1
|
El-Shoura EAM, Abdelzaher LA, Ahmed AAN, Abdel-Wahab BA, Sharkawi SMZ, Mohamed SA, Salem EA. Reno-protective effect of nicorandil and pentoxifylline against potassium dichromate-induced acute renal injury via modulation p38MAPK/Nrf2/HO-1 and Notch1/TLR4/NF-κB signaling pathways. J Trace Elem Med Biol 2024; 85:127474. [PMID: 38788404 DOI: 10.1016/j.jtemb.2024.127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Occupational and environmental exposure to chromium compounds such as potassium dichromate (PDC) (K2Cr2O7) has emerged as a potential aetiologic cause for renal disease through apoptotic, and inflammatory reactions. The known potent antioxidants such as nicorandil (NIC) and/or pentoxifylline (PTX) were studied for their possible nephroprotective effect in PDC-treated rats. METHODS Forty male Wistar rats were divided into five groups; control, PDC group, NIC+PDC, PTX+PDC group, and combination+PDC group. Nephrotoxicity was evaluated histopathologically and biochemically. Invasive blood pressure, renal function parameters urea, creatinine, uric acid and albumin, glomerular filtration rate markers Cys-C, Kim-1 and NGAL, inflammatory markers IL-1β, IL-6, TNF-α, TGF-β, COX-II, p38MAPK, NF-κB and TLR4, oxidative stress SOD, GSH, MDA, MPO, HO-1 and Nrf2 and apoptotic mediators Notch1 and PCNA were evaluated. Besides, renal cortical histopathology was assayed as well. RESULTS PDC led to a considerable increase in indicators for kidney injury, renal function parameters, invasive blood pressure, oxidative stress, and inflammatory markers. They were markedly reduced by coadministration of PDC with either/or NIC and PTX. The NIC and PTX combination regimen showed a more significant improvement than either medication used alone. Our results demonstrated the nephroprotective effect of NIC, PTX, and their combined regimen on PDC-induced kidney injury through suppression of oxidative stress, apoptosis, and inflammatory response. CONCLUSION Renal recovery from PDC injury was achieved through enhanced MAPK/Nrf2/HO-1 and suppressed Notch1/TLR4/NF-κB signaling pathways. This study highlights the role of NIC and PTX as effective interventions to ameliorate nephrotoxicity in patients undergoing PDC toxicity.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmacy Practice, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A N Ahmed
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Souty M Z Sharkawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom 32511, Egypt
| |
Collapse
|
2
|
Schmidt IM, Surapaneni AL, Zhao R, Upadhyay D, Yeo WJ, Schlosser P, Huynh C, Srivastava A, Palsson R, Kim T, Stillman IE, Barwinska D, Barasch J, Eadon MT, El-Achkar TM, Henderson J, Moledina DG, Rosas SE, Claudel SE, Verma A, Wen Y, Lindenmayer M, Huber TB, Parikh SV, Shapiro JP, Rovin BH, Stanaway IB, Sathe NA, Bhatraju PK, Coresh J, Rhee EP, Grams ME, Waikar SS. Plasma proteomics of acute tubular injury. Nat Commun 2024; 15:7368. [PMID: 39191768 PMCID: PMC11349760 DOI: 10.1038/s41467-024-51304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
The kidney tubules constitute two-thirds of the cells of the kidney and account for the majority of the organ's metabolic energy expenditure. Acute tubular injury (ATI) is observed across various types of kidney diseases and may significantly contribute to progression to kidney failure. Non-invasive biomarkers of ATI may allow for early detection and drug development. Using the SomaScan proteomics platform on 434 patients with biopsy-confirmed kidney disease, we here identify plasma biomarkers associated with ATI severity. We employ regional transcriptomics and proteomics, single-cell RNA sequencing, and pathway analysis to explore biomarker protein and gene expression and enriched biological pathways. Additionally, we examine ATI biomarker associations with acute kidney injury (AKI) in the Kidney Precision Medicine Project (KPMP) (n = 44), the Atherosclerosis Risk in Communities (ARIC) study (n = 4610), and the COVID-19 Host Response and Clinical Outcomes (CHROME) study (n = 268). Our findings indicate 156 plasma proteins significantly linked to ATI with osteopontin, macrophage mannose receptor 1, and tenascin C showing the strongest associations. Pathway analysis highlight immune regulation and organelle stress responses in ATI pathogenesis.
