctioning cellular tubules or to prevent the pathogenic spread of diseases through inhibition of cell-to-cell nanotubule formation.
Collapse
Affiliation(s)
| | - Koushik Debnath
- Indian Association for the Cultivation of Science, Kolkata, India
| | - Nikhil R Jana
- Indian Association for the Cultivation of Science, Kolkata, India
| | | |
Collapse
|
35
|
Intercellular communication in the tumour microecosystem: Mediators and therapeutic approaches for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166528. [PMID: 36007784 DOI: 10.1016/j.bbadis.2022.166528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the most common tumours worldwide, is one of the main causes of mortality in cancer patients. There are still numerous problems hindering its early diagnosis, which lead to late patients receiving treatment, and these problems need to be solved urgently. The tumour microecosystem is a complex network system comprising seven parts: the hypoxia niche, immune microenvironment, metabolic microenvironment, acidic niche, innervated niche, mechanical microenvironment, and microbial microenvironment. Intercellular communication is divided into direct contact and indirect communication. Direct contact communication includes gap junctions, tunneling nanotubes, and receptor-ligand interactions, whereas indirect communication includes exosomes, apoptotic vesicles, and soluble factors. Mechanical communication and cytoplasmic exchange are further means of intercellular communication. Intercellular communication mediates the crosstalk between the tumour microecosystem and the host as well as that between cells and cell-free components in the tumour microecosystem, causing changes in the tumour hallmarks of the HCC microecosystem such as changes in tumour proliferation, invasion, apoptosis, angiogenesis, metastasis, inflammatory response, gene mutation, immune escape, metabolic reprogramming, and therapeutic resistance. Here, we review the role of the above-mentioned intercellular communication in the HCC microecosystem and discuss the advantages of targeted intercellular communication in the clinical diagnosis and treatment of HCC. Finally, the current problems and prospects are discussed.
Collapse
|
36
|
Dhanasekar NN, Thiyagarajan D, Bhatia D. DNA origami in the quest for membrane piercing. Chem Asian J 2022; 17:e202200591. [PMID: 35947734 DOI: 10.1002/asia.202200591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 11/09/2022]
Abstract
The tool kit for label-free single-molecule sensing, nucleic acid sequencing (DNA, RNA and protein) and other biotechnological applications has been significantly broadened due to the wide range of available nanopore-based technologies. Currently, various sources of nanopores, including biological, fabricated solid-state, hybrid and recently de novo chemically synthesized ion-like channels have put in use for rapid single-molecule sensing of biomolecules and other diagnostic applications. At length scales of hundreds of nanometers, DNA nanotechnology, particularly DNA origami-based devices, enables the assembly of complex and dynamic 3-dimensional nanostructures, including nanopores with precise control over the size/shape. DNA origami technology has enabled to construct nanopores by DNA alone or hybrid architects with solid-state nanopore devices or nanocapillaries. In this review, we briefly discuss the nanopore technique that uses DNA nanotechnology to construct such individual pores in lipid-based systems or coupled with other solid-state devices, nanocapillaries for enhanced biosensing function. We summarize various DNA-based design nanopores and explore the sensing properties of such DNA channels. Apart from DNA origami channels we also pointed the design principles of RNA nanopores for peptide sensing applications.
