1
|
Kleeberg A, Luft T, Golkowski D, Purrucker JC. Endothelial dysfunction in acute ischemic stroke: a review. J Neurol 2025; 272:143. [PMID: 39812851 PMCID: PMC11735568 DOI: 10.1007/s00415-025-12888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND PURPOSE Endothelial dysfunction is considered an emerging therapeutic target to prevent complications during acute stroke and to prevent recurrent stroke. This review aims to provide an overview of the current knowledge on endothelial dysfunction, outline the diagnostic methods used to measure it and highlight the drugs currently being investigated for the treatment of endothelial dysfunction in acute ischemic stroke. METHODS The PubMed® and ClinicalTrials.gov electronic databases were searched for eligible articles/studies dealing with endothelial dysfunction and stroke. The references of the articles were screened to identify additional sources. The data were abstracted and summarized. FINDINGS AND DISCUSSION Endothelial dysfunction can be measured by serum biomarkers as well as by ultrasound or plethysmography techniques. Drugs targeting endothelial dysfunction include widely used agents such as angiotensin-converting enzyme inhibitors or isosorbide mononitrate, but also experimental therapies such as endothelial progenitor cells. CONCLUSION The role of endothelial dysfunction in acute ischemic stroke has been studied increasingly in recent years. It has been shown that there is a correlation between endothelial dysfunction and parenchymal hematoma after endovascular thrombectomy. Also, early clinical trials are conducted investigating, e.g., endothelial progenitor cells in the treatment of endothelial dysfunction in ischemic stroke. Current research focuses on the integration of novel markers of endothelial dysfunction into routine clinical practice to support decision making in the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Antonia Kleeberg
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Thomas Luft
- Department of Oncology and Hematology, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Golkowski
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan C Purrucker
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Pathak K, Ahmad MZ, Saikia R, Pathak MP, Sahariah JJ, Kalita P, Das A, Islam MA, Pramanik P, Tayeng D, Abdel-Wahab BA. Nanomedicine: A New Frontier in Alzheimer's Disease Drug Targeting. Cent Nerv Syst Agents Med Chem 2025; 25:3-19. [PMID: 38551038 DOI: 10.2174/0118715249281331240325042642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting elderly individuals, characterized by progressive cognitive decline leading to dementia. This review examines the challenges posed by anatomical and biochemical barriers such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and p-glycoproteins in delivering effective therapeutic agents to the central nervous system (CNS) for AD treatment. This article outlines the fundamental role of acetylcholinesterase inhibitors (AChEIs) and NMDA(N-Methyl-D-Aspartate) receptor antagonists in conventional AD therapy and highlights their limitations in terms of brain-specific delivery. It delves into the intricacies of BBB and pglycoprotein- mediated efflux mechanisms that impede drug transport to the CNS. The review further discusses cutting-edge nanomedicine-based strategies, detailing their composition and mechanisms that enable effective bypassing of BBB and enhancing drug accumulation in brain tissues. Conventional therapies, namely AChEIs and NMDA receptor antagonists, have shown limited efficacy and are hindered by suboptimal brain penetration. The advent of nanotechnology-driven therapeutic delivery systems offers promising strategies to enhance CNS targeting and bioavailability, thereby addressing the shortcomings of conventional treatments. Various nanomedicines, encompassing polymeric and metallic nanoparticles (MNPs), solid lipid nanoparticles (SLNs), liposomes, micelles, dendrimers, nanoemulsions, and carbon nanotubes, have been investigated for their potential in delivering anti-AD agents like AChEIs, polyphenols, curcumin, and resveratrol. These nanocarriers exhibit the ability to traverse the BBB and deliver therapeutic payloads to the brain, thereby holding immense potential for effective AD treatment and early diagnostic approaches. Notably, nanocarriers loaded with AChEIs have shown promising results in preclinical studies, exhibiting improved therapeutic efficacy and sustained release profiles. This review underscores the urgency of innovative drug delivery approaches to overcome barriers in AD therapy. Nanomedicine-based solutions offer a promising avenue for achieving effective CNS targeting, enabling enhanced bioavailability and sustained therapeutic effects. As ongoing research continues to elucidate the complexities of CNS drug delivery, these advancements hold great potential for revolutionizing AD treatment and diagnosis.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Kingdom Saudi Arabia
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam Down Town University, Panikhaiti, Guwahati, 781026, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Parimita Kalita
- School of Pharmacy, The Assam Kaziranga University, Jorhat, 785006, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Md Ariful Islam
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pallab Pramanik
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Dubom Tayeng
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, 71111, Egypt
| |
Collapse
|
3
|
Zhang P, Li Y, Li X, Wang Y, Lin H, Zhang N, Li W, Jing L, Jiao M, Luo X, Hou Y. Shedding light on vascular imaging: the revolutionary role of nanotechnology. J Nanobiotechnology 2024; 22:757. [PMID: 39695727 DOI: 10.1186/s12951-024-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Vascular dysfunction, characterized by changes in anatomy, hemodynamics, and molecular expressions of vasculatures, is closely linked to the onset and development of diseases, emphasizing the importance of its detection. In clinical practice, medical imaging has been utilized as a significant tool in the assessment of vascular dysfunction, however, traditional imaging techniques still lack sufficient resolution for visualizing the complex microvascular systems. Over the past decade, with the rapid advancement of nanotechnology and the emergence of corresponding detection facilities, engineered nanomaterials offer new alternatives to traditional contrast agents. Compared with conventional small molecule counterparts, nanomaterials possess numerous advantages for vascular imaging, holding the potential to significantly advance related technologies. In this review, the latest developments in nanotechnology-assisted vascular imaging research across different imaging modalities, including contrast-enhanced magnetic resonance (MR) angiography, susceptibility-weighted imaging (SWI), and fluorescence imaging in the second near-infrared window (NIR-II) are summarized. Additionally, the advancements of preclinical and clinical studies related to these nanotechnology-enhanced vascular imaging approaches are outlined, with subsequent discussion on the current challenges and future prospects in both basic research and clinical translation.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoqi Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yudong Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hua Lin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wenyue Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Cheng J, Jian L, Chen Z, Li Z, Yu Y, Wu Y. In Vivo Delivery Processes and Development Strategies of Lipid Nanoparticles. Chembiochem 2024; 25:e202400481. [PMID: 39101874 DOI: 10.1002/cbic.202400481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
Lipid nanoparticles (LNPs) represent an advanced and highly efficient delivery system for RNA molecules, demonstrating exceptional biocompatibility and remarkable delivery efficiency. This is evidenced by the clinical authorization of three LNP formulations: Patisiran, BNT162b2, and mRNA-1273. To further maximize the efficacy of RNA-based therapy, it is imperative to develop more potent LNP delivery systems that can effectively protect inherently unstable and negatively charged RNA molecules from degradation by nucleases, while facilitating their cellular uptake into target cells. Therefore, this review presents feasible strategies commonly employed for the development of efficient LNP delivery systems. The strategies encompass combinatorial chemistry for large-scale synthesis of ionizable lipids, rational design strategy of ionizable lipids, functional molecules-derived lipid molecules, the optimization of LNP formulations, and the adjustment of particle size and charge property of LNPs. Prior to introducing these developing strategies, in vivo delivery processes of LNPs, a crucial determinant influencing the clinical translation of LNP formulations, is described to better understand how to develop LNP delivery systems.