Collapse
Affiliation(s)
- Insa M Schmidt
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Section of Nephrology, Boston Medical Center, Boston, MA, USA.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Aditya L Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Runqi Zhao
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| | - Dhairya Upadhyay
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Wan-Jin Yeo
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Courtney Huynh
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| | - Anand Srivastava
- Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Ragnar Palsson
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Taesoo Kim
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Isaac E Stillman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Barwinska
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan Barasch
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael T Eadon
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel Henderson
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Dennis G Moledina
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sophie E Claudel
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| | - Ashish Verma
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| | - Yumeng Wen
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maja Lindenmayer
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samir V Parikh
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John P Shapiro
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brad H Rovin
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ian B Stanaway
- Kidney Research Institute, Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
| | - Neha A Sathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Pavan K Bhatraju
- Kidney Research Institute, Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Josef Coresh
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Eugene P Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Morgan E Grams
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Sushrut S Waikar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
3
|
Deng D, Tian D, Wang Y, Bai Y, Diao Z, Liu W. Secreted frizzled-related protein 5 protects against renal fibrosis by inhibiting Wnt/β-catenin pathway. Open Med (Wars) 2024; 19:20240934. [PMID: 38584843 PMCID: PMC10997006 DOI: 10.1515/med-2024-0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Renal fibrosis (RF) is an important pathogenesis for renal function deterioration in chronic kidney disease. Secreted frizzled-related protein 5 (SFRP5) is an anti-fibrotic adipokine but its direct role on RF remains unknown. It was aimed to study the protective effect of SFRP5 against RF and interference with Wnt/β-catenin signaling pathway for the first time. First, the therapeutic efficacy of SFRP5 was evaluated by adenovirus overexpression in rats with unilateral ureteral obstruction (UUO) in vivo. Thirty-six rats were randomly divided into the sham, UUO, and SFRP5 (UUO + Ad-SFRP5) groups. Half rats in each group were selected at random for euthanasia at 7 days and the others until 14 days. Then, the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) was established in HK-2 cells in vitro. The cells were divided into four groups: the control group, the TGF-β1 group, the TGF-β1 + SFRP5 group, and the TGF-β1 + SFRP5 + anti-SFRP5 group. The makers of EMT and Wnt/β-catenin pathway proteins were investigated. In the UUO model, expression of SFRP5 showed compensatory upregulation, and adenoviral-mediated SFRP5 over-expression remarkably attenuated RF, as demonstrated by maintenance of E-cadherin and suppression of α-smooth muscle actin (SMA). In vitro, SFRP5 was shown to inhibit TGF-β1-mediated positive regulation of α-SMA, fibronectin, collagen I but negative regulation of E-cadherin. Furthermore, SFRP5 abrogated activation of Wnt/β-catenin, which was the essential pathway in EMT and RF pathogenesis. The changes after a neutralizing antibody to SFRP5 confirmed the specificity of SFRP5 for inhibition. These findings suggest that SFRP5 can directly ameliorate EMT and protect against RF by inhibiting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dai Deng
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Dongli Tian
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Yahui Wang
- Department of Emergency, China Rehabilitation Research Center, Beijing, China
| | - Yu Bai
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zongli Diao
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, 95 Yong’an Road, Xicheng District, 100050, Beijing, China
| |
Collapse
|
4
|
Zou C, Tang X, Guo T, Jiang T, Zhang W, Zhang J. CTRP3 attenuates inflammation, oxidative and cell death in cisplatin induced HK-2 cells. PeerJ 2023; 11:e15890. [PMID: 37637169 PMCID: PMC10460153 DOI: 10.7717/peerj.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Cisplatin has been widely studied and found to be a highly effective anti-tumor drug. It has several side effects, including acute kidney injury (AKI). Cisplatin-induced AKI can be primarily attributed to oxidative stress, inflammation, and apoptosis. The CTRP3 adipokine is a new adipokine that exhibits antioxidant, anti-inflammatory, and antiapoptotic properties. Despite this, the role of CTRP3 in AKI remain unclear. In cisplatin-induced AKI models, our findings demonstrated that CTRP3 expression was decreased in human proximal tubule epithelial cells (HK-2). In the in vitro experiments, HK-2 cells were first transfected with an overexpression plasmid of CTRP3 (pcDNA-CTRP3) or a small interfering RNA for CTRP3 (si-CTRP3) and induced by cisplatin; and cell oxidative stress, inflammation, proliferation, and apoptosis were found to be present. Overexpressing CTRP3 inhibited oxidative stress through decreasing malondialdehyde (MDA) levels and increasing the activity of SOD and CAT. The mRNA levels of SOD1 and SOD2 were increased in response to CTRP3 overexpression. Additionally, CTRP3 decreased TNF-α and MCP-1 levels. Moreover, CTRP3 overexpression increased cisplatin-induced cell activity and decreased cell apoptosis, as indicated by the elevated numbers of EdU positive cells and decreased numbers of apoptotic cells. Consistent with these results, the overexpression of CTRP3 effectively elevated the mRNA levels of Bcl-2 and reduced the mRNA levels of Bax. In contrast, inhibition of CTRP3 expression by si-CTRP3 reversed the cisplatin-induced indices. Mechanistically, we found that the overexpression of CTRP3 can increase expression of Nrf2 and inhibit the activation of MAPK phosphorylation (ERK, JNK, and p38). Furthermore, inhibition of ERK, JNK and p38 activity eliminated aggravation of cisplatin-induced inflammation and apoptosis caused by CTRP3 knockdown. Additionally, the cisplatin-induced oxidative stress and activation of MAPK phosphorylation (ERK, JNK, and p38) in HK-2 cells were reversed by Nrf2 suppression by siRNA. Collectively, these results indicated that CTRP3 may identify as a novel target for AKI treatment and protect against cisplatin-induced AKI through the Nrf2/MAPK pathway.
Collapse
Affiliation(s)
- Chenglin Zou
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, The Second People’s Hospital of Jingzhou, Jingzhou, China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Jiang
- Department of Nephrology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenying Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Liu Y, Wu P, Xu X, Shen T, Wang X, Liu Y, Yuan C, Wang T, Zhou L, Liu A. C1q/TNF-related protein 3 alleviates heart failure via attenuation of oxidative stress in myocardial infarction rats. Peptides 2023; 163:170980. [PMID: 36842629 DOI: 10.1016/j.peptides.2023.170980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
C1q-tumor necrosis factor-related protein 3 (CTRP3), an adipokine, has been reported to be closely related to cardiovascular diseases (CVDs). However, the effect of CTRP3 on heart failure (HF) remains dimness. This study was to explore the role of CTRP3 in HF and its potential interaction mechanism. Heart failure model was established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending artery in Sprague-Dawley rats. Four weeks later, the rats were detected by transthoracic echocardiography and masson staining. Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), cardiac troponin I (cTnI) levels, creatine kinase-MB (CK-MB) and oxidative stress levels were recorded. The level of CTRP3 was reduced in the cardiomyocytes (CMs) treated with oxygen-glucose deprivation (OGD) and in the heart of MI rats. CTRP3 overexpression alleviated cardiac dysfunction, attenuated the cardiac fibrosis, and inhibited the increases of ANP, BNP, cTnI and CK-MB in the serum of MI rats. The increases of ANP and BNP in the CMs, and the collagen I and collagen III in the cardiac fibroblasts (CFs) induced by OGD were inhibited by CTRP3 overexpression. The enhancement of oxidative stress in the heart of MI rats was inhibited by CTRP3 overexpression. These results indicated that overexpression of CTRP3 could improve cardiac function and the related cardiac fibrosis in MI-induced HF rats via inhibition of oxidative stress. Upregulation of CTRP3 may be a strategy for HF therapy in the future.
Collapse
Affiliation(s)
- Yu Liu
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Pinxia Wu
- Department of Rehabilitation Medicine, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Xiaohong Xu
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Tongtong Shen
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Xinxin Wang
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Yayuan Liu
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Chen Yuan
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Tian Wang
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Limin Zhou
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Ai Liu
- ChuZhou City Vocation College, Chuzhou City, Anhui Province, China.