Collapse
Affiliation(s)
- Naresh Niranjan Dhanasekar
- Johns Hopkins University, Chemical and Biomolecular Engineering, 3400 North Charles Street, 21218, Baltimore, UNITED STATES
| | - Durairaj Thiyagarajan
- Helmholtz-Zentrum fur Infektionsforschung GmbH, Pharmacy and Infections, 66123, Saarbrücken, GERMANY
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Biological Engineering, 382355, Gandhi Nagar, INDIA
| |
Collapse
|
37
|
Nahacka Z, Novak J, Zobalova R, Neuzil J. Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front Cell Dev Biol 2022; 10:937753. [PMID: 35959487 PMCID: PMC9358137 DOI: 10.3389/fcell.2022.937753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are organelles essential for tumor cell proliferation and metastasis. Although their main cellular function, generation of energy in the form of ATP is dispensable for cancer cells, their capability to drive their adaptation to stress originating from tumor microenvironment makes them a plausible therapeutic target. Recent research has revealed that cancer cells with damaged oxidative phosphorylation import healthy (functional) mitochondria from surrounding stromal cells to drive pyrimidine synthesis and cell proliferation. Furthermore, it has been shown that energetically competent mitochondria are fundamental for tumor cell migration, invasion and metastasis. The spatial positioning and transport of mitochondria involves Miro proteins from a subfamily of small GTPases, localized in outer mitochondrial membrane. Miro proteins are involved in the structure of the MICOS complex, connecting outer and inner-mitochondrial membrane; in mitochondria-ER communication; Ca2+ metabolism; and in the recycling of damaged organelles via mitophagy. The most important role of Miro is regulation of mitochondrial movement and distribution within (and between) cells, acting as an adaptor linking organelles to cytoskeleton-associated motor proteins. In this review, we discuss the function of Miro proteins in various modes of intercellular mitochondrial transfer, emphasizing the structure and dynamics of tunneling nanotubes, the most common transfer modality. We summarize the evidence for and propose possible roles of Miro proteins in nanotube-mediated transfer as well as in cancer cell migration and metastasis, both processes being tightly connected to cytoskeleton-driven mitochondrial movement and positioning.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| | - Jaromir Novak
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Renata Zobalova
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| |
Collapse
|
38
|
Turos-Korgul L, Kolba MD, Chroscicki P, Zieminska A, Piwocka K. Tunneling Nanotubes Facilitate Intercellular Protein Transfer and Cell Networks Function. Front Cell Dev Biol 2022; 10:915117. [PMID: 35903550 PMCID: PMC9314668 DOI: 10.3389/fcell.2022.915117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
The past decade witnessed a huge interest in the communication machinery called tunneling nanotubes (TNTs) which is a novel, contact-dependent type of intercellular protein transfer (IPT). As the IPT phenomenon plays a particular role in the cross-talk between cells, including cancer cells as well as in the immune and nervous systems, it therefore participates in remodeling of the cellular networks. The following review focuses on the placing the role of tunneling nanotube-mediated protein transfer between distant cells. Firstly, we describe different screening methods used to study IPT including tunneling nanotubes. Further, we present various examples of TNT-mediated protein transfer in the immune system, cancer microenvironment and in the nervous system, with particular attention to the methods used to verify the transfer of individual proteins.
Collapse
|
39
|
Lorenzo-Benito S, Rivera-Rivas LA, Sánchez-Ayala L, Ortega-López J, Montes-Flores O, Talamás-Lara D, Arroyo R. Omics Analyses of Trichomonas vaginalis Actin and Tubulin and Their Participation in Intercellular Interactions and Cytokinesis. Genes (Basel) 2022; 13:genes13061067. [PMID: 35741829 PMCID: PMC9222396 DOI: 10.3390/genes13061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Actin and tubulin proteins from Trichomonas vaginalis are crucial for morphogenesis and mitosis. This parasite has 10 and 11 genes coding bonafide actin and tubulin proteins, respectively. Hence, the goal of this work was to analyze these actin and tubulin genes, their expression at the mRNA and protein levels, and their parasite localization in intercellular interaction and cytokinesis. Representative bonafide actin (tvact1) and tubulin (tvtubα1) genes were cloned into and expressed in Escherichia coli. The recombinant proteins TvACT1r and TvTUBα1r were affinity purified and used as antigens to produce polyclonal antibodies. These antibodies were used in 1DE and 2DE WB and indirect immunofluorescence assays (IFA). By IFA, actin was detected as a ring on the periphery of ameboid, ovoid, and cold-induced cyst-like parasites, on pseudopods of amoeboid parasites, and in cytoplasmic extensions (filopodia) in cell–cell interactions. Tubulin was detected in the axostyle, flagellum, undulating membrane, and paradesmose during mitosis. Paradesmose was observed by IFA mainly during cytokinesis. By scanning electron microscopy, a tubulin-containing nanotubular structure similar to the tunneling nanotubes (TNTs) was also detected in the last stage of cytokinesis. In conclusion, actin and tubulin are multigene families differentially expressed that play important roles in intercellular interactions and cytokinesis.
Collapse
Affiliation(s)
- Sebastián Lorenzo-Benito
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Luis Alberto Rivera-Rivas
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Lizbeth Sánchez-Ayala
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN. Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (J.O.-L.); (O.M.-F.)
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN. Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (J.O.-L.); (O.M.-F.)
| | - Daniel Talamás-Lara
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
- Correspondence: ; Tel.: +52-55-5747-3342
| |
Collapse
|
40
|
Identification and Characterization of Tunneling Nanotubes Involved in Human Mast Cell FcεRI-Mediated Apoptosis of Cancer Cells. Cancers (Basel) 2022; 14:cancers14122944. [PMID: 35740607 PMCID: PMC9220880 DOI: 10.3390/cancers14122944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Mast cells (MCs) are ubiquitously found in most tissues and in and around tumors. Their role in cancer pathogenesis remains an open area of investigation, and their interactions with tumor cells has not been explored. Here, a novel mechanism of communication between human MCs and tumor cells involving tunneling nanotubes (TnT) and other membrane structures is described. The formation of these communication structures is dependent on MC receptors interacting with tumor antigens through tumor-specific immunoglobulins and results in tumor-killing mediators from MC entering the tumor cells. This mechanism underlying the MC killing of tumor cells has important implications in understanding cancer pathogenesis. Abstract Mast cells (MCs) are found in practically all tissues where they participate in innate and adaptive immune responses. They are also found in and around tumors, yet their interactions with cancer cells and the resulting impact on cancer cell growth and metastasis are not well understood. In this study, we examined a novel mechanism of IgE-FcεRI-mediated, intercellular communication between human adipose-derived mast cells (ADMC) and cancer cells. The formation of heterotypic tunneling nanotubes (TnT) and membrane structures between MCs and tumor cells in vitro was examined using microscopy and a diverse array of molecule-specific indicator dyes. We show that several MC-specific structures are dependent on the specific interactions between human tumor IgE-sensitized MCs and antigens on the tumor cell surface. The formation of TnT, membrane blebs and other MC-specific structures paralleled FcεRI-degranulation occurring within 30 min and persisting for up to 24 h. The TnT-specific adhesion of FcεRI-activated MCs to tumor cells was characterized by the transport of the MC granule content into the tumor cells, including tryptase and TNF-α. This interaction led to apoptosis of the tumor cells, which differs from previous studies examining tissue cells within the cancer microenvironment. The formation of heterotypic TnT results in stimulation of an invasive tumor cell phenotype and increased tumor cell invasion and chemoresistance of the cancer cells. These studies describe a heretofore-unrecognized mechanism underlying IgE-mediated interactions and FcεRI-activated MC-mediated killing of tumor cells through the formation of TnT.
Collapse
|
41
|
Driscoll J, Gondaliya P, Patel T. Tunneling Nanotube-Mediated Communication: A Mechanism of Intercellular Nucleic Acid Transfer. Int J Mol Sci 2022; 23:5487. [PMID: 35628298 PMCID: PMC9143920 DOI: 10.3390/ijms23105487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022] Open
Abstract
Tunneling nanotubes (TNTs) are thin, F-actin-based membranous protrusions that connect distant cells and can provide e a novel mechanism for intercellular communication. By establishing cytoplasmic continuity between interconnected cells, TNTs enable the bidirectional transfer of nuclear and cytoplasmic cargo, including organelles, nucleic acids, drugs, and pathogenic molecules. TNT-mediated nucleic acid transfer provides a unique opportunity for donor cells to directly alter the genome, transcriptome, and metabolome of recipient cells. TNTs have been reported to transport DNA, mitochondrial DNA, mRNA, viral RNA, and non-coding RNAs, such as miRNA and siRNA. This mechanism of transfer is observed in physiological as well as pathological conditions, and has been implicated in the progression of disease. Herein, we provide a concise overview of TNTs' structure, mechanisms of biogenesis, and the functional effects of TNT-mediated intercellular transfer of nucleic acid cargo. Furthermore, we highlight the potential translational applications of TNT-mediated nucleic acid transfer in cancer, immunity, and neurological diseases.
Collapse
Affiliation(s)
| | | | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (J.D.); (P.G.)
| |
Collapse
|
42
|
Ottonelli I, Caraffi R, Tosi G, Vandelli MA, Duskey JT, Ruozi B. Tunneling Nanotubes: A New Target for Nanomedicine? Int J Mol Sci 2022; 23:ijms23042237. [PMID: 35216348 PMCID: PMC8878036 DOI: 10.3390/ijms23042237] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tunneling nanotubes (TNTs), discovered in 2004, are thin, long protrusions between cells utilized for intercellular transfer and communication. These newly discovered structures have been demonstrated to play a crucial role in homeostasis, but also in the spreading of diseases, infections, and metastases. Gaining much interest in the medical research field, TNTs have been shown to transport nanomedicines (NMeds) between cells. NMeds have been studied thanks to their advantageous features in terms of reduced toxicity of drugs, enhanced solubility, protection of the payload, prolonged release, and more interestingly, cell-targeted delivery. Nevertheless, their transfer between cells via TNTs makes their true fate unknown. If better understood, TNTs could help control NMed delivery. In fact, TNTs can represent the possibility both to improve the biodistribution of NMeds throughout a diseased tissue by increasing their formation, or to minimize their formation to block the transfer of dangerous material. To date, few studies have investigated the interaction between NMeds and TNTs. In this work, we will explain what TNTs are and how they form and then review what has been published regarding their potential use in nanomedicine research. We will highlight possible future approaches to better exploit TNT intercellular communication in the field of nanomedicine.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
- Correspondence:
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| |
Collapse
|
43
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
44
|
Oxidative stress and Rho GTPases in the biogenesis of tunnelling nanotubes: implications in disease and therapy. Cell Mol Life Sci 2021; 79:36. [PMID: 34921322 PMCID: PMC8683290 DOI: 10.1007/s00018-021-04040-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022]
Abstract
Tunnelling nanotubes (TNTs) are an emerging route of long-range intercellular communication that mediate cell-to-cell exchange of cargo and organelles and contribute to maintaining cellular homeostasis by balancing diverse cellular stresses. Besides their role in intercellular communication, TNTs are implicated in several ways in health and disease. Transfer of pathogenic molecules or structures via TNTs can promote the progression of neurodegenerative diseases, cancer malignancy, and the spread of viral infection. Additionally, TNTs contribute to acquiring resistance to cancer therapy, probably via their ability to rescue cells by ameliorating various pathological stresses, such as oxidative stress, reactive oxygen species (ROS), mitochondrial dysfunction, and apoptotic stress. Moreover, mesenchymal stem cells play a crucial role in the rejuvenation of targeted cells with mitochondrial heteroplasmy and oxidative stress by transferring healthy mitochondria through TNTs. Recent research has focussed on uncovering the key regulatory molecules involved in the biogenesis of TNTs. However further work will be required to provide detailed understanding of TNT regulation. In this review, we discuss possible associations with Rho GTPases linked to oxidative stress and apoptotic signals in biogenesis pathways of TNTs and summarize how intercellular trafficking of cargo and organelles, including mitochondria, via TNTs plays a crucial role in disease progression and also in rejuvenation/therapy.
Collapse
|
45
|
D’Aloia A, Arrigoni E, Costa B, Berruti G, Martegani E, Sacco E, Ceriani M. RalGPS2 Interacts with Akt and PDK1 Promoting Tunneling Nanotubes Formation in Bladder Cancer and Kidney Cells Microenvironment. Cancers (Basel) 2021; 13:cancers13246330. [PMID: 34944949 PMCID: PMC8699646 DOI: 10.3390/cancers13246330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Cell-to-cell communication in the tumor microenvironment is a crucial process to orchestrate the different components of the tumoral infrastructure. Among the mechanisms of cellular interplay in cancer cells, tunneling nanotubes (TNTs) are dynamic connections that play an important role. The mechanism of the formation of TNTs among cells and the molecules involved in the process remain to be elucidated. In this study, we analyze several bladder cancer cell lines, representative of tumors at different stages and grades. We demonstrate that TNTs are formed only by mid or high-stage cell lines that show muscle-invasive properties and that they actively transport mitochondria and proteins. The formation of TNTs is triggered by stressful conditions and starts with the assembly of a specific multimolecular complex. In this study, we characterize some of the protein components of the TNTs complex, as they are potential novel molecular targets for future therapies aimed at counteracting tumor progression. Abstract RalGPS2 is a Ras-independent Guanine Nucleotide Exchange Factor for RalA GTPase that is involved in several cellular processes, including cytoskeletal organization. Previously, we demonstrated that RalGPS2 also plays a role in the formation of tunneling nanotubes (TNTs) in bladder cancer 5637 cells. In particular, TNTs are a novel mechanism of cell–cell communication in the tumor microenvironment, playing a central role in cancer progression and metastasis formation. However, the molecular mechanisms involved in TNTs formation still need to be fully elucidated. Here we demonstrate that mid and high-stage bladder cancer cell lines have functional TNTs, which can transfer mitochondria. Moreover, using confocal fluorescence time-lapse microscopy, we show in 5637 cells that TNTs mediate the trafficking of RalA protein and transmembrane MHC class III protein leukocyte-specific transcript 1 (LST1). Furthermore, we show that RalGPS2 is essential for nanotubes generation, and stress conditions boost its expression both in 5637 and HEK293 cell lines. Finally, we prove that RalGPS2 interacts with Akt and PDK1, in addition to LST1 and RalA, leading to the formation of a complex that promotes nanotubes formation. In conclusion, our findings suggest that in the tumor microenvironment, RalGPS2 orchestrates the assembly of multimolecular complexes that drive the formation of TNTs.