Collapse
Affiliation(s)
- Jiashun Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lina Jian
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoyuan Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaobang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
5
|
Hu M, Li X, You Z, Cai R, Chen C. Physiological Barriers and Strategies of Lipid-Based Nanoparticles for Nucleic Acid Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303266. [PMID: 37792475 DOI: 10.1002/adma.202303266] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Lipid-based nanoparticles (LBNPs) are currently the most promising vehicles for nucleic acid drug (NAD) delivery. Although their clinical applications have achieved success, the NAD delivery efficiency and safety are still unsatisfactory, which are, to a large extent, due to the existence of multi-level physiological barriers in vivo. It is important to elucidate the interactions between these barriers and LBNPs, which will guide more rational design of efficient NAD vehicles with low adverse effects and facilitate broader applications of nucleic acid therapeutics. This review describes the obstacles and challenges of biological barriers to NAD delivery at systemic, organ, sub-organ, cellular, and subcellular levels. The strategies to overcome these barriers are comprehensively reviewed, mainly including physically/chemically engineering LBNPs and directly modifying physiological barriers by auxiliary treatments. Then the potentials and challenges for successful translation of these preclinical studies into the clinic are discussed. In the end, a forward look at the strategies on manipulating protein corona (PC) is addressed, which may pull off the trick of overcoming those physiological barriers and significantly improve the efficacy and safety of LBNP-based NADs delivery.
Collapse
Affiliation(s)
- Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
| | - Xiaoyan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
6
|
Liu Y, Cao K, Li T, Mu D, Zhang N, Wang Y, Wu R, Wu J. Encapsulation of docosahexaenoic acid (DHA) using self-assembling food-derived proteins for efficient biological functions. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Mazura AD, Pietrzik CU. Endocrine Regulation of Microvascular Receptor-Mediated Transcytosis and Its Therapeutic Opportunities: Insights by PCSK9-Mediated Regulation. Pharmaceutics 2023; 15:pharmaceutics15041268. [PMID: 37111752 PMCID: PMC10144601 DOI: 10.3390/pharmaceutics15041268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Currently, many neurological disorders lack effective treatment options due to biological barriers that effectively separate the central nervous system (CNS) from the periphery. CNS homeostasis is maintained by a highly selective exchange of molecules, with tightly controlled ligand-specific transport systems at the blood-brain barrier (BBB) playing a key role. Exploiting or modifying these endogenous transport systems could provide a valuable tool for targeting insufficient drug delivery into the CNS or pathological changes in the microvasculature. However, little is known about how BBB transcytosis is continuously regulated to respond to temporal or chronic changes in the environment. The aim of this mini-review is to draw attention to the sensitivity of the BBB to circulating molecules derived from peripheral tissues, which may indicate a fundamental endocrine-operating regulatory system of receptor-mediated transcytosis at the BBB. We present our thoughts in the context of the recent observation that low-density lipoprotein receptor-related protein 1 (LRP1)-mediated clearance of brain amyloid-β (Aβ) across the BBB is negatively regulated by peripheral proprotein convertase subtilisin/kexin type 9 (PCSK9). We hope that our conclusions will inspire future investigations of the BBB as dynamic communication interface between the CNS and periphery, whose peripheral regulatory mechanisms could be easily exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander D Mazura
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
8
|
Sato Y, Maruyama K, Mikami M, Sato S. Effects of nicotine and lipopolysaccharide stimulation on adhesion molecules in human gingival endothelial cells. Odontology 2023; 111:428-438. [PMID: 36214897 DOI: 10.1007/s10266-022-00753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Smoking is a risk factor for periodontitis, and the immune response of periodontal tissues in patients with periodontitis may be strongly affected by smoking. The purpose of this study was to elucidate the bioactivity and signal transduction of human gingival endothelial cells (HGECs) due to nicotinic stimulation using a cultured medium supplemented with lipopolysaccharide (LPS) as a model of periodontitis. HGECs were cultured in medium supplemented with LPS, nicotine, nicotine + LPS, and medium supplemented without nicotine or LPS (control). Cell proliferation was assessed using Alamar blue. Cytotoxicity was assessed by lactate dehydrogenase leakage. The expression of adhesion molecule-1 (ICAM-1, VCAM-1) was assessed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay. The expression of nicotinic acetylcholine receptor (nAChR) subunits (α3, α5, α7, β2 and β4) was evaluated by RT-PCR. The involvement of p38 mitogen-activated protein kinase (p38MAPK) and protein kinase C (PKC) cell signaling pathways in ICAM-1 and VCAM-1 expression was investigated by RT-qPCR with specific inhibitors. HGECs stimulated with LPS, nicotine and nicotine + LPS showed inhibition of cell proliferation, increase of cell death, and increase of gene and protein expression of ICAM-1. Moreover, HGECs showed the presence of α5 and α7 nAChR subunits. The expression of ICAM-1 in HGECs stimulated with LPS, nicotine, and nicotine + LPS was significantly suppressed by p38MAPK inhibitor, but not by a PKC inhibitor. The nAChR subunits of HGECs are α5 and α7, and that HGECs stimulated with nicotine and LPS express ICAM-1 via p38MAPK pathway.
Collapse
Affiliation(s)
- Yukari Sato
- Field of Advanced Conservative Dentistry and Periodontology, Periodontology, Course of Clinical Science, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, chou-ku, 951-8580, Niigata, Japan.
| | - Kosuke Maruyama
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Masato Mikami
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Soh Sato
- Field of Advanced Conservative Dentistry and Periodontology, Periodontology, Course of Clinical Science, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, chou-ku, 951-8580, Niigata, Japan
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| |
Collapse
|
9
|
Miguel RDA, Hirata AS, Jimenez PC, Lopes LB, Costa-Lotufo LV. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022; 14:1722. [PMID: 36015347 PMCID: PMC9415580 DOI: 10.3390/pharmaceutics14081722] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.
Collapse
Affiliation(s)
- Rodrigo dos A. Miguel
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda S. Hirata
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Paula C. Jimenez
- Institute of the Sea, Federal University of Sao Paulo, Santos 11070-100, Brazil
| | - Luciana B. Lopes
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Leticia V. Costa-Lotufo
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
10
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
11
|
Saenz-Medina J, Muñoz M, Rodriguez C, Contreras C, Sánchez A, Coronado MJ, Ramil E, Santos M, Carballido J, Prieto D. Hyperoxaluria Induces Endothelial Dysfunction in Preglomerular Arteries: Involvement of Oxidative Stress. Cells 2022; 11:cells11152306. [PMID: 35954150 PMCID: PMC9367519 DOI: 10.3390/cells11152306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
Urolithiasis is a worldwide problem and a risk factor for kidney injury. Oxidative stress-associated renal endothelial dysfunction secondary to urolithiasis could be a key pathogenic factor, similar to obesity and diabetes-related nephropathy. The aim of the present study was to characterize urolithiasis-related endothelial dysfunction in a hyperoxaluria rat model of renal lithiasis. Experimental approach: Endothelial dysfunction was assessed in preglomerular arteries isolated from control rats and in which 0.75% ethylene glycol was administered in drinking water. Renal interlobar arteries were mounted in microvascular myographs for functional studies; superoxide generation was measured by chemiluminescence and mRNA and protein expression by RT-PCR and immunofluorescence, respectively. Selective inhibitors were used to study the influence of the different ROS sources, xanthine oxidase, COX-2, Nox1, Nox2 and Nox4. Inflammatory vascular response was also studied by measuring the RNAm expression of NF-κB, MCP-1 and TNFα by RT-PCR. Results: Endothelium-dependent vasodilator responses were impaired in the preglomerular arteries of the hyperoxaluric group along with higher superoxide generation in the renal cortex and vascular inflammation developed by MCP-1 and promoted by NF-κB. The xanthine oxidase inhibitor allopurinol restored the endothelial relaxations and returned superoxide generation to basal values. Nox1 and Nox2 mRNA were up-regulated in arteries from the hyperoxaluric group, and Nox1 and Nox2 selective inhibitors also restored the impaired vasodilator responses and normalized NADPH oxidase-dependent higher superoxide values of renal cortex from the hyperoxaluric group. Conclusions: The current data support that hyperoxaluria induces oxidative stress-mediated endothelial dysfunction and inflammatory response in renal preglomerular arteries which is promoted by the xanthine oxidase, Nox1 and Nox2 pathways.
Collapse
Affiliation(s)
- Javier Saenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain;
- Department of Medical Specialties and Public Health, King Juan Carlos University, 28933 Madrid, Spain
- Correspondence: (J.S.-M.); (D.P.)
| | - Mercedes Muñoz
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (C.C.); (A.S.)
| | - Claudia Rodriguez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (C.C.); (A.S.)
| | - Cristina Contreras
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (C.C.); (A.S.)
| | - Ana Sánchez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (C.C.); (A.S.)
| | - María José Coronado
- Confocal Microscopy Facility, Puerta de Hierro-Majadahonda Research Institute, 28222 Majadahonda, Spain;
| | - Elvira Ramil
- Molecular Biology and DNA Sequencing Facility, Puerta de Hierro-Majadahonda Research Institute, 28222 Majadahonda, Spain;
| | - Martin Santos
- Medical and Surgical Research Facility, Puerta de Hierro-Majadahonda Research Institute, 28222 Majadahonda, Spain;
| | - Joaquín Carballido
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain;
| | - Dolores Prieto
- Department of Medical Specialties and Public Health, King Juan Carlos University, 28933 Madrid, Spain
- Correspondence: (J.S.-M.); (D.P.)
| |
Collapse
|
12
|
Ryma M, Genç H, Nadernezhad A, Paulus I, Schneidereit D, Friedrich O, Andelovic K, Lyer S, Alexiou C, Cicha I, Groll J. A Print-and-Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200653. [PMID: 35595711 DOI: 10.1002/adma.202200653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days.
Collapse
Affiliation(s)
- Matthias Ryma
- Chair for Functional Materials for Medicine and Dentistry at the Institute for Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Hatice Genç
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Ali Nadernezhad
- Chair for Functional Materials for Medicine and Dentistry at the Institute for Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Ilona Paulus
- Chair for Functional Materials for Medicine and Dentistry at the Institute for Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulrich-Schalk-Str. 3, 91056, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulrich-Schalk-Str. 3, 91056, Erlangen, Germany
| | - Kristina Andelovic
- (Chair of) Experimental Biomedicine II, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Stefan Lyer
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Jürgen Groll
- Chair for Functional Materials for Medicine and Dentistry at the Institute for Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|
13
|
He F, Zhu L, Zhou X, Zhang P, Cheng J, Qiao Y, Feng Y, Yue S, Xu M, Guan J, Li X, Ao Z, Qin M, Hou Y, Han D. Red Blood Cell Membrane-Coated Ultrasmall NaGdF 4 Nanoprobes for High-Resolution 3D Magnetic Resonance Angiography. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26372-26381. [PMID: 35666237 DOI: 10.1021/acsami.2c03530] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Enhanced angiography based on magnetic resonance imaging (MRI) has emerged as a noninvasive, robust, and high-resolution imaging technique for the clinical evaluation of vascular diseases. However, the effects of clinical Gd-chelating contrast agents are unsatisfactory for MRI contrast enhancement owing to their short blood half-life caused by rapid vascular extravasation, especially in microvessels. To address these issues, nanoprobes based on red blood cell membrane-coated ultrasmall NaGdF4 nanoparticles that exhibit much higher longitudinal molar relaxivity (r1) than the clinically used contrast agent gadolinium diethylenetriaminepentaacetic acid have been developed. Furthermore, the appropriate hydrodynamic diameter and stealth nature aid the nanoprobes to reside longer within the blood vessels without extravasation, thereby increasing the contrast between the blood vessels and surrounding tissues. Through probe-enhanced three-dimensional (3D) dynamic contrast-enhanced MR angiography, the main arteries and veins of the mouse were readily discernible, and even tiny vessels with sub-millimeter diameters could be clearly depicted. With this level of outstanding MR angiography performance, the embolization and recanalization processes of the carotid artery can be serially monitored with high imaging resolution using only a single injection. Additionally, the results of clearance studies and the toxicity tests further highlight the safety features of the nanoprobe. To summarize, the nanoprobes used in this study exhibit less extravascular leakage and a longer blood half-life, thus successfully overcoming the defects of the conventional low-molecular-weight Gd-based contrast agents and demonstrating their potential usefulness in enhanced MR angiography.
Collapse
Affiliation(s)
- Fangfei He
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lichong Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohan Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100139, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junwei Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yicheng Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Man Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaoqiong Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Ao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100139, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100139, China
| |
Collapse
|
14
|
Erickson MA, Banks WA. Transcellular routes of blood-brain barrier disruption. Exp Biol Med (Maywood) 2022; 247:788-796. [PMID: 35243912 DOI: 10.1177/15353702221080745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) can occur through different mechanisms and pathways. As these pathways result in increased permeability to different classes of substances, it is likely that the neurological insults that occur will also differ for these pathways. The major categories of BBB disruption are paracellular (between cells) and transcellular (across cells) with a subcategory of transcellular leakage involving vesicles (transcytotic). Older literature, as well as more recent studies, highlights the importance of the transcellular pathways in BBB disruption. Of the various transcytotic mechanisms that are thought to be active at the BBB, some are linked to receptor-mediated transcytosis, whereas others are likely involved in BBB disruption. For most capillary beds, transcytotic mechanisms are less clearly linked to permeability than are membrane spanning canaliculi and fenestrations. Disruption pathways share cellular mechanisms to some degree as exemplified by transcytotic caveolar and transcellular canaliculi formations. The discovery of some of the cellular components involved in transcellular mechanisms of BBB disruption and the ability to measure them are adding greatly to our classic knowledge, which is largely based on ultrastructural studies. Future work will likely address the conditions and diseases under which the various pathways of disruption are active, the different impacts that they have, and the cellular biology that underlies the different pathways to disruption.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
15
|
Zouache MA. Variability in Retinal Neuron Populations and Associated Variations in Mass Transport Systems of the Retina in Health and Aging. Front Aging Neurosci 2022; 14:778404. [PMID: 35283756 PMCID: PMC8914054 DOI: 10.3389/fnagi.2022.778404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with a broad range of visual impairments that can have dramatic consequences on the quality of life of those impacted. These changes are driven by a complex series of alterations affecting interactions between multiple cellular and extracellular elements. The resilience of many of these interactions may be key to minimal loss of visual function in aging; yet many of them remain poorly understood. In this review, we focus on the relation between retinal neurons and their respective mass transport systems. These metabolite delivery systems include the retinal vasculature, which lies within the inner portion of the retina, and the choroidal vasculature located externally to the retinal tissue. A framework for investigation is proposed and applied to identify the structures and processes determining retinal mass transport at the cellular and tissue levels. Spatial variability in the structure of the retina and changes observed in aging are then harnessed to explore the relation between variations in neuron populations and those seen among retinal metabolite delivery systems. Existing data demonstrate that the relation between inner retinal neurons and their mass transport systems is different in nature from that observed between the outer retina and choroid. The most prominent structural changes observed across the eye and in aging are seen in Bruch's membrane, which forms a selective barrier to mass transfers at the interface between the choroidal vasculature and the outer retina.
Collapse
Affiliation(s)
- Moussa A. Zouache
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
16
|
Bednarek R. In Vitro Methods for Measuring the Permeability of Cell Monolayers. Methods Protoc 2022; 5:mps5010017. [PMID: 35200533 PMCID: PMC8874757 DOI: 10.3390/mps5010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Cell monolayers, including endothelial and epithelial cells, play crucial roles in regulating the transport of biomolecules to underlying tissues and structures via intercellular junctions. Moreover, the monolayers form a semipermeable barrier across which leukocyte transmigration is tightly regulated. The inflammatory cytokines can disrupt the epithelial and endothelial permeability, thus the reduced barrier integrity is a hallmark of epithelial and endothelial dysfunction related with numerous pathological conditions, including cancer-related inflammation. Therefore, the assessment of barrier function is critical in in vitro models of barrier-forming tissues. This review summarizes the commercially available in vitro systems used to measure the permeability of cellular monolayers. The presented techniques are separated in two large groups: macromolecular tracer flux assays, and electrical impedance measurement-based permeability assays. The presented techniques are briefly described and compared.
Collapse
Affiliation(s)
- Radoslaw Bednarek
- Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
17
|
Chen M, Medarova Z, Moore A. Role of microRNAs in glioblastoma. Oncotarget 2021; 12:1707-1723. [PMID: 34434499 PMCID: PMC8378762 DOI: 10.18632/oncotarget.28039] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most common and aggressive primary human brain cancer. MicroRNAs (miRNAs) are a set of small endogenous non-coding RNA molecules which play critical roles in different biological processes including cancer. The realization of miRNA regulatory functions in GBM has demonstrated that these molecules play a critical role in its initiation, progression and response to therapy. In this review we discuss the studies related to miRNA discovery and function in glioblastoma. We first summarize the typical miRNAs and their roles in GBM. Then we debate the potential for miRNA-based therapy for glioblastoma, including various delivery strategies. We surmise that future directions identified by these studies will point towards the necessity for therapeutic development and optimization to improve the outcomes for patients with glioblastoma.
Collapse
Affiliation(s)
- Ming Chen
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Zdravka Medarova
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
A novel preparative method for nanoparticle albumin-bound paclitaxel with high drug loading and its evaluation both in vitro and in vivo. PLoS One 2021; 16:e0250670. [PMID: 33909691 PMCID: PMC8081182 DOI: 10.1371/journal.pone.0250670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
We developed a novel preparative method for nanoparticle albumin-bound (nab) paclitaxel with high drug loading, which was based on improved paclitaxel solubility in polyethylene glycol (PEG) and self-assembly of paclitaxel in PEG with albumin powders into nanoparticles. That is, paclitaxel and PEG were firstly dissolved in ethanol, which was subsequently evaporated under vacuum. The obtained liquid was then mixed with human serum albumin powders. Thereafter, the mixtures were added into phosphate-buffered saline and nab paclitaxel suspensions emerged after ultrasound. Nab paclitaxel was finally acquired after dialysis and freeze drying. The drug loading of about 15% (W/V) were realized in self-made nab paclitaxel, which was increased by approximately 50% compared to 10% (W/V) in Abraxane. Now this new preparative method has been authorized to obtain patent from China and Japan. The similar characteristics of self-made nab paclitaxel compared to Abraxane were observed in morphology, encapsulation efficiency, in vitro release, X-ray diffraction analysis, differential scanning calorimetry analysis, and circular dichroism spectra analysis. Consistent concentration-time curves in rats, biodistributions in mice, anti-tumor activities in mice, and histological transmutation in mice were also found between Abraxane and self-made nanoparticles. In a word, our novel preparative method for nab paclitaxel can significantly improve drug loading, obviously decrease product cost, and is considered to have potent practical value.
Collapse
|
19
|
Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B 2021; 9:2756-2784. [PMID: 33596293 DOI: 10.1039/d0tb02957b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic materials, in particular nanoclays and silica nanoparticles, have attracted enormous attention due to their versatile and tuneable properties, making them ideal candidates for a wide range of biomedical applications, such as drug delivery. This review aims at overviewing recent developments of inorganic nanoparticles (like porous or mesoporous silica particles) and different nano-clay materials (like montmorillonite, laponites or halloysite nanotubes) employed for overcoming the blood brain barrier (BBB) in the treatment and therapy of major brain diseases such as Alzheimer's, Parkinson's, glioma or amyotrophic lateral sclerosis. Recent strategies of crossing the BBB through invasive and not invasive administration routes by using different types of nanoparticles compared to nano-clays and inorganic particles are overviewed.
Collapse
Affiliation(s)
- Francesca Persano
- University of Salento, Department of Mathematics and Physics, Via Per Arnesano 73100, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Taskaeva I, Bgatova N. Microvasculature in hepatocellular carcinoma: An ultrastructural study. Microvasc Res 2021; 133:104094. [PMID: 33011171 DOI: 10.1016/j.mvr.2020.104094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most vascularized tumor types, and is characterized by development of heterogeneous immature vessels with increased permeability. Here, we analyzed morphology and vascular permeability-related structures in endothelial cells of HCC microvessels. METHODS Small (Type I) and large (Type II) peritumoral blood microvessels were assessed in HCC-bearing mice. By transmission electron microscopy, endothelial cell cytoplasm area, free transport vesicles, vesiculo-vacuolar organelles and clathrin-coated vesicles were measured. RESULTS The phenotypic changes in the HCC microvessels included presence of sinusoidal capillarization, numerous luminal microprocesses and abnormal luminal channels, irregular dilatations of interendothelial junctions, local detachment of basement membranes and widened extracellular space. Endothelial cells Type I microvessels showed increased vesicular trafficking-related structures. CONCLUSION Ultrastructural characteristics of microvessels Type I can associate with HCC new-formed microvessels. The morphological changes observed in HCC microvessels might explain the increased transcellular and paracellular permeability in HCC endothelial cells.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural research, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Laboratory of Boron-Neutron Capture Therapy, Department of Physics, Novosibirsk State University, Novosibirsk, Russia.
| | - Nataliya Bgatova
- Laboratory of Ultrastructural research, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
21
|
Chia PY, Teo A, Yeo TW. Overview of the Assessment of Endothelial Function in Humans. Front Med (Lausanne) 2020; 7:542567. [PMID: 33117828 PMCID: PMC7575777 DOI: 10.3389/fmed.2020.542567] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The endothelium is recognized to play an important role in various physiological functions including vascular tone, permeability, anticoagulation, and angiogenesis. Endothelial dysfunction is increasingly recognized to contribute to pathophysiology of many disease states, and depending on the disease stimuli, mechanisms underlying the endothelial dysfunction may be markedly different. As such, numerous techniques to measure different aspects of endothelial dysfunction have been developed and refined as available technology improves. Current available reviews on quantifying endothelial dysfunction generally concentrate on a single aspect of endothelial function, although diseases may affect more than one aspect of endothelial function. Here, we aim to provide an overview on the techniques available for the assessment of the different aspects of endothelial function in humans, human tissues or cells, namely vascular tone modulation, permeability, anticoagulation and fibrinolysis, and the use of endothelial biomarkers as predictors of outcomes.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine and Radiology and Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
22
|
Østergaard ME, Jackson M, Low A, E Chappell A, G Lee R, Peralta RQ, Yu J, Kinberger GA, Dan A, Carty R, Tanowitz M, Anderson P, Kim TW, Fradkin L, Mullick AE, Murray S, Rigo F, Prakash TP, Bennett CF, Swayze EE, Gaus HJ, Seth PP. Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Res 2020; 47:6045-6058. [PMID: 31076766 PMCID: PMC6614849 DOI: 10.1093/nar/gkz360] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
We determined the effect of attaching palmitate, tocopherol or cholesterol to PS ASOs and their effects on plasma protein binding and on enhancing ASO potency in the muscle of rodents and monkeys. We found that cholesterol ASO conjugates showed 5-fold potency enhancement in the muscle of rodents relative to unconjugated ASOs. However, they were toxic in mice and as a result were not evaluated in the monkey. In contrast, palmitate and tocopherol-conjugated ASOs showed enhanced potency in the skeletal muscle of rodents and modest enhancements in potency in the monkey. Analysis of the plasma-protein binding profiles of the ASO-conjugates by size-exclusion chromatography revealed distinct and species-specific differences in their association with plasma proteins which likely rationalizes their behavior in animals. Overall, our data suggest that modulating binding to plasma proteins can influence ASO activity and distribution to extra-hepatic tissues in a species-dependent manner and sets the stage to identify other strategies to enhance ASO potency in muscle tissues.
Collapse
Affiliation(s)
| | - Michaela Jackson
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Audrey Low
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | - Richard G Lee
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Rachel Q Peralta
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Jinghua Yu
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | - Amy Dan
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Rick Carty
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael Tanowitz
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Patrick Anderson
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Tae-Won Kim
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Linda Fradkin
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Adam E Mullick
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Sue Murray
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Thazha P Prakash
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - C Frank Bennett
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Eric E Swayze
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hans J Gaus
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Punit P Seth
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
23
|
Understanding Inter-Individual Variability in Monoclonal Antibody Disposition. Antibodies (Basel) 2019; 8:antib8040056. [PMID: 31817205 PMCID: PMC6963779 DOI: 10.3390/antib8040056] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022] Open
Abstract
Monoclonal antibodies (mAbs) are currently the largest and most dominant class of therapeutic proteins. Inter-individual variability has been observed for several mAbs; however, an understanding of the underlying mechanisms and factors contributing to inter-subject differences in mAb disposition is still lacking. In this review, we analyze the mechanisms of antibody disposition and the putative mechanistic determinants of inter-individual variability. Results from in vitro, preclinical, and clinical studies were reviewed evaluate the role of the neonatal Fc receptor and Fc gamma receptors (expression and polymorphism), target properties (expression, shedding, turnover, internalization, heterogeneity, polymorphism), and the influence of anti-drug antibodies. Particular attention is given to the influence of co-administered drugs and disease, and to the physiological relevance of covariates identified by population pharmacokinetic modeling, as determinants of variability in mAb pharmacokinetics.
Collapse
|
24
|
Rekhi U, Piche JE, Immaraj L, Febbraio M. Neointimal hyperplasia: are fatty acid transport proteins a new therapeutic target? Curr Opin Lipidol 2019; 30:377-382. [PMID: 31348024 DOI: 10.1097/mol.0000000000000627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW High-fat diets contribute to hyperlipidemia and dysregulated metabolism underlying insulin resistant states and cardiovascular diseases. Neointimal hyperplasia is a significant resulting morbidity. Increased fatty acid (FA) levels lead to dysfunctional endothelium, defined as activated, proinflammatory and prothrombotic. The purpose of this review is to assess the recent literature on the emerging concept that uptake of FA into many tissues is regulated at the endothelial level, and this in turn contributes to endothelial dysfunction, an initiating factor in insulin resistant states, atherosclerosis and neointimal hyperplasia. RECENT FINDINGS Studies support the role of endothelial FA uptake proteins as an additional level of regulation in tissue FA uptake. These proteins include CD36, FA transport proteins, FA-binding proteins and caveolin-1. In many cases, inappropriate expression of these proteins can result in a change in FA and glucose uptake, storage and utilization. Accumulation of plasma FA is one mechanism by which alterations in expression of FA uptake proteins can lead to endothelial dysfunction; changes in tissue substrate metabolism leading to inflammation are also implicated. SUMMARY Identification of the critical players and regulators can lead to therapeutic targeting to reduce endothelial dysfunction and sequela such as insulin resistance and neointimal hyperplasia.
Collapse
Affiliation(s)
- Umar Rekhi
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, 7020M Katz Group Centre for Pharmacy & Health Research, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
25
|
Baumer Y, McCurdy S, Jin X, Weatherby TM, Dey AK, Mehta NN, Yap JK, Kruth HS, Boisvert WA. Ultramorphological analysis of plaque advancement and cholesterol crystal formation in Ldlr knockout mouse atherosclerosis. Atherosclerosis 2019; 287:100-111. [PMID: 31247346 DOI: 10.1016/j.atherosclerosis.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023]
Abstract
BACKGOUND AND AIMS The low-density lipoprotein receptor-deficient (Ldlr-/-) mouse has been utilized by cardiovascular researchers for more than two decades to study atherosclerosis. However, there has not yet been a systematic effort to document the ultrastructural changes that accompany the progression of atherosclerotic plaque in this model. METHODS Employing several different staining and microscopic techniques, including immunohistochemistry, as well as electron and polarized microscopy, we analyzed atherosclerotic lesion development in Ldlr-/- mice fed an atherogenic diet over time. RESULTS Lipid-like deposits occurred in the subendothelial space after only one week of atherogenic diet. At two weeks, cholesterol crystals (CC) formed and increased thereafter. Lipid, CC, vascular smooth muscles cells, and collagen progressively increased over time, while after 4 weeks, relative macrophage content decreased. Accelerated accumulation of plate- and needle-shaped CC accompanied plaque core necrosis. Lastly, CC were surrounded by cholesterol microdomains, which co-localized with CC through all stages of atherosclerosis, indicating that the cholesterol microdomains may be a source of CC. CONCLUSIONS Here, we have documented, for the first time in a comprehensive way, atherosclerotic plaque morphology and composition from early to advanced stages in the Ldlr-/- mouse, one of the most commonly used animal models utilized in atherosclerosis research.
Collapse
Affiliation(s)
- Yvonne Baumer
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Sara McCurdy
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Xueting Jin
- Section of Experimental Atherosclerosis, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Tina M Weatherby
- Pacific Biosciences Research Center, Biological Electron Microscope Facility, University of Hawaii, 2538 The Mall, Snyder Hall, Honolulu, HI, 96822, USA
| | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jonathan K Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Howard S Kruth
- Section of Experimental Atherosclerosis, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
26
|
Nanoemulsions in CNS drug delivery: recent developments, impacts and challenges. Drug Discov Today 2019; 24:1104-1115. [PMID: 30914298 DOI: 10.1016/j.drudis.2019.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/03/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
Despite enormous efforts, treatment of CNS diseases remains challenging. One of the main issues causing this situation is limited CNS access for the majority of drugs used as part of the therapeutic regimens against life-threatening CNS diseases. Regarding the inarguable position of the nanocarrier systems in neuropharmacokinetic enhancement of the CNS drugs, this review discusses the latest findings on nanoemulsions (NEs) as one of the most promising candidates of this type, to overcome the challenges of CNS drug delivery. Future development of NE-based CNS drug delivery needs to consider so many aspects not only from a physicochemical point of view but also related to the biointerface of these very small droplets before achieving clinical value.
Collapse
|
27
|
Aung KT, Yoshioka K, Aki S, Ishimaru K, Takuwa N, Takuwa Y. The class II phosphoinositide 3-kinases PI3K-C2α and PI3K-C2β differentially regulate clathrin-dependent pinocytosis in human vascular endothelial cells. J Physiol Sci 2019; 69:263-280. [PMID: 30374841 PMCID: PMC10717547 DOI: 10.1007/s12576-018-0644-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/13/2018] [Indexed: 01/18/2023]
Abstract
Pinocytosis is an important fundamental cellular process that is used by the cell to transport fluid and solutes. Phosphoinositide 3-kinases (PI3Ks) regulate a diverse array of dynamic membrane events. However, it is not well-understood which PI3K isoforms are involved in specific mechanisms of pinocytosis. We performed knockdown studies of endogenous PI3K isoforms and clathrin heavy chain (CHC) mediated by small interfering RNA (siRNA). The results demonstrated that the class II PI3K PI3K-C2α and PI3K-C2β, but not the class I or III PI3K, were required for pinocytosis, based on an evaluation of fluorescein-5-isothiocyanate (FITC)-dextran uptake in endothelial cells. Pinocytosis was partially dependent on both clathrin and dynamin, and both PI3K-C2α and PI3K-C2β were required for clathrin-mediated-but not clathrin-non-mediated-FITC-dextran uptake at the step leading up to its delivery to early endosomes. Both PI3K-C2α and PI3K-C2β were co-localized with clathrin-coated pits and vesicles. However, PI3K-C2β, but not PI3K-C2α, was highly co-localized with actin filament-associated clathrin-coated structures and required for actin filament formation at the clathrin-coated structures. These results indicate that PI3K-C2α and PI3K-C2β play differential, indispensable roles in clathrin-mediated pinocytosis.
Collapse
Affiliation(s)
- Khin Thuzar Aung
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sho Aki
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuhiro Ishimaru
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Noriko Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
- Department of Health Science, Ishikawa Prefectural University, Kahoku, Ishikawa, 929-1210, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
28
|
Grebe R, Mughal I, Bryden W, McLeod S, Edwards M, Hageman GS, Lutty G. Ultrastructural analysis of submacular choriocapillaris and its transport systems in AMD and aged control eyes. Exp Eye Res 2019; 181:252-262. [PMID: 30807744 DOI: 10.1016/j.exer.2019.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/31/2019] [Accepted: 02/21/2019] [Indexed: 01/11/2023]
Abstract
The choriocapillaris is the source of nutrients and oxygen for photoreceptors, which consume more oxygen per gram of tissue than any other cell in the body. The purpose of this study was to evaluate and compare the ultrastructure of the choriocapillaris and its transport systems in patients with and without age-related macular degeneration (AMD). Ultrastructural changes were also evaluated in subjects that were homozygous for polymorphisms in high risk CFH alleles (Pure 1) only or homozygous only for high risk ARMS2/HTRA1 (Pure 10) alleles. Tissue samples were obtained from the macular region of forty male (n = 24) and female (n = 16) donor eyes and prepared for ultrastructural studies with transmission electron microscopy (TEM). The average age of the aged donors was 74 ± 7.2 (n = 30) and the young donors 31.7 ± 11.25 (n = 10). There was no significant difference in average ages between the adult groups. TEM images of the capillaries in the choriocapillaris (CC) were taken at 4,000X and 25,000X and used to measure the area of endothelial cell somas, the number of fenestrations, and area of caveolae within the endothelial cells per length of Bruchs membrane (BrMb). The Student t-test and Wilcoxon sum rank test were used to determine significant differences. There was no significant difference between young subjects and aged controls in any of the morphological criteria assessed. There was a significant decrease in the number of fenestrations/mm of BrMb in atrophic areas of GA eyes (p = 0.007) when compared with aged control eyes. A significant increase was found in the caveolae area as a percent of the endothelial cell soma of capillaries from GA subjects as compared with the controls (p = 0.03). Loss of capillary segments in choriocapillaris was also evident, especially in areas of geographic atrophy and CNV. In eyes from patients with sequence variations, the capillary endothelial cells often appeared degenerative and exhibited atypical fenestrations and pericytes covering the blood vessels. Subjects that were homozygous for polymorphisms in high risk CFH alleles only had more fenestrations/mm of BrMb than subjects that were homozygous only for high risk ARMS2/HTRA1 alleles (p = 0.04), while the latter had greater caveolae area/endothelial cell area than the former (p = 0.007). This study demonstrated an attenuation of CC and a significant decline in the two major transport systems in CC endothelial cells in AMD. This may contribute to drusen deposition, nutrient transport, and vision loss in AMD subjects.
Collapse
Affiliation(s)
- Rhonda Grebe
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - Irum Mughal
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - William Bryden
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - Scott McLeod
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - Malia Edwards
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - Gregory S Hageman
- John A. Moran Eye Center, Steele Center for Translational Medicine, Dept. of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Gerard Lutty
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA.
| |
Collapse
|
29
|
Seth PP, Tanowitz M, Bennett CF. Selective tissue targeting of synthetic nucleic acid drugs. J Clin Invest 2019; 129:915-925. [PMID: 30688661 DOI: 10.1172/jci125228] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are chemically synthesized nucleic acid analogs designed to bind to RNA by Watson-Crick base pairing. Following binding to the targeted RNA, the ASO perturbs RNA function by promoting selective degradation of the targeted RNA, altering RNA intermediary metabolism, or disrupting function of the RNA. Most antisense drugs are chemically modified to enhance their pharmacological properties and for passive targeting of the tissues of therapeutic interest. Recent advances in selective tissue targeting have resulted in a newer generation of ASO drugs that are more potent and better tolerated than previous generations, spawning renewed interest in identifying selective ligands that enhance targeted delivery of ASOs to tissues.
Collapse
|
30
|
Predescu D, Qin S, Patel M, Bardita C, Bhalli R, Predescu S. Epsin15 Homology Domains: Role in the Pathogenesis of Pulmonary Arterial Hypertension. Front Physiol 2018; 9:1393. [PMID: 30333761 PMCID: PMC6176378 DOI: 10.3389/fphys.2018.01393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022] Open
Abstract
Intersectin-1s (ITSN) deficiency and expression of a biologically active ITSN fragment, result of granzyme B cleavage under inflammatory conditions associated with pulmonary arterial hypertension (PAH), are characteristics of lung tissue of human and animal models of PAH. Recently, we have shown that this ITSN fragment comprising two Epsin15 homology domains (EHITSN) triggers endothelial cell (EC) proliferation and the plexiform arteriopathy in PAH. Limited evidence also indicates that the EH domains of endocytic proteins such as ITSN, upregulate compensatory endocytic pathways in cells with impaired vesicular trafficking. Thus, we sought to investigate whether the EHITSN may be involved in this compensatory mechanism for improving the EC endocytic dysfunction induced by ITSN deficiency and possibly contribute to PAH pathogenesis. We used stably-transfected human pulmonary artery ECs expressing the Myc-EHITSN (ECEH-ITSN) and ITSN knockout heterozygous mice (K0ITSN+/-) transduced with the Myc-EHITSN, in conjunction with functional assays: the biotin assay for caveolae internalization and 8 nm gold (Au)- and dinitrophenylated (DNP)-albumin perfusion of murine lung microvasculature. Pulmonary artery ECs of PAH patients (ECPAH), ITSN knockdown ECs (ECKD-ITSN), the monocrotaline (MCT)-induced mouse and rat models of PAH, as well as untreated animals, served as controls. ELISA via streptavidin-HRP or anti-DNP antibody (Ab), applied on ECs and lung lysates indicated greater than 30% increase in biotin internalization in ECEH-ITSN compared to ECCtrl. Despite their endocytic deficiency, ECPAH internalized biotin similar to ECCtrl which is twofold higher compared to ECKD-ITSN. Moreover, the lung microvascular bed of Myc-EHITSN-transduced mice and MCT-treated animals showed greater than twofold increase in DNP-BSA transendothelial transport, all compared to untreated controls. Electron microscopy (EM) revealed the increased occurrence of non-conventional endocytic/transcytotic structures (i.e., caveolae clusters, tubulo-vesicular and enlarged endocytic structures, membranous rings), usually underrepresented. Most of these structures were labeled by Au-BSA, consistent with their involvement in the transendothelial transport. Furthermore, ITSN deficiency and EHITSN expression alter the subcellular localization of the EH-binding protein 1 (EHBP1) and cortical actin organization, altogether supporting the increase occurrence/trafficking of the alternative endocytic structures. Thus, the EHITSN by shifting the physiological vesicular (caveolae) transport toward the alternative endocytic pathways is a significant contributor to the dysfunctional molecular phenotype of ECPAH.
Collapse
Affiliation(s)
- Dan Predescu
- Division of Pulmonary Medicine, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, IL, United States
| | - Shanshan Qin
- Division of Pulmonary Medicine, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, IL, United States
| | - Monal Patel
- Division of Pulmonary Medicine, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, IL, United States
| | - Cristina Bardita
- Division of Pulmonary Medicine, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, IL, United States
| | - Rabia Bhalli
- Division of Pulmonary Medicine, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, IL, United States
| | - Sanda Predescu
- Division of Pulmonary Medicine, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, IL, United States
| |
Collapse
|
31
|
Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors. Biomech Model Mechanobiol 2018; 18:5-16. [DOI: 10.1007/s10237-018-1063-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/24/2018] [Indexed: 01/06/2023]
|
32
|
Chlenski A, Dobratic M, Salwen HR, Applebaum M, Guerrero LJ, Miller R, DeWane G, Solomaha E, Marks JD, Cohn SL. Secreted protein acidic and rich in cysteine (SPARC) induces lipotoxicity in neuroblastoma by regulating transport of albumin complexed with fatty acids. Oncotarget 2018; 7:77696-77706. [PMID: 27776337 PMCID: PMC5363614 DOI: 10.18632/oncotarget.12773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
SPARC is a matrix protein that mediates interactions between cells and the microenvironment. In cancer, SPARC may either promote or inhibit tumor growth depending upon the tumor type. In neuroblastoma, SPARC is expressed in the stromal Schwannian cells and functions as a tumor suppressor. Here, we developed a novel in vivo model of stroma-rich neuroblastoma using non-tumorigenic SHEP cells with modulated levels of SPARC, mixed with tumorigenic KCNR cells. Tumors with stroma-derived SPARC displayed suppressed growth, inhibited angiogenesis and increased lipid accumulation. Based on the described chaperone function of SPARC, we hypothesized that SPARC binds albumin complexed with fatty acids and transports them to tumors. We show that SPARC binds albumin with Kd=18.9±2.3 uM, and enhances endothelial cell internalization and transendothelial transport of albumin in vitro. We also demonstrate that lipids induce toxicity in neuroblastoma cells and show that lipotoxicity is increased when cells are cultured in hypoxic conditions. Studies investigating the therapeutic potential of SPARC are warranted.
Collapse
Affiliation(s)
| | - Marija Dobratic
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Helen R Salwen
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Mark Applebaum
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Lisa J Guerrero
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Ryan Miller
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Gillian DeWane
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Elena Solomaha
- Biological Sciences Division, Biophysics Core Facility, University of Chicago, Chicago, IL, USA
| | - Jeremy D Marks
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection. Viruses 2018; 10:v10020069. [PMID: 29419739 PMCID: PMC5850376 DOI: 10.3390/v10020069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.
Collapse
|
34
|
Kumar V, Kumar V, McGuire T, Coulter DW, Sharp JG, Mahato RI. Challenges and Recent Advances in Medulloblastoma Therapy. Trends Pharmacol Sci 2017; 38:1061-1084. [PMID: 29061299 DOI: 10.1016/j.tips.2017.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Medulloblastoma (MB) is the most common childhood brain tumor, which occurs in the posterior fossa. MB tumors are highly heterogeneous and have diverse genetic make-ups, with differential microRNA (miRNA) expression profiles and variable prognoses. MB can be classified into four subgroups, each with different origins, pathogenesis, and potential therapeutic targets. miRNA and small-molecule targeted therapies have emerged as a potential new therapeutic paradigm in MB treatment. However, the development of chemoresistance due to surviving cancer stem cells and dysregulation of miRNAs remains a challenge. Combination therapies using multiple drugs and miRNAs could be effective approaches. In this review we discuss various MB subtypes, barriers, and novel therapeutic options which may be less toxic than current standard treatments.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - John G Sharp
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
35
|
Gut Permeability and Glucose Absorption Are Affected at Early Stages of Graft Rejection in a Small Bowel Transplant Rat Model. Transplant Direct 2017; 3:e220. [PMID: 29184909 PMCID: PMC5682765 DOI: 10.1097/txd.0000000000000718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/02/2023] Open
Abstract
Supplemental digital content is available in the text. Background Intestinal transplantation (ITx) faces many challenges due to the complexity of surgery and to the multiple immunological reactions that lead to the necessity of rigorous follow-up for early detection of acute cellular rejection (ACR). Our aim was to determine the kinetics of ACR using an experimental ITx model, with emphasis in the characterization of the process using different approaches, including the use of functional assays of absorptive and barrier function. Methods ITx in rats conducting serial sampling was performed. Clinical monitoring, graft histology, proinflammatory gene expression, and nitrosative stress determination were performed. Also, glucose absorption, barrier function using ovalbumin translocation, and contractile function were analyzed. Results The model used reproduced the different stages of ACR. Allogeneic ITx recipients showed signs of rejection from postoperative day (POD) 5, with increasing severity until 12 POD. Histological evaluation showed mild rejection in early sampling and severe rejection at late stages, with alterations in all graft layers. IL-6, CXCL 10, IFNg, and nitrite plasmas levels showed behavior coincident with histopathology. Remarkably, allogeneic grafts showed a marked alteration of glucose absorptive capacity from POD 5 that was sustained until endpoint. Coincidently, barrier function alteration was evidenced by luminal ovalbumin translocation to serum. Contractile function was progressively impaired along ACR. Conclusions Glucose absorption and barrier function are altered at early stages of ACR when histological alterations or gene expression changes were much subtle. This observation may provide simple evaluation tools that could be eventually translated to the clinics to contribute to early ACR diagnosis.
Collapse
|
36
|
Garcia-Castillo MD, Chinnapen DJF, Lencer WI. Membrane Transport across Polarized Epithelia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027912. [PMID: 28213463 DOI: 10.1101/cshperspect.a027912] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery.
Collapse
Affiliation(s)
| | - Daniel J-F Chinnapen
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| |
Collapse
|
37
|
Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab 2017; 37:2471-2484. [PMID: 27629102 PMCID: PMC5531345 DOI: 10.1177/0271678x16669365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nucleoside diphosphate kinase B (NDPK-B) is an enzyme required for nucleoside triphosphate homeostasis, which has been shown to interact with caveolin-1 (Cav-1). In endothelial cells (ECs), NDPK-B contributes to the regulation of angiogenesis and adherens junction (AJ) integrity. We therefore investigated whether an interaction of NDPK-B with Cav-1 in ECs is required for this regulation and the involvement of VEGF signaling herein. We report that simultaneous depletion of NDPK-B/Cav-1 in HUVECs synergistically impaired sprouting angiogenesis. NDPK-B depletion alone impaired caveolae formation, VEGF-induced phosphorylation of c-Src/Cav-1 but not of ERK1/2/AKT/eNOS. In vivo, Cav-1-/- mice showed impaired retinal vascularization at postnatal-day five, whereas NDPK-B-/- mice did not. Primary mouse brain ECs (MBMECs) from NDPK-B-/- mice showed no change in caveolae content and transendothelial-electrical resistance upon VEGF stimulation. Interestingly, NDPK-B-/- MBMECs displayed an accumulation of intracellular vesicles and increased Cav-1 levels. Dextran tracer analysis showed increased vascular permeability in the brain of NDPK-B-/- mice compared to wild type. In conclusion, our data indicate that NDPK-B is required for the correct localization of Cav-1 at the plasma membrane and the formation of caveolae. The genetic ablation of NDPK-B could partially be compensated by an increased Cav-1 content, which restored caveolae formation and some endothelial functions.
Collapse
Affiliation(s)
- Shalini Gross
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Thomas Wieland, Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University Maybachstr. 14, 68169 Mannheim, Germany