| |
Collapse
|
6
|
Barbieri D, Goicoechea M, Verde E, García-Prieto A, Verdalles Ú, Pérez de José A, Delgado A, Sánchez-Niño MD, Ortiz A. Obesity, chronic kidney disease progression and the role of the adipokine C1q/TNF related protein-3. Nefrologia 2023; 43:328-334. [PMID: 36517365 DOI: 10.1016/j.nefroe.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/07/2022] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION AND AIMS Obesity is a risk factor for incident chronic kidney disease (CKD). C1q/TNF related protein 3 (CTRP3) is an adipokine with multiple effects and may modulate the association between obesity and vascular diseases. The aim of the study is to explore potential links between obesity, CTRP3 levels and CKD progression. METHODS Patients with stage 3 and 4 CKD without previous cardiovascular events were enrolled and divided into groups according to body mass index (BMI) and sex. Demographic, clinical, analytical data and CTRP3 levels were collected at baseline. During follow-up, renal events (defined as dialysis initiation, serum creatinine doubling or a 50% decrease in estimated glomerular filtration rate were registered). RESULTS 81 patients were enrolled. 27 were obese and 54 non-obese. Baseline CTRP3 was similar between both groups (90.1±23.8 vs 84.5±6.2; p=0.28). Of the sum, 54 were men and 27 women, with higher CTRP3 in women (81.4±24.7 vs 106±24.7;p<0.01). During a mean follow-up of 68 months, 15 patients had a renal event. Patients in the higher CTRP3 tertile had less events but without statistical significance (p=0.07). Obese patients in the higher CTRP3 tertile significantly had less renal events (p=0.049). By multiple regression analysis CTRP3 levels could not predict renal events (HR 0.98; CI95% 0.96-1.06). CONCLUSIONS CTRP3 levels are higher in woman than men in patients with CKD, with similar levels between obese and non obese. Higher CTRP3 levels at baseline were associated with better renal outcomes in obese patients.
Collapse
Affiliation(s)
- Diego Barbieri
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Marian Goicoechea
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Eduardo Verde
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana García-Prieto
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Úrsula Verdalles
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana Pérez de José
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Delgado
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Alberto Ortiz
- Nephrology Department, ISS-Fundación Jimenez Díaz, Univerisdad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
He L, Zhu C, Dou H, Yu X, Jia J, Shu M. Keloid Core Factor CTRP3 Overexpression Significantly Controlled TGF- β1-Induced Propagation and Migration in Keloid Fibroblasts. DISEASE MARKERS 2023; 2023:9638322. [PMID: 37091895 PMCID: PMC10115533 DOI: 10.1155/2023/9638322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 04/25/2023]
Abstract
Purpose Keloid is a type of benign fibrous proliferative tumor characterized by excessive scarring. C1q/TNF-related protein 3 (CTRP3) has been proven to possess antifibrotic effect. Here, we explored the role of CTRP3 in keloid. In the current research, we examined the influence of CTRP3 on keloid fibroblasts (KFs) and investigated the potential molecular mechanism. Methods KF tissue specimens and adjacent normal fibroblast (NF) tissues were collected cultured from 10 keloid participants. For the TGF-β1 stimulation group, KFs were processed with human recombinant TGF-β1. Cell transfection of pcDNA3.1-CTRP3 or pcDNA3.1 was performed. The siRNA of CTRP3 (si-CTRP3) or negative control siRNA (si-scramble) was transfected into KFs. Results CTRP3 was downregulated in keloid tissues and KFs. CTRP3 overexpression significantly controlled TGF-β1-induced propagation and migration in KFs. Col I, α-SMA, and fibronectin mRNA and protein levels were enhanced by TGF-β1 stimulation, whereas they were inhibited by CTRP3 overexpression. In contrast, CTRP3 knockdown exhibited the opposite effect. In addition, CTRP3 attenuated TGF-β receptors TRI and TRII in TGF-β1-induced KFs. Furthermore, CTRP3 prevented TGF-β1-stimulated nuclear translocation of smad2 and smad3 and suppressed the expression levels of p-smad2 and p-smad3 in KFs. Conclusion CTRP3 exerted an antifibrotic role through inhibiting proliferation, migration, and ECM accumulation of KFs via regulating TGF-β1/Smad signal path.
Collapse
Affiliation(s)
- Lin He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chan Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huicong Dou
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueyuan Yu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Jia
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Maoguo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
8
|
Du C, Zhu Y, Yang Y, Mu L, Yan X, Wu M, Zhou C, Wu H, Zhang W, Wu Y, Zhang G, Hu Y, Ren Y, Shi Y. C1q/tumour necrosis factor-related protein-3 alleviates high-glucose-induced lipid accumulation and necroinflammation in renal tubular cells by activating the adenosine monophosphate-activated protein kinase pathway. Int J Biochem Cell Biol 2022; 149:106247. [PMID: 35753650 DOI: 10.1016/j.biocel.2022.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Lipid accumulation and progressive necroinflammation play pivotal roles in the development of diabetic nephropathy. C1q tumour necrosis factor-related protein-3 (CTRP3) is an adipokine with pleiotropic functions in cell proliferation, glucose and lipid metabolism, and inflammation. However, the mechanism and involvement of CTRP3 in lipid metabolism and the necroinflammation of renal tubular cells remain unclear. Here, we report that CTRP3 expression decreased in a time- and concentration-dependent manner in high glucose-stimulated HK-2 cells. We noted that the overexpression of CTRP3 or recombinant CTRP3 (rCTRP3) treatment prevented high glucose-induced lipid accumulation by inhibiting the expression of sterol regulatory element-binding protein-1 and increasing the expression of peroxisome proliferator-activated receptor-α and ATP-binding cassette A1. Moreover, the nucleotide-binding oligomerisation domain-like receptor protein 3-mediated inflammatory response and mixed lineage kinase domain-like protein-dependent necroinflammation were inhibited by CTRP3 overexpression or rCTRP3 treatment in HK-2 cells cultured in high glucose. Furthermore, lipotoxicity-induced by palmitic acid was found to be involved in necroinflammation in HK-2 cells, and CTRP3 displayed the same protective effect. CTRP3 also activated the adenosine monophosphate-activated protein kinase (AMPK) pathway, whereas adenine 9-β-D-arabinofuranoside, an AMPK inhibitor, replicated the protective effects of CTRP3. Besides, using kidney biopsies from patients with diabetes, we found that decreased CTRP3 expression was accompanied by increased lipid deposition, as well as the structural and functional injury of renal tubular cells. Our findings demonstrate that CTRP3 affects lipid metabolism and necroinflammation in renal tubular cells via the AMPK signalling pathway. Thus, CTRP3 may be a potential therapeutic target in diabetic renal injury.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Zhu
- Laboratorical center for Electron Microscopy, Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xue Yan
- Department of Pediatrics, the 2nd Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Chenming Zhou
- Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yanhui Wu
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guoyu Zhang
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yue Hu
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
9
|
Barbieri D, Goicoechea M, Verde E, García-Prieto A, Verdalles Ú, Pérez de José A, Delgado A, Sánchez-Niño MD, Ortiz A. Obesity, chronic kidney disease progression and the role of the adipokine C1q/TNF related protein-3. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Gao Z, Zhang C, Feng Z, Liu Z, Yang Y, Yang K, Chen L, Yao R. C1q inhibits differentiation of oligodendrocyte progenitor cells via Wnt/β-catenin signaling activation in a cuprizone-induced mouse model of multiple sclerosis. Exp Neurol 2021; 348:113947. [PMID: 34902359 DOI: 10.1016/j.expneurol.2021.113947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system demyelinating disease of autoimmune originate. Complement C1q, a complex glycoprotein, mediates a variety of immunoregulatory functions considered important in the prevention of autoimmunity. Although we found that the increased serum C1q level was highly associated with the Fazekas scores and T2 lesion volume of MS patients, the effect and mechanism of C1q on demyelination remains unclear. Cluster analysis and protein array results showed that serum Wnt receptors Frizzled-6 and LRP-6 levels in MS patients were both increased, we proposed that C1q may be involved in demyelination via Wnt signaling. The increased C1q protein levels in the serum and brain tissue were confirmed in a cuprizone (CPZ)-induced demyelination mice model. Moreover, CPZ treatment induced significant increase of LRP-6 and Frizzled-6 protein in mice corpus callosum. LRP-6 extra-cellular domain (LRP-6-ECD) level in the serum and cerebrospinal fluid (CSF) of CPZ mice also significantly increased. Knockdown of the subunit C1s of C1 not only substantially attenuated demyelination, promoted M2 microglia polarization and improved neurological function, but inhibited β-catenin expression and its nuclear translocation in oligodendrocyte progenitor cells (OPCs). In vitro, C1s silence reversed the increased level of LRP-6-ECD in the medium and β-catenin expression in OPCs induced by C1q treatment. Meanwhile, inhibition of C1s also markedly lowered the number of EDU positive OPCs, but enhanced the number of CNPase positive oligodendrocyte and the protein of MBP. The present study indicated that C1q was involved in demyelination in response to CPZ in mice by preventing OPC from differentiating into mature oligodendrocyte via Wnt/β-catenin signaling activation.
Collapse
Affiliation(s)
- Zixuan Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Zhaowei Feng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ziqi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Yaru Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Kexin Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Lei Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China.
| |
Collapse
|
11
|
Zhu Y, Wang L, Yu X, Jiang S, Wang X, Xing Y, Guo S, Liu Y, Liu J. Cr(VI) promotes tight joint and oxidative damage by activating the Nrf2/ROS/Notch1 axis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103640. [PMID: 33757840 DOI: 10.1016/j.etap.2021.103640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate whether Cr(VI) induced tight joint and oxidative damage in the small intestine, as mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2)/reactive oxygen species (ROS)/Notch1 axis crosstalk. Thirty-two ICR mice were obtained and subjected to Cr(VI) via intragastric administration daily for 5 days. Western blot (WB) analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) staining, and immunofluorescence (IF) staining were applied to detect small intestinal damage, Nrf2, Notch1, and respective downstream targets in this research. Results showed that Cr(VI) led to the tight joint and oxidative damage in the small intestine of mice. Nrf2 was stimulated, and Notch1 (Notch intracellular domain, NICD1) was activated to translocate into the nucleus and activate an antioxidant action. These findings were validated by WB analysis and IF staining. ROS levels increased as the Cr(VI) concentration increased. The colocalization analysis of Nrf2 and NICD1 implied that a crosstalk between Nrf2 and Notch1 existed. Therefore, this study indicated that the Nrf2/ROS/Notch1 axis crosstalk could aggravate the tight joint and oxidative damage in the small intestine after Cr(VI) treatment.
Collapse
Affiliation(s)
- Yiran Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Lumei Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Xiaozhou Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| |
Collapse
|
12
|
Ding H, Wang Z, Song W. CTRP3 protects hippocampal neurons from oxygen-glucose deprivation-induced injury through the AMPK/Nrf2/ARE pathway. Hum Exp Toxicol 2021; 40:1153-1162. [PMID: 33501881 DOI: 10.1177/0960327121989412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE C1q/TNF-related protein 3 (CTRP3), a member of CTRP family, has been found to have neuroprotective effect. In the current study, we investigated the protective role of CTRP3 in hippocampal neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS The mRNA and protein levels of CTRP3 in OGD/R-stimulated hippocampal neurons were measured using qRT-PCR and western blot analysis, respectively. CCK-8 assay was performed to assess cell viability. ROS production was measured using the fluorescence probe 2',7'-dichlorofluorescein diacetate (H2DCFDA). The activities of SOD and GPx were determined using ELISA. Cell apoptosis was assessed. Luciferase reporter assay was carried out to assess the activation of ARE). The levels of p-AMPK and Nrf2 were measured using western blot. RESULTS Our results showed that the expression of CTRP3 was significantly downregulated in hippocampal neuronal cells exposed to OGD/R. Overexpression of CTRP3 improved cell viability of OGD/R-induced hippocampal neurons. In addition, overexpression of CTRP3 attenuated the OGD/R-caused oxidative stress with decreased ROS production and increased activities of SOD and GPx. Moreover, CTRP3 caused a significant increase in bcl-2 expression and decreases in bax expression and caspase-3 activity. Furthermore, CTRP3 overexpression significantly upregulated the levels of p-AMPK and Nrf2, as well induced the activation of ARE in OGD-R-induced hippocampal neurons. CTRP3 upregulated the mRNA expression levels of HO-1, NQO-1 and GPx-3. Additionally, treatment with the inhibitor of AMPK partially reversed the neuroprotective effect of CTRP3 in OGD/R-exposed neurons. CONCLUSION CTRP3 exerted protective effect on OGD/R-induced cerebral injury, which was regulated by AMPK/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- H Ding
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Z Wang
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - W Song
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Wang H, He K, Zeng X, Zhou X, Yan F, Yang S, Zhao A. Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene. Anim Biosci 2020; 34:1078-1087. [PMID: 33152229 PMCID: PMC8100491 DOI: 10.5713/ajas.20.0430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Xuehua Zeng
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| |
Collapse
|