Collapse
Affiliation(s)
- Alessia D’Aloia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Edoardo Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Barbara Costa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Giovanna Berruti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Michela Ceriani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
- Correspondence: ; Tel.: +39-0264483544
| |
Collapse
|
46
|
Zhang JQ, Takahashi A, Gu JY, Zhang X, Kyumoto-Nakamura Y, Kukita A, Uehara N, Hiura H, Yamaza T, Kukita T. In vitro and in vivo detection of tunneling nanotubes in normal and pathological osteoclastogenesis involving osteoclast fusion. J Transl Med 2021; 101:1571-1584. [PMID: 34537825 DOI: 10.1038/s41374-021-00656-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoclasts are multinucleated cells formed through specific recognition and fusion of mononuclear osteoclast precursors derived from hematopoietic stem cells. Detailed cellular events concerning cell fusion in osteoclast differentiation remain ambiguous. Tunneling nanotubes (TNTs), actin-based membrane structures, play an important role in intercellular communication between cells. We have previously reported the presence of TNTs in the fusion process of osteoclastogenesis. Here we analyzed morphological details of TNTs using scanning electron microscopy. The osteoclast precursor cell line RAW-D was stimulated to form osteoclast-like cells, and morphological details in the appearance of TNTs were extensively analyzed. Osteoclast-like cells could be classified into three types; early osteoclast precursors, late osteoclast precursors, and multinucleated osteoclast-like cells based on the morphological characteristics. TNTs were frequently observed among these three types of cells. TNTs could be classified into thin, medium, and thick TNTs based on the diameter and length. The shapes of TNTs were dynamically changed from thin to thick. Among them, medium TNTs were often observed between two remote cells, in which side branches attached to the culture substrates and beaded bulge-like structures were often observed. Cell-cell interaction through TNTs contributed to cell migration and rapid transport of information between cells. TNTs were shown to be involved in cell-cell fusion between osteoclast precursors and multinucleated osteoclast-like cells, in which movement of membrane vesicles and nuclei was observed. Formation of TNTs was also confirmed in primary cultures of osteoclasts. Furthermore, we have successfully detected TNTs formed between osteoclasts observed in the bone destruction sites of arthritic rats. Thus, formation of TNTs may be important for the differentiation of osteoclasts both in vitro and in vivo. TNTs could be one target cellular structure for the regulation of osteoclast differentiation and function in bone diseases.
Collapse
Affiliation(s)
- Jing-Qi Zhang
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Takahashi
- Department of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jiong-Yan Gu
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xiaoxu Zhang
- Department of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akiko Kukita
- Department of Research Center of Arthroplasty, Faculty of Medicine, Saga University, Saga, Japan
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hidenobu Hiura
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
47
|
Moreira R, Mendonça LS, Pereira de Almeida L. Extracellular Vesicles Physiological Role and the Particular Case of Disease-Spreading Mechanisms in Polyglutamine Diseases. Int J Mol Sci 2021; 22:ijms222212288. [PMID: 34830171 PMCID: PMC8621536 DOI: 10.3390/ijms222212288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Recent research demonstrated pathological spreading of the disease-causing proteins from one focal point across other brain regions for some neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. Spreading mediated by extracellular vesicles is one of the proposed disease-spreading mechanisms. Extracellular vesicles are cell membrane-derived vesicles, used by cells for cell-to-cell communication and excretion of toxic components. Importantly, extracellular vesicles carrying pathological molecules, when internalized by "healthy" cells, may trigger pathological pathways and, consequently, promote disease spreading to neighboring cells. Polyglutamine diseases are a group of genetic neurodegenerative disorders characterized by the accumulation of mutant misfolded proteins carrying an expanded tract of glutamines, including Huntington's and Machado-Joseph disease. The pathological spread of the misfolded proteins or the corresponding mutant mRNA has been explored. The understanding of the disease-spreading mechanism that plays a key role in the pathology progression of these diseases can result in the development of effective therapeutic approaches to stop disease progression, arresting the spread of the toxic components and disease aggravation. Therefore, the present review's main focus is the disease-spreading mechanisms with emphasis on polyglutamine diseases and the putative role played by extracellular vesicles in this process.
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| | - Luís Pereira de Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| |
Collapse
|
48
|
Kato K, Nguyen KT, Decker CW, Silkwood KH, Eck SM, Hernandez JB, Garcia J, Han D. Tunneling nanotube formation promotes survival against 5-fluorouracil in MCF-7 breast cancer cells. FEBS Open Bio 2021; 12:203-210. [PMID: 34738322 PMCID: PMC8727926 DOI: 10.1002/2211-5463.13324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Tunneling nanotubes (TNTs) are F-actin-based open-ended tubular extensions that form following stresses, such as nutritional deprivation and oxidative stress. The chemotherapy agent 5-fluorouracil (5-FU) represents a significant stressor to cancer cells and induces thymidine deficiency, a state similar to nutritional deprivation. However, the ability of 5-FU to induce TNT formation in cancer cells and potentially enhance survival has not been explored. In this study, we examined whether 5-FU can induce TNT formation in MCF-7 breast cancer cells. Cytotoxic doses of 5-FU (150-350 μm) were observed to significantly induce TNT formation beginning at 24 h after exposure. TNTs formed following 5-FU treatment probably originated as extensions of gap junctions as MCF-7 cells detach from cell clusters. TNTs act as conduits for exchange of cellular components and we observed mitochondrial exchange through TNTs following 5-FU treatment. 5-FU-induced TNT formation was inhibited by over 80% following treatment with the F-actin-depolymerizing agent, cytochalasin B (cytoB). The inhibition of TNTs by cytoB corresponded with increased 5-FU-induced cytotoxicity by 30-62% starting at 48 h, suggesting TNT formation aides in MCF-7 cell survival against 5-FU. Two other widely used chemotherapy agents, docetaxel and doxorubicin induced TNT formation at much lower levels than 5-FU. Our work suggests that the therapeutic targeting of TNTs may increase 5-FU chemotherapy efficacy and decrease drug resistance in cancer cells, and these findings merits further investigation.
Collapse
Affiliation(s)
- Kaylyn Kato
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Kim Tho Nguyen
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Carl W Decker
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Kai H Silkwood
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Sydney M Eck
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Jeniffer B Hernandez
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Jerome Garcia
- Department of Biology, University of LaVerne, CA, USA
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| |
Collapse
|
49
|
Dong E. Cell-cell crosstalk in the heart. MEDICAL REVIEW (2021) 2021; 1:3-5. [PMID: 37724073 PMCID: PMC10388760 DOI: 10.1515/mr-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Affiliation(s)
- Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49, Road Huayuanbei, Haidian District, Beijing100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| |
Collapse
|
50
|
Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells. Sci Rep 2021; 11:18345. [PMID: 34526564 PMCID: PMC8443756 DOI: 10.1038/s41598-021-97869-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with smoking as its primary predisposing factor. Although carcinogens in cigarettes are known to cause oncogenic DNA alterations, analyses of patient cohorts revealed heterogeneous genetic aberrations with no clear driver mutations. The contribution of noncoding RNAs (ncRNAs) in the pathogenesis of lung cancer has since been demonstrated. Their dysregulation has been linked to cancer initiation and progression. A novel long noncoding RNA (lncRNA) called smoke and cancer-associated lncRNA 1 (SCAL1) was recently found upregulated in smoke-exposed adenocarcinomic alveolar epithelial cells. The present study characterized the phenotypic consequences of SCAL1 overexpression and knockdown using A549 cells as model system, with or without prior exposure to cigarette smoke extract (CSE). Increase in SCAL1 levels either by CSE treatment or SCAL1 overexpression led to increased cell migration, extensive cytoskeletal remodeling, and resistance to apoptosis. Further, SCAL1 levels were negatively correlated with intracellular levels of reactive oxygen species (ROS). In contrast, SCAL1 knockdown showed converse results for these assays. These results confirm the oncogenic function of SCAL1 and its role as a CSE-activated lncRNA that mediates ROS detoxification in A549 cells, thereby allowing them to develop resistance to and survive smoke-induced toxicity.
Collapse
|