1
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Botti V, Menzel O, Staedler D. A state-of-the-art review of tamoxifen as a potential therapeutic for duchenne muscular dystrophy. Front Pharmacol 2022; 13:1030785. [PMID: 36467064 PMCID: PMC9709317 DOI: 10.3389/fphar.2022.1030785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/02/2022] [Indexed: 09/24/2023] Open
Abstract
Introduction: This systematic review analyzes the state-of-art repurposing of the drug tamoxifen (TAM) in the treatment of Duchenne Muscular Dystrophy (DMD), including its mechanism of action, toxicological findings, and past and ongoing clinical trials. A parallel aim of this work was to explore whether evidence exists to support further funding of investigation on TAM treatment for DMD patients with a pivotal trial in young patients. Bringing evidence and answering the scientific question of whether this treatment could improve the quality-of-life of DMD patients is needed to establish guidelines and accelerate access to promising therapies for DMD patients. Methods: The search was conducted in January 2022 utilizing PubMed. All MeSH terms for "Duchenne Muscular Dystrophy" and "tamoxifen" were used. The inclusion and exclusion criteria were defined according to the PICOS framework. Results: The included publications all explored the use of TAM with promising outcomes in muscular strength recovery and a decrease in pathology biomarkers. Two reviews recognize TAM as a potential treatment for DMD patients and state that drug repurposing plays a crucial role in the quest for a drug candidate to treat this rare disease. Conclusion: According to available data, TAM shows promise as a treatment for DMD, both pharmacologically and clinically. However, published data to date are insufficient to definitively conclude the beneficial effect of TAM on quality-of-life and ultimately survival, particularly in the youngest patients diagnosed with DMD.
Collapse
Affiliation(s)
- Valeria Botti
- RE(ACT) Discovery Institute, C/O BLACKSWAN Foundation, Vuarrens, Switzerland
| | - Olivier Menzel
- RE(ACT) Discovery Institute, C/O BLACKSWAN Foundation, Vuarrens, Switzerland
| | - Davide Staedler
- RE(ACT) Discovery Institute, C/O BLACKSWAN Foundation, Vuarrens, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Chatzopoulou M, Conole D, Emer E, Rowley JA, Willis NJ, Squire SE, Gill B, Brough S, Wilson FX, Wynne GM, Davies SG, Davies KE, Russell AJ. Structure-activity relationships of 2-pyrimidinecarbohydrazides as utrophin modulators for the potential treatment of Duchenne muscular dystrophy. Bioorg Med Chem 2022; 69:116812. [PMID: 35772287 DOI: 10.1016/j.bmc.2022.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
Abstract
A therapeutic approach that holds the potential to treat all Duchenne muscular dystrophy (DMD) patient populations is utrophin modulation. Ezutromid, a first generation utrophin modulator which was later found to act via antagonism of the arylhydrocarbon receptor, progressed to Phase 2 clinical trials. Although interim data showed target engagement and functional improvements, ezutromid ultimately failed to meet its clinical endpoints. We recently described the identification of a new class of hydrazide utrophin modulators which has a different mechanism of action to ezutromid. In this study we report our early optimisation studies on this hydrazide series. The new analogues had significantly improved potency in cell-based assays, increased sp3 character and reduced lipophilicity, which also improved their physicochemical properties. A representative new analogue combining these attributes increased utrophin protein in dystrophic mouse cells showing it can be used as a chemical tool to reveal new insights regarding utrophin upregulation as a strategy for DMD therapeutic intervention.
Collapse
Affiliation(s)
- Maria Chatzopoulou
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Daniel Conole
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Enrico Emer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Jessica A Rowley
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Nicky J Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Sarah E Squire
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sir Henry Wellcome Building of Gene Function, South Parks Road, Oxford OX1 3PT, UK
| | - Becky Gill
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, Cornwall PL32 9RA, UK
| | - Steve Brough
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, Cornwall PL32 9RA, UK
| | - Francis X Wilson
- Summit Therapeutics Plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire OX14 4SB, UK
| | - Graham M Wynne
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Stephen G Davies
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sir Henry Wellcome Building of Gene Function, South Parks Road, Oxford OX1 3PT, UK
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PQ, UK
| |
Collapse
|
4
|
Soblechero-Martín P, Albiasu-Arteta E, Anton-Martinez A, de la Puente-Ovejero L, Garcia-Jimenez I, González-Iglesias G, Larrañaga-Aiestaran I, López-Martínez A, Poyatos-García J, Ruiz-Del-Yerro E, Gonzalez F, Arechavala-Gomeza V. Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening. Sci Rep 2021; 11:18188. [PMID: 34521928 PMCID: PMC8440673 DOI: 10.1038/s41598-021-97730-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Gene editing methods are an attractive therapeutic option for Duchenne muscular dystrophy, and they have an immediate application in the generation of research models. To generate myoblast cultures that could be useful in in vitro drug screening, we have optimised a CRISPR/Cas9 gene edition protocol. We have successfully used it in wild type immortalised myoblasts to delete exon 52 of the dystrophin gene, modelling a common Duchenne muscular dystrophy mutation; and in patient's immortalised cultures we have deleted an inhibitory microRNA target region of the utrophin UTR, leading to utrophin upregulation. We have characterised these cultures by demonstrating, respectively, inhibition of dystrophin expression and overexpression of utrophin, and evaluating the expression of myogenic factors (Myf5 and MyH3) and components of the dystrophin associated glycoprotein complex (α-sarcoglycan and β-dystroglycan). To demonstrate their use in the assessment of DMD treatments, we have performed exon skipping on the DMDΔ52-Model and have used the unedited DMD cultures/ DMD-UTRN-Model combo to assess utrophin overexpression after drug treatment. While the practical use of DMDΔ52-Model is limited to the validation to our gene editing protocol, DMD-UTRN-Model presents a possible therapeutic gene edition target as well as a useful positive control in the screening of utrophin overexpression drugs.
Collapse
Affiliation(s)
- Patricia Soblechero-Martín
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain.,Osakidetza Basque Health Service, Bilbao-Basurto Integrated Health Organisation, Basurto University Hospital, Clinical Laboratory Service, Bilbao, Spain
| | - Edurne Albiasu-Arteta
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Aina Anton-Martinez
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | | | - Iker Garcia-Jimenez
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | | | - Irene Larrañaga-Aiestaran
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Andrea López-Martínez
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | | | - Estíbaliz Ruiz-Del-Yerro
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Federico Gonzalez
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain. .,Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
5
|
Dudley RWR, Comtois AS, St-Pierre DH, Danialou G. Early administration of L-arginine in mdx neonatal mice delays the onset of muscular dystrophy in tibialis anterior (TA) muscle. FASEB Bioadv 2021; 3:639-651. [PMID: 34377959 PMCID: PMC8332474 DOI: 10.1096/fba.2020-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 12/04/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder that results in the absence of dystrophin, a cytoskeletal protein. Individuals with this disease experience progressive muscle destruction, which leads to muscle weakness. Studies have been conducted to find solutions for the relief of individuals with this disease, several of which have shown that utrophin, a protein closely related to dystrophin, when overexpressed in mdx neonatal mice (the murine model of DMD), is able to prevent the progressive muscle destruction observed in the absence of dystrophin. Furthermore, recent studies have shown that L‐arginine induces utrophin upregulation in adult mdx mice. We hypothesized that L‐arginine treatment also induces utrophin upregulation to prevent the development of muscle weakness in neonatal mdx mice. Hence, L‐arginine should also prevent progressive muscle destruction via utrophin upregulation in mdx neonatal mice. Mdx neonatal mice were injected intraperitoneally daily with 800 mg/kg of L‐arginine for 6 weeks, whereas control mice were injected with a physiological saline. The following experiments were performed on the tibialis anterior (TA) muscle: muscle contractility and resistance to mechanical stress; central nucleation and peripheral nucleation, utrophin, and creatine kinase quantification as well as a nitric oxide (NO) assay. Our findings show that early administration of L‐arginine in mdx neonatal mice prevents the destruction of the tibialis anterior (TA) muscle. However, this improvement was related to nitric oxide (NO) production rather than the expected utrophin upregulation.
Collapse
Affiliation(s)
- Roy W R Dudley
- Meakins Christie Laboratories McGill University Montreal QC Canada
| | - Alain S Comtois
- Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Groupe de Recherche en Activité Physique Adaptée UQAM Montreal QC Canada
| | - David H St-Pierre
- Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Groupe de Recherche en Activité Physique Adaptée UQAM Montreal QC Canada.,Centre de Recherche du CHU Sainte-Justine Montréal QC Canada
| | - Gawiyou Danialou
- Meakins Christie Laboratories McGill University Montreal QC Canada.,Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Royal Military College Saint-Jean Saint-Jean-sur-Richelieu QC Canada
| |
Collapse
|
6
|
Soblechero-Martín P, López-Martínez A, de la Puente-Ovejero L, Vallejo-Illarramendi A, Arechavala-Gomeza V. Utrophin modulator drugs as potential therapies for Duchenne and Becker muscular dystrophies. Neuropathol Appl Neurobiol 2021; 47:711-723. [PMID: 33999469 PMCID: PMC8518368 DOI: 10.1111/nan.12735] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Utrophin is an autosomal paralogue of dystrophin, a protein whose deficit causes Duchenne and Becker muscular dystrophies (DMD/BMD). Utrophin is naturally overexpressed at the sarcolemma of mature dystrophin‐deficient fibres in DMD and BMD patients as well as in the mdx Duchenne mouse model. Dystrophin and utrophin can co‐localise in human foetal muscle, in the dystrophin‐competent fibres from DMD/BMD carriers, and revertant fibre clusters in biopsies from DMD patients. These findings suggest that utrophin overexpression could act as a surrogate, compensating for the lack of dystrophin, and, as such, it could be used in combination with dystrophin restoration therapies. Different strategies to overexpress utrophin are currently under investigation. In recent years, many compounds have been reported to modulate utrophin expression efficiently in preclinical studies and ameliorate the dystrophic phenotype in animal models of the disease. In this manuscript, we discuss the current knowledge on utrophin protein and the different mechanisms that modulate its expression in skeletal muscle. We also include a comprehensive review of compounds proposed as utrophin regulators and, as such, potential therapeutic candidates for these muscular dystrophies.
Collapse
Affiliation(s)
- Patricia Soblechero-Martín
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Laboratory Service, Osakidetza Basque Health Service, Bilbao-Basurto Integrated Health Organisation, Basurto University Hospital, Bilbao, Spain
| | - Andrea López-Martínez
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Chatzopoulou M, Emer E, Lecci C, Rowley JA, Casagrande AS, Moir L, Squire SE, Davies SG, Harriman S, Wynne GM, Wilson FX, Davies KE, Russell AJ. Decreasing HepG2 Cytotoxicity by Lowering the Lipophilicity of Benzo[d]oxazolephosphinate Ester Utrophin Modulators. ACS Med Chem Lett 2020; 11:2421-2427. [PMID: 33335663 DOI: 10.1021/acsmedchemlett.0c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Utrophin modulation is a disease-modifying therapeutic strategy for Duchenne muscular dystrophy that would be applicable to all patient populations. To improve the suboptimal profile of ezutromid, the first-in-class clinical candidate, a second generation of utrophin modulators bearing a phosphinate ester moiety was developed. This modification significantly improved the physicochemical and ADME properties, but one of the main lead molecules was found to have dose-limiting hepatotoxicity. In this work we describe how less lipophilic analogues retained utrophin modulatory activity in a reporter gene assay, upregulated utrophin protein in dystrophic mouse muscle cells, but also had improved physicochemical and ADME properties. Notably, ClogP was found to directly correlate with pIC50 in HepG2 cells, hence leading to a potentially safer toxicological profiles in this series. Compound 21 showed a balanced profile (H2K EC50: 4.17 μM, solubility: 477 μM, mouse hepatocyte T 1/2 > 240 min) and increased utrophin protein 1.6-fold in a Western blot assay.
Collapse
Affiliation(s)
- Maria Chatzopoulou
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Enrico Emer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Cristina Lecci
- Evoetec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Milton, Abingdon OX14 4RZ, U.K
| | - Jessica A. Rowley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | | | - Lee Moir
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - Sarah E. Squire
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - Stephen G. Davies
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Shawn Harriman
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire OX14 4SB, U.K
| | - Graham M. Wynne
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Francis X. Wilson
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire OX14 4SB, U.K
| | - Kay E. Davies
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - Angela J. Russell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PQ, U.K
| |
Collapse
|
8
|
van Westering TLE, Johansson HJ, Hanson B, Coenen-Stass AML, Lomonosova Y, Tanihata J, Motohashi N, Yokota T, Takeda S, Lehtiö J, Wood MJA, El Andaloussi S, Aoki Y, Roberts TC. Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy. Mol Cell Proteomics 2020; 19:2047-2068. [PMID: 32994316 PMCID: PMC7710136 DOI: 10.1074/mcp.ra120.002345] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. Although a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n = 3. High-resolution isoelectric focusing liquid chromatography-tandem MS (HiRIEF-LC-MS/MS) was used to quantify the expression of 4974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to WT (C57BL/6) controls at each age. Furthermore, 1795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function that have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators, which together are indicative of cross-talk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INFγ, NF-κB, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Upregulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was upregulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.
Collapse
Affiliation(s)
| | - Henrik J Johansson
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm, Sweden
| | - Britt Hanson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Yulia Lomonosova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Toshifumi Yokota
- Department of Medical, Genetics, School of Human Development Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Janne Lehtiö
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm, Sweden
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, Oxford, UK
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
9
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
10
|
Cerro-Herreros E, González-Martínez I, Moreno-Cervera N, Overby S, Pérez-Alonso M, Llamusí B, Artero R. Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:837-849. [PMID: 32805487 PMCID: PMC7452101 DOI: 10.1016/j.omtn.2020.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a chronically debilitating, rare genetic disease that originates from an expansion of a noncoding CTG repeat in the dystrophia myotonica protein kinase (DMPK) gene. The expansion becomes pathogenic when DMPK transcripts contain 50 or more repetitions due to the sequestration of the muscleblind-like (MBNL) family of proteins. Depletion of MBNLs causes alterations in splicing patterns in transcripts that contribute to clinical symptoms such as myotonia and muscle weakness and wasting. We previously found that microRNA (miR)-23b directly regulates MBNL1 in DM1 myoblasts and mice and that antisense technology (“antagomiRs”) blocking this microRNA (miRNA) boosts MBNL1 protein levels. Here, we show the therapeutic effect over time in response to administration of antagomiR-23b as a treatment in human skeletal actin long repeat (HSALR) mice. Subcutaneous administration of antagomiR-23b upregulated the expression of MBNL1 protein and rescued splicing alterations, grip strength, and myotonia in a dose-dependent manner with long-lasting effects. Additionally, the effects of the treatment on grip strength and myotonia were still slightly notable after 45 days. The pharmacokinetic data obtained provide further evidence that miR-23b could be a valid therapeutic target for DM1.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Irene González-Martínez
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Nerea Moreno-Cervera
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Sarah Overby
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Manuel Pérez-Alonso
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Beatriz Llamusí
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Rubén Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain.
| |
Collapse
|
11
|
Babbs A, Berg A, Chatzopoulou M, Davies KE, Davies SG, Edwards B, Elsey DJ, Emer E, Guiraud S, Harriman S, Lecci C, Moir L, Peters D, Robinson N, Rowley JA, Russell AJ, Squire SE, Tinsley JM, Wilson FX, Wynne GM. 2-Arylbenzo[ d]oxazole Phosphinate Esters as Second-Generation Modulators of Utrophin for the Treatment of Duchenne Muscular Dystrophy. J Med Chem 2020; 63:7880-7891. [PMID: 32551645 DOI: 10.1021/acs.jmedchem.0c00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Utrophin modulation is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), which should be applicable to all patient populations. Following on from ezutromid, the first-generation utrophin modulator, we describe the development of a second generation of utrophin modulators, based on the bioisosteric replacement of the sulfone group with a phosphinate ester and substitution of the metabolically labile naphthalene with a haloaryl substituent. The improved physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties, further reflected in the enhanced pharmacokinetic profile of the most advanced compounds, 30 and 27, led to significantly better in vivo exposure compared to ezutromid and alleviation of the dystrophic phenotype in mdx mice. While 30 was found to have dose-limiting hepatotoxicity, 27 and its enantiomers exhibited limited off-target effects, resulting in a safe profile and highlighting their potential utility as next-generation utrophin modulators suitable for progression toward a future DMD therapy.
Collapse
Affiliation(s)
- Arran Babbs
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - Adam Berg
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - Maria Chatzopoulou
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Kay E Davies
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - Stephen G Davies
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Benjamin Edwards
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - David J Elsey
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire OX14 4SB, U.K
| | - Enrico Emer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Simon Guiraud
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - Shawn Harriman
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire OX14 4SB, U.K
| | - Cristina Lecci
- Evotec (UK) Ltd, 114 Innovation Dr, Milton Park, Milton, Abingdon OX14 4RZ, U.K
| | - Lee Moir
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - David Peters
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire OX14 4SB, U.K
| | - Neil Robinson
- S.H.B. Enterprises Ltd, 55 Station Road, Beaconsfield HP19 1QL, U.K
| | - Jessica A Rowley
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PQ, U.K
| | - Sarah E Squire
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| | - Jonathon M Tinsley
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire OX14 4SB, U.K
| | - Francis X Wilson
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire OX14 4SB, U.K
| | - Graham M Wynne
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
12
|
From diagnosis to therapy in Duchenne muscular dystrophy. Biochem Soc Trans 2020; 48:813-821. [PMID: 32597486 PMCID: PMC7329342 DOI: 10.1042/bst20190282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Genetic approaches for the diagnosis and treatment of inherited muscle diseases have advanced rapidly in recent years. Many of the advances have occurred in the treatment of Duchenne muscular dystrophy (DMD), a muscle wasting disease where affected boys are typically wheelchair bound by age 12 years and generally die in their twenties from respiratory failure or cardiomyopathy. Dystrophin is a 421 kD protein which links F-actin to the extracellular matrix via the dystrophin-associated protein complex (DAPC) at the muscle membrane. In the absence of dystrophin, the DAPC is lost, making the muscle membrane more susceptible to contraction-induced injury. The identification of the gene causing DMD in 1986 resulted in improved diagnosis of the disease and the identification of hotspots for mutation. There is currently no effective treatment. However, there are several promising genetic therapeutic approaches at the preclinical stage or in clinical trials including read-through of stop codons, exon skipping, delivery of dystrophin minigenes and the modulation of expression of the dystrophin related protein, utrophin. In spite of significant progress, the problem of targeting all muscles, including diaphragm and heart at sufficiently high levels, remains a challenge. Any therapy also needs to consider the immune response and some treatments are mutation specific and therefore limited to a subgroup of patients. This short review provides a summary of the current status of DMD therapy with a particular focus on those genetic strategies that have been taken to the clinic.
Collapse
|
13
|
Wilkinson IVL, Perkins KJ, Dugdale H, Moir L, Vuorinen A, Chatzopoulou M, Squire SE, Monecke S, Lomow A, Geese M, Charles PD, Burch P, Tinsley JM, Wynne GM, Davies SG, Wilson FX, Rastinejad F, Mohammed S, Davies KE, Russell AJ. Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Kelly J. Perkins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Hannah Dugdale
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Lee Moir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Aini Vuorinen
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Maria Chatzopoulou
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Sarah E. Squire
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Sebastian Monecke
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Alexander Lomow
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Marcus Geese
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Philip D. Charles
- Department of BiochemistryUniversity of Oxford South Parks Rd Oxford OX1 3QU UK
- Target Discovery InstituteUniversity of OxfordOld Road Campus Roosevelt Drive Oxford OX3 7FZ UK
| | - Peter Burch
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Jonathan M. Tinsley
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Graham M. Wynne
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Stephen G. Davies
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Francis X. Wilson
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Fraydoon Rastinejad
- Target Discovery InstituteUniversity of OxfordOld Road Campus Roosevelt Drive Oxford OX3 7FZ UK
| | - Shabaz Mohammed
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Department of BiochemistryUniversity of Oxford South Parks Rd Oxford OX1 3QU UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Angela J. Russell
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Department of PharmacologyUniversity of Oxford Mansfield Road Oxford OX1 3PQ UK
| |
Collapse
|
14
|
Wilkinson IVL, Perkins KJ, Dugdale H, Moir L, Vuorinen A, Chatzopoulou M, Squire SE, Monecke S, Lomow A, Geese M, Charles PD, Burch P, Tinsley JM, Wynne GM, Davies SG, Wilson FX, Rastinejad F, Mohammed S, Davies KE, Russell AJ. Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angew Chem Int Ed Engl 2020; 59:2420-2428. [PMID: 31755636 PMCID: PMC7003794 DOI: 10.1002/anie.201912392] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first-in-class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial. Promising efficacy and evidence of target engagement was observed in DMD patients after 24 weeks of treatment, however trial endpoints were not met after 48 weeks. The objective of this study was to understand the mechanism of action of ezutromid which could explain the lack of sustained efficacy and help development of new generations of utrophin modulators. Using chemical proteomics and phenotypic profiling we show that the aryl hydrocarbon receptor (AhR) is a target of ezutromid. Several lines of evidence demonstrate that ezutromid binds AhR with an apparent KD of 50 nm and behaves as an AhR antagonist. Furthermore, other reported AhR antagonists also upregulate utrophin, showing that this pathway, which is currently being explored in other clinical applications including oncology and rheumatoid arthritis, could also be exploited in future DMD therapies.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Kelly J. Perkins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Hannah Dugdale
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Lee Moir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Aini Vuorinen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Maria Chatzopoulou
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Sarah E. Squire
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Sebastian Monecke
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Alexander Lomow
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Marcus Geese
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Philip D. Charles
- Department of BiochemistryUniversity of OxfordSouth Parks RdOxfordOX1 3QUUK
- Target Discovery InstituteUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7FZUK
| | - Peter Burch
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Jonathan M. Tinsley
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Graham M. Wynne
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Stephen G. Davies
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Francis X. Wilson
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Fraydoon Rastinejad
- Target Discovery InstituteUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7FZUK
| | - Shabaz Mohammed
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of BiochemistryUniversity of OxfordSouth Parks RdOxfordOX1 3QUUK
| | - Kay E. Davies
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Angela J. Russell
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3PQUK
| |
Collapse
|
15
|
Liu Y, Zhang R, Li Z, Zhou J, Yang T, Yang C, Huang X, Zhang Y, Shi S. Lack of effect of Imrecoxib, an innovative and moderate COX-2 inhibitor, on pharmacokinetics and pharmacodynamics of warfarin in healthy volunteers. Sci Rep 2019; 9:15774. [PMID: 31673051 PMCID: PMC6823368 DOI: 10.1038/s41598-019-51755-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/07/2019] [Indexed: 01/10/2023] Open
Abstract
Imrecoxib is a registered treatment for osteoarthritis pain symptoms in China. This study aims to assess the effect of imrecoxib on the pharmacodynamics and pharmacokinetics of warfarin. 12 healthy male volunteers with CYP2C9*3 AA and VKORC1 AA genotypes took a 5 mg dose of warfarin both alone and concomitantly with steady-state imrecoxib. Both warfarin alone and concomitantly with imrecoxib have safey and good tolerance across the trial. Following warfarin and imrecoxib co-administration, neither Cmax, AUC0-t and t1/2 of warfarin enantiomers nor AUC of international normalized ratio (INR) were markedly different from those of warfarin alone. The geometric mean ratios (GMRs) (warfarin + imrecoxib: warfarin alone) of INR(AUC) was 1 (0.99, 1.01). The GMRs of warfarin AUC0-∞ (90% confidence interval, CIs) for warfarin + imrecoxib: warfarin alone were 1.12 (1.08, 1.16) for R-warfarin and 1.13 (1.07, 1.18) for S- warfarin. The 90% CIs of the GMRs of AUC0-∞, Cmax and INR (AUC) were all within a 0.8–1.25 interval. The combination of warfarin and imrecoxib did not impact the pharmacodynamics and pharmacokinetics of single-dose warfarin; therefore, when treating a patient with imrecoxib and warfarin, it is not required to adjust the dosage of warfarin.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhongfang Li
- Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xixi Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Research Organization for Pharmaceutical Products, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Chatzopoulou M, Claridge TDW, Davies KE, Davies SG, Elsey DJ, Emer E, Fletcher AM, Harriman S, Robinson N, Rowley JA, Russell AJ, Tinsley JM, Weaver R, Wilkinson IVL, Willis NJ, Wilson FX, Wynne GM. Isolation, Structural Identification, Synthesis, and Pharmacological Profiling of 1,2-trans-Dihydro-1,2-diol Metabolites of the Utrophin Modulator Ezutromid. J Med Chem 2019; 63:2547-2556. [DOI: 10.1021/acs.jmedchem.9b01547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Chatzopoulou
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tim D. W. Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Stephen G. Davies
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - David J. Elsey
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon OX14 4SB, United Kingdom
| | - Enrico Emer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ai M. Fletcher
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Shawn Harriman
- Summit Therapeutics plc, One Broadway, 14th Floor, Cambridge, Massachusetts 02142, United States
| | - Neil Robinson
- S.H.B. Enterprises Ltd., 55 Station Road, Beaconsfield HP19 1QL, United Kingdom
| | - Jessica A. Rowley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Angela J. Russell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PQ, United Kingdom
| | - Jonathon M. Tinsley
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon OX14 4SB, United Kingdom
| | - Richard Weaver
- XenoGesis Ltd., BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, United Kingdom
| | - Isabel V. L. Wilkinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nicky J. Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Francis X. Wilson
- Summit Therapeutics plc, 136a Eastern Avenue, Milton Park, Abingdon OX14 4SB, United Kingdom
| | - Graham M. Wynne
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
17
|
Muntoni F, Tejura B, Spinty S, Roper H, Hughes I, Layton G, Davies KE, Harriman S, Tinsley J. A Phase 1b Trial to Assess the Pharmacokinetics of Ezutromid in Pediatric Duchenne Muscular Dystrophy Patients on a Balanced Diet. Clin Pharmacol Drug Dev 2019; 8:922-933. [PMID: 30650257 DOI: 10.1002/cpdd.642] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/28/2018] [Indexed: 11/08/2022]
Abstract
Ezutromid (SMT C1100) is a small-molecule utrophin modulator that was developed to treat Duchenne muscular dystrophy (DMD). Previous clinical trials of this agent revealed lower exposure in DMD patients compared with healthy volunteers, which may reflect differences in diet. This study evaluated the pharmacokinetics of ezutromid in patients with DMD who followed a balanced diet. This was a multicenter, double-blind, placebo-controlled, ascending single and multiple oral dose study. Twelve pediatric patients were randomly allocated to 1 of 3 treatment sequences within which were 3 treatment periods of 2 weeks each. Each patient received, in a dose-escalating fashion, 1250 mg and 2500 mg twice daily (BID) of ezutromid administered orally as a microfluidized suspension (F3) with placebo in the other treatment period. Throughout the study, patients followed a balanced diet including recommended proportions of major food groups and administration of drug accompanied with 100 mL of full-fat milk. This approach improved the absorption of ezutromid, resulting in higher systemic exposure, with considerable variability in exposure between patients at each dose level. Single and multiple oral doses of 1250 mg and 2500 mg BID were considered safe and well tolerated. No severe or serious adverse events and no study discontinuations due to adverse events were reported. This study provides assurance that, with the formulation tested (F3) and instructions regarding food (balanced diet and whole-fat milk), 2500 mg BID of ezutromid achieves plasma concentrations that, based on preclinical studies, should be able to modulate utrophin expression in future clinical trials.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Institute of Child Health, London, UK
| | | | - Stefan Spinty
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Helen Roper
- Birmingham Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Imelda Hughes
- Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, UK
| | | | - Kay E Davies
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology Anatomy and Genetics, Oxford, UK
| | | | | |
Collapse
|
18
|
Dong QC, Chen HM, Jin X. [A review of gene therapy for Duchenne muscular dystrophy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:691-696. [PMID: 30111482 PMCID: PMC7389749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/04/2018] [Indexed: 08/01/2024]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive hereditary disease caused by mutations in the DMD gene that encodes dystrophin. It is characterized by progressive muscle weakness and degeneration of skeletal muscle and myocardium due to the absence of dystrophin. The disease often occurs at the age of 2-5 years, and most children may die of heart failure or respiratory insufficiency at the age of around 20 years. At present, supportive therapy is often used in clinical practice to improve symptoms, but this cannot improve the outcome of this disease. The development of gene therapy brings new hope to the cure of this disease. This article summarizes gene replacement therapy for DMD, including the research advances in DMD gene transduction technology mediated by adeno-associated virus, utrophin protein upregulation technology, and clustered regularly interspaced short palindromic repeat gene editing technology, and reviews the recommendations to solve the issues of adeno-associated viral load, long-term effective expression of transgenic products, and utrophin protein expression, in order to provide a reference for further research.
Collapse
Affiliation(s)
- Qi-Chao Dong
- Medical School of Shaoxing University, Shaoxing, Zhejiang 312000, China.
| | | | | |
Collapse
|
19
|
Ito M, Ohno K. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations. Matrix Biol 2018; 68-69:628-636. [PMID: 29475025 DOI: 10.1016/j.matbio.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors.
Collapse
Affiliation(s)
- Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
20
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Utrophin haploinsufficiency does not worsen the functional performance, resistance to eccentric contractions and force production of dystrophic mice. PLoS One 2018; 13:e0198408. [PMID: 29879154 PMCID: PMC5991729 DOI: 10.1371/journal.pone.0198408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/20/2018] [Indexed: 12/01/2022] Open
Abstract
The lack of dystrophin in Duchenne muscular dystrophy (DMD) compromises the integrity and function of muscle fibers. Skeletal muscles, except the diaphragm, do not undergo progressive degeneration in adult mdx mice due to compensatory mechanisms, including structural protein upregulation. New mouse models, including utrophin haploinsufficient mdx (mdx/utrn+/-) mice, may better recapitulate DMD. Our goal was to determine whether mdx/utrn+/- worsens the mdx phenotype and to characterize the course of the disease on muscle function and contractility at 1, 2, and 5 months of age, which encompass all stages of development relevant to DMD therapy. The functional performances of mdx/utrn+/- mice showed that they are not more affected than mdx/utrn+/+ mice based on downhill treadmill running parameters and subsequent recovery measured by open-field voluntary activity. WT mice ran the entire distance (450 m) on the treadmill, with an additional 561 m during the 4 h of open-field while mdx/utrn+/+ and mdx/utrn+/- mice completed, respectively, 236 m and 273 m on the treadmill and 341 m and 287 m during the open-field period. In addition, isolated ex vivo contractile properties and repeated eccentric contractions showed that mdx/utrn+/- does not significantly worsen the function of dystrophic EDL muscles, which are mainly composed of fast-twitch fibers that are preferentially affected in DMD. Twitch, absolute tetanic, and specific tetanic forces were very similar in dystrophic EDL muscles from mdx/utrn+/+ and mdx utrn+/- mice at 1, 2, and 5 months of age. Five-month-old mdx/utrn+/+ and mdx/utrn+/- mice lost roughly 50% of their force due to repeated eccentric contractions. Thus, histological, morphological, biochemical functional and contractile observations showed that utrophin haploinsufficiency has a very limited impact on mdx mice.
Collapse
|
22
|
Péladeau C, Adam NJ, Jasmin BJ. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression. FASEB J 2018; 32:5090-5103. [PMID: 29723037 DOI: 10.1096/fj.201800081r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic and progressive neuromuscular disorder caused by mutations and deletions in the dystrophin gene. Although there is currently no cure, one promising treatment for DMD is aimed at increasing endogenous levels of utrophin A to compensate functionally for the lack of dystrophin. Recent studies from our laboratory revealed that heparin treatment of mdx mice activates p38 MAPK, leading to an upregulation of utrophin A expression and improvements in the dystrophic phenotype. Based on these findings, we sought to determine the effects of other potent p38 activators, including the cyclooxygenase (COX)-2 inhibitor celecoxib. In this study, we treated 6-wk-old mdx mice for 4 wk with celecoxib. Immunofluorescence analysis of celecoxib-treated mdx muscles revealed a fiber type switch from a fast to a slower phenotype along with beneficial effects on muscle fiber integrity. In agreement, celecoxib-treated mdx mice showed improved muscle strength. Celecoxib treatment also induced increases in utrophin A expression ranging from ∼1.5- to 2-fold in tibialis anterior diaphragm and heart muscles. Overall, these results highlight that activation of p38 in muscles can indeed lead to an attenuation of the dystrophic phenotype and reveal the potential role of celecoxib as a novel therapeutic agent for the treatment of DMD.-Péladeau, C., Adam, N. J., Jasmin, B. J. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine J Adam
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Iyer PS, Mavoungou LO, Ronzoni F, Zemla J, Schmid-Siegert E, Antonini S, Neff LA, Dorchies OM, Jaconi M, Lekka M, Messina G, Mermod N. Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy using PiggyBac Transposons and Mesoangioblasts. Mol Ther 2018; 26:1093-1108. [PMID: 29503200 PMCID: PMC6079556 DOI: 10.1016/j.ymthe.2018.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD.
Collapse
Affiliation(s)
- Pavithra S Iyer
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | - Lionel O Mavoungou
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | - Flavio Ronzoni
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Joanna Zemla
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | | | | | - Laurence A Neff
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Marisa Jaconi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | | | - Nicolas Mermod
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
24
|
Guiraud S, Roblin D, Kay DE. The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1438261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Guiraud
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Davies. E. Kay
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13:647-661. [DOI: 10.1038/nrneurol.2017.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol 2017; 34:36-48. [DOI: 10.1016/j.coph.2017.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
27
|
Guiraud S, Edwards B, Squire SE, Babbs A, Shah N, Berg A, Chen H, Davies KE. Identification of serum protein biomarkers for utrophin based DMD therapy. Sci Rep 2017; 7:43697. [PMID: 28252048 PMCID: PMC5333102 DOI: 10.1038/srep43697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/30/2017] [Indexed: 12/18/2022] Open
Abstract
Despite promising therapeutic avenues, there is currently no effective treatment for Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by the loss of the large cytoskeletal protein, dystrophin. A highly promising approach to therapy, applicable to all DMD patients irrespective to their genetic defect, is to modulate utrophin, a functional paralogue of dystrophin, able to compensate for the primary defects of DMD restoring sarcolemmal stability. One of the major difficulties in assessing the effectiveness of therapeutic strategies is to define appropriate outcome measures. In the present study, we utilised an aptamer based proteomics approach to profile 1,310 proteins in plasma of wild-type, mdx and Fiona (mdx overexpressing utrophin) mice. Comparison of the C57 and mdx sera revealed 83 proteins with statistically significant >2 fold changes in dystrophic serum abundance. A large majority of previously described biomarkers (ANP32B, THBS4, CAMK2A/B/D, CYCS, CAPNI) were normalised towards wild-type levels in Fiona animals. This work also identified potential mdx markers specific to increased utrophin (DUS3, TPI1) and highlights novel mdx biomarkers (GITR, MYBPC1, HSP60, SIRT2, SMAD3, CNTN1). We define a panel of putative protein mdx biomarkers to evaluate utrophin based strategies which may help to accelerate their translation to the clinic.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Sarah E Squire
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Arran Babbs
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Nandini Shah
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Adam Berg
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| |
Collapse
|
28
|
Derepressing muscleblind expression by miRNA sponges ameliorates myotonic dystrophy-like phenotypes in Drosophila. Sci Rep 2016; 6:36230. [PMID: 27805016 PMCID: PMC5090246 DOI: 10.1038/srep36230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) originates from alleles of the DMPK gene with hundreds of extra CTG repeats in the 3′ untranslated region (3′ UTR). CUG repeat RNAs accumulate in foci that sequester Muscleblind-like (MBNL) proteins away from their functional target transcripts. Endogenous upregulation of MBNL proteins is, thus, a potential therapeutic approach to DM1. Here we identify two miRNAs, dme-miR-277 and dme-miR-304, that differentially regulate muscleblind RNA isoforms in miRNA sensor constructs. We also show that their sequestration by sponge constructs derepresses endogenous muscleblind not only in a wild type background but also in a DM1 Drosophila model expressing non-coding CUG trinucleotide repeats throughout the musculature. Enhanced muscleblind expression resulted in significant rescue of pathological phenotypes, including reversal of several mis-splicing events and reduced muscle atrophy in DM1 adult flies. Rescued flies had improved muscle function in climbing and flight assays, and had longer lifespan compared to disease controls. These studies provide proof of concept for a similar potentially therapeutic approach to DM1 in humans.
Collapse
|
29
|
Circulating miRNAs are generic and versatile therapeutic monitoring biomarkers in muscular dystrophies. Sci Rep 2016; 6:28097. [PMID: 27323895 PMCID: PMC4914855 DOI: 10.1038/srep28097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/26/2016] [Indexed: 12/29/2022] Open
Abstract
The development of medical approaches requires preclinical and clinical trials for assessment of therapeutic efficacy. Such evaluation entails the use of biomarkers, which provide information on the response to the therapeutic intervention. One newly-proposed class of biomarkers is the microRNA (miRNA) molecules. In muscular dystrophies (MD), the dysregulation of miRNAs was initially observed in muscle biopsy and later extended to plasma samples, suggesting that they may be of interest as biomarkers. First, we demonstrated that dystromiRs dysregulation occurs in MD with either preserved or disrupted expression of the dystrophin-associated glycoprotein complex, supporting the utilization of dystromiRs as generic biomarkers in MD. Then, we aimed at evaluation of the capacity of miRNAs as monitoring biomarkers for experimental therapeutic approach in MD. To this end, we took advantage of our previously characterized gene therapy approach in a mouse model for α-sarcoglycanopathy. We identified a dose-response correlation between the expression of miRNAs on both muscle tissue and blood serum and the therapeutic benefit as evaluated by a set of new and classically-used evaluation methods. This study supports the utility of profiling circulating miRNAs for the evaluation of therapeutic outcome in medical approaches for MD.
Collapse
|
30
|
Luce LN, Dalamon V, Ferrer M, Parma D, Szijan I, Giliberto F. MLPA analysis of an Argentine cohort of patients with dystrophinopathy: Association of intron breakpoints hot spots with STR abundance in DMD gene. J Neurol Sci 2016; 365:22-30. [PMID: 27206868 DOI: 10.1016/j.jns.2016.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/10/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
Dystrophinopathies are X-linked recessive diseases caused by mutations in the DMD gene. Our objective was to identify mutations in this gene by Multiplex Ligation Probe Amplification (MLPA), to confirm the clinical diagnosis and determine the carrier status of at-risk relatives. Also, we aimed to characterize the Dystrophinopathies argentine population and the DMD gene. We analyzed a cohort of 121 individuals (70 affected boys, 11 symptomatic women, 37 at-risk women and 3 male villus samples). The MLPA technique identified 56 mutations (45 deletions, 9 duplications and 2 point mutations). These results allowed confirming the clinical diagnosis in 63% (51/81) of patients and symptomatic females. We established the carrier status of 54% (20/37) of females at-risk and 3 male villus samples. We could establish an association between the most frequent deletion intron breakpoints and the abundance of dinucleotide microsatellites loci, despite the underlying mutational molecular mechanism remains to be elucidated. The MLPA demonstrate, again, to be the appropriate first mutation screening methodology for molecular diagnosis of Dystrophinopathies. The reported results permitted to characterize the Dystrophinopathies argentine population and lead to better understanding of the genetic and molecular basis of rearrangements in the DMD gene, useful information for the gene therapies being developed.
Collapse
Affiliation(s)
- Leonela N Luce
- Laboratory of Dystrophinopathies, Department of Genetics, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | | - Marcela Ferrer
- Molecular Neurobiology Laboratory, Neurosurgery Division, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| | - Diana Parma
- Laboratory of Dystrophinopathies, Department of Genetics, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Irene Szijan
- Laboratory of Dystrophinopathies, Department of Genetics, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Florencia Giliberto
- Laboratory of Dystrophinopathies, Department of Genetics, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
Shimizu-Motohashi Y, Miyatake S, Komaki H, Takeda S, Aoki Y. Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res 2016; 8:2471-2489. [PMID: 27398133 PMCID: PMC4931144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive degenerative muscle disorder caused by the absence of dystrophin. There is no curative therapy, although innovative therapeutic approaches have been aggressively investigated over recent years. Currently, the international clinical trial registry platform for this disease has been constructed and clinical trials for innovative therapeutic approaches are underway. Among these, exon skipping and read-through of nonsense mutations are in the most advanced stages, with exon skipping theoretically applicable to a larger number of patients. To date, exon skipping that targets exons 51, 44, 45, and 53 is being globally investigated including in USA, EU, and Japan. The latest announcement from Japan was made, demonstrating successful dystrophin production in muscles of patients with DMD after treating with exon 53 skipping antisense oligonucleotides (ASOs). However, the innovative therapeutic approaches have demonstrated limited efficacy. To address this issue in exon skipping, studies to unveil the mechanism underlying gymnotic delivery of ASO uptake in living cells have been conducted in an effort to improve in vivo delivery. Further, establishing the infrastructures to integrate multi-institutional clinical trials are needed to facilitate the development of successful therapies for DMD, which ultimately is applicable to other myopathies and neurodegenerative diseases, including spinal muscular atrophy and motor neuron diseases.
Collapse
Affiliation(s)
- Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and PsychiatryTokyo, Japan
| | - Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and PsychiatryTokyo, Japan
| | - Shin’ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| |
Collapse
|
32
|
Ricotti V, Spinty S, Roper H, Hughes I, Tejura B, Robinson N, Layton G, Davies K, Muntoni F, Tinsley J. Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy. PLoS One 2016; 11:e0152840. [PMID: 27055247 PMCID: PMC4824384 DOI: 10.1371/journal.pone.0152840] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose SMT C1100 is a utrophin modulator being evaluated as a treatment for Duchenne muscular dystrophy (DMD). This study, the first in pediatric DMD patients, reports the safety, tolerability and PK parameters of single and multiple doses of SMT C1100, as well as analyze potential biomarkers of muscle damage. Methods This multicenter, Phase 1 study enrolled 12 patients, divided equally into three groups (A–C). Group A were given 50 mg/kg on Days 1 and 11, and 50 mg/kg bid on Days 2 to 10. Group B and C received 100 mg/kg on Days 1 and 11; Group B and Group C were given 100 mg/kg bid and 100 mg/kg tid, respectively, on Days 2 to 10. A safety review was performed on all patients following the single dose and there was at least 2 weeks between each dose escalation, for safety and PK review. Adverse events (AEs) were monitored throughout the study. Results Most patients experienced mild AEs and there were no serious AEs. Two patients required analgesia for pain (headache, ear pain and toothache). One patient experienced moderate psychiatric AEs (abnormal behaviour and mood swings). Plasma concentrations of SMT C1100 at Days 1 and 11 indicated a high degree of patient variability regardless of dose. Unexpectedly the SMT C1100 levels were significantly lower than similar doses administered to healthy volunteers in an earlier clinical study. In general, individual baseline changes of creatine phosphokinase, alanine aminotransferase, aspartate aminotransferase levels fell with SMT C1100 dosing. Conclusions SMT C1100 was well tolerated in pediatric DMD patients. Trial Registration ClinicalTrials.gov NCT02383511
Collapse
Affiliation(s)
- Valeria Ricotti
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Stefan Spinty
- Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Helen Roper
- Birmingham Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Imelda Hughes
- Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, United Kingdom
| | - Bina Tejura
- Summit Therapeutics, Abingdon, United Kingdom
| | - Neil Robinson
- S.H.B. Enterprises Limited, Beaconsfield, United Kingdom
| | | | - Kay Davies
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
33
|
Zhao YY, Wang N, Liu WH, Tao WJ, Liu LL, Shen ZD. Charge Variants of an Avastin Biosimilar Isolation, Characterization, In Vitro Properties and Pharmacokinetics in Rat. PLoS One 2016; 11:e0151874. [PMID: 26987122 PMCID: PMC4795741 DOI: 10.1371/journal.pone.0151874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/04/2016] [Indexed: 12/22/2022] Open
Abstract
The similarity between a proposed biosimilar product and the reference product can be affected by many factors. This study is designed to examine whether any subtle difference in the distribution of the charge variants of an Avastin biosimilar can affect its in vitro potency and in vivo PK. Here, the acidic, basic and main peak fractions of a biosimilar product were isolated using high-performance cation-exchange chromatography and were subjected to various studies to compare their in vitro properties and in vivo PK profile. A serial of analytical methods, including size exclusion chromatography (SEC), imaged capillary isoelectric focusing (icIEF) capillary zone electrophoresis (CZE) and cation-exchange chromatography (CEX-HPLC) were also used to characterize the isolated charge variants. The kinetics constant was measured using a Biacore X100 system. The study indicates the biosimilar product has a high similarity with avastin in physicochemical properties. The potency in vitro and PK profile in rat of charge variants and biosimilar product are consistent with avastin.
Collapse
Affiliation(s)
- Yan-Yan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
| | - Ning Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Wan-Hui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
- * E-mail:
| | - Wen-Jie Tao
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
| | - Li-Li Liu
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
| | - Zhen-Duo Shen
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
| |
Collapse
|
34
|
Janghra N, Morgan JE, Sewry CA, Wilson FX, Davies KE, Muntoni F, Tinsley J. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies. PLoS One 2016; 11:e0150818. [PMID: 26974331 PMCID: PMC4790853 DOI: 10.1371/journal.pone.0150818] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/19/2016] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ –sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify sarcolemmal utrophin and muscle regeneration in muscle biopsies will be invaluable for assessing utrophin modulator activity in future clinical trials.
Collapse
Affiliation(s)
- Narinder Janghra
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N1EH, United Kingdom
| | - Jennifer E. Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N1EH, United Kingdom
- * E-mail:
| | - Caroline A. Sewry
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N1EH, United Kingdom
| | - Francis X. Wilson
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RY, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N1EH, United Kingdom
| | - Jonathon Tinsley
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RY, United Kingdom
| |
Collapse
|
35
|
2015 William Allan Award. Am J Hum Genet 2016; 98:419-426. [PMID: 26942278 DOI: 10.1016/j.ajhg.2016.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 11/21/2022] Open
|
36
|
Mendell JR, Rodino-Klapac LR. Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Res 2016; 26:513-4. [PMID: 26926391 DOI: 10.1038/cr.2016.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel approach to gene correction by genome editing shows great promise as a treatment for Duchenne muscular dystrophy (DMD). CRISPR/Cas9 delivered by adeno-associated virus to a mouse model for DMD demonstrated improvement in function and histology.
Collapse
Affiliation(s)
- Jerry R Mendell
- Department of Pediatrics, Columbus, OH 43205, USA.,Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Ohio State University, Columbus, OH 43205, USA
| | - Louise R Rodino-Klapac
- Department of Pediatrics, Columbus, OH 43205, USA.,Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
37
|
Vainzof M, Feitosa L, Canovas M, Ayub-Guerrieri D, Pavanello RDCM, Zatz M. Concordant utrophin upregulation in phenotypically discordant DMD/BMD brothers. Neuromuscul Disord 2016; 26:197-200. [PMID: 26851826 DOI: 10.1016/j.nmd.2016.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/03/2016] [Accepted: 01/15/2016] [Indexed: 11/17/2022]
Abstract
Utrophin expression was investigated in two phenotypically discordant Duchenne muscular dystrophy half-brothers. The youngest was wheelchair-bound at age 9, while his mildly affected older brother was able to walk without difficulties at age 15. DNA analysis revealed an out-of-frame exon 2 duplication in the DMD gene, associated with muscle dystrophin protein deficiency. Utrophin localization and quantity was analyzed and compared in both sibs to verify whether this could explain the milder phenotype of the older brother. Immunofluorescence analysis showed a clear sarcolemmal labeling for utrophin in both of them, which was present in regenerating as well as in mature fibers. On western blot analysis, utrophin amount was increased 3.4 and 3.3 fold respectively, as compared to normal controls, while it was increased 1.7 to 4.0 fold in a group of DMD patients within the typical range of clinical progression. These data are in accordance with our previous observations suggesting no correlation between phenotype severity and utrophin up-regulation or sarcolemmal localization in dystrophinopathies. Finding the protective mechanisms in patients with milder course is of utmost interest to direct therapeutic targets.
Collapse
Affiliation(s)
- Mariz Vainzof
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Leticia Feitosa
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marta Canovas
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Danielle Ayub-Guerrieri
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Rita de Cássia M Pavanello
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Péladeau C, Ahmed A, Amirouche A, Crawford Parks TE, Bronicki LM, Ljubicic V, Renaud JM, Jasmin BJ. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles. Hum Mol Genet 2015; 25:24-43. [PMID: 26494902 DOI: 10.1093/hmg/ddv444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and β-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aatika Ahmed
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adel Amirouche
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Falzarano MS, Scotton C, Passarelli C, Ferlini A. Duchenne Muscular Dystrophy: From Diagnosis to Therapy. Molecules 2015; 20:18168-84. [PMID: 26457695 PMCID: PMC6332113 DOI: 10.3390/molecules201018168] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene. It is characterized by progressive muscle weakness and wasting due to the absence of dystrophin protein that causes degeneration of skeletal and cardiac muscle. The molecular diagnostic of DMD involves a deletions/duplications analysis performed by quantitative technique such as microarray-based comparative genomic hybridization (array-CGH), Multiple Ligation Probe Assay MLPA. Since traditional methods for detection of point mutations and other sequence variants require high cost and are time consuming, especially for a large gene like dystrophin, the use of next-generation sequencing (NGS) has become a useful tool available for clinical diagnosis. The dystrophin gene is large and finely regulated in terms of tissue expression, and RNA processing and editing includes a variety of fine tuned processes. At present, there are no effective treatments and the steroids are the only fully approved drugs used in DMD therapy able to slow disease progression. In the last years, an increasing variety of strategies have been studied as a possible therapeutic approach aimed to restore dystrophin production and to preserve muscle mass, ameliorating the DMD phenotype. RNA is the most studied target for the development of clinical strategies and Antisense Oligonucleotides (AONs) are the most used molecules for RNA modulation. The identification of delivery system to enhance the efficacy and to reduce the toxicity of AON is the main purpose in this area and nanomaterials are a very promising model as DNA/RNA molecules vectors. Dystrophinopathies therefore represent a pivotal field of investigation, which has opened novel avenues in molecular biology, medical genetics and novel therapeutic options.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | | | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| |
Collapse
|
40
|
Holland A, Murphy S, Dowling P, Ohlendieck K. Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics 2015; 16:345-66. [PMID: 26256116 DOI: 10.1002/pmic.201500158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The gradual accumulation of collagen and associated proteins of the extracellular matrix is a crucial myopathological parameter of many neuromuscular disorders. Progressive tissue damage and fibrosis play a key pathobiochemical role in the dysregulation of contractile functions and often correlates with poor motor outcome in muscular dystrophies. Following a brief introduction into the role of the extracellular matrix in skeletal muscles, we review here the proteomic profiling of myofibrosis and its intrinsic role in X-linked muscular dystrophy. Although Duchenne muscular dystrophy is primarily a disease of the membrane cytoskeleton, one of its most striking histopathological features is a hyperactive connective tissue and tissue scarring. We outline the identification of novel factors involved in the modulation of the extracellular matrix in muscular dystrophy, such as matricellular proteins. The establishment of novel proteomic markers will be helpful in improving the diagnosis, prognosis, and therapy monitoring in relation to fibrotic substitution of contractile tissue. In the future, the prevention of fibrosis will be crucial for providing optimum conditions to apply novel pharmacological treatments, as well as establish cell-based approaches or gene therapeutic interventions. The elimination of secondary abnormalities in the matrisome promises to reduce tissue scarring and the loss of skeletal muscle elasticity.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
41
|
Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJB, Kunkel LM. The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genomics Hum Genet 2015; 16:281-308. [DOI: 10.1146/annurev-genom-090314-025003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Natassia M. Vieira
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Gert-Jan B. van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Louis M. Kunkel
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
42
|
Guiraud S, Chen H, Burns DT, Davies KE. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol 2015; 100:1458-67. [PMID: 26140505 PMCID: PMC4973818 DOI: 10.1113/ep085308] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review highlights recent progress in genetically based therapies targeting the primary defect of Duchenne muscular dystrophy. What advances does it highlight? Over the last two decades, considerable progress has been made in understanding the mechanisms underlying Duchenne muscular dystrophy, leading to the development of genetic therapies. These include manipulation of the expression of the gene or related genes, the splicing of the gene and its translation, and replacement of the gene using viral approaches. Duchenne muscular dystrophy is a lethal X-linked disorder caused by mutations in the dystrophin gene. In the absence of the dystrophin protein, the link between the cytoskeleton and extracellular matrix is destroyed, and this severely compromises the strength, flexibility and stability of muscle fibres. The devastating consequence is progressive muscle wasting and premature death in Duchenne muscular dystrophy patients. There is currently no cure, and despite exhaustive palliative care, patients are restricted to a wheelchair by the age of 12 years and usually succumb to cardiac or respiratory complications in their late 20s. This review provides an update on the current genetically based therapies and clinical trials that target or compensate for the primary defect of this disease. These include dystrophin gene-replacement strategies, genetic modification techniques to restore dystrophin expression, and modulation of the dystrophin homologue, utrophin, as a surrogate to re-establish muscle function.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - David T Burns
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| |
Collapse
|
43
|
|
44
|
van Westering TLE, Betts CA, Wood MJA. Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules 2015; 20:8823-55. [PMID: 25988613 PMCID: PMC6272314 DOI: 10.3390/molecules20058823] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic muscle disorder caused by mutations in the Dmd gene resulting in the loss of the protein dystrophin. Patients do not only experience skeletal muscle degeneration, but also develop severe cardiomyopathy by their second decade, one of the main causes of death. The absence of dystrophin in the heart renders cardiomyocytes more sensitive to stretch-induced damage. Moreover, it pathologically alters intracellular calcium (Ca2+) concentration, neuronal nitric oxide synthase (nNOS) localization and mitochondrial function and leads to inflammation and necrosis, all contributing to the development of cardiomyopathy. Current therapies only treat symptoms and therefore the need for targeting the genetic defect is immense. Several preclinical therapies are undergoing development, including utrophin up-regulation, stop codon read-through therapy, viral gene therapy, cell-based therapy and exon skipping. Some of these therapies are undergoing clinical trials, but these have predominantly focused on skeletal muscle correction. However, improving skeletal muscle function without addressing cardiac aspects of the disease may aggravate cardiomyopathy and therefore it is essential that preclinical and clinical focus include improving heart function. This review consolidates what is known regarding molecular pathology of the DMD heart, specifically focusing on intracellular Ca2+, nNOS and mitochondrial dysregulation. It briefly discusses the current treatment options and then elaborates on the preclinical therapeutic approaches currently under development to restore dystrophin thereby improving pathology, with a focus on the heart.
Collapse
Affiliation(s)
- Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
45
|
Guiraud S, Squire SE, Edwards B, Chen H, Burns DT, Shah N, Babbs A, Davies SG, Wynne GM, Russell AJ, Elsey D, Wilson FX, Tinsley JM, Davies KE. Second-generation compound for the modulation of utrophin in the therapy of DMD. Hum Mol Genet 2015; 24:4212-24. [PMID: 25935002 PMCID: PMC4492389 DOI: 10.1093/hmg/ddv154] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK,
| | - Sarah E Squire
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David T Burns
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Nandini Shah
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Arran Babbs
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Stephen G Davies
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Graham M Wynne
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PT, UK and
| | - David Elsey
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Francis X Wilson
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Jon M Tinsley
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK,
| |
Collapse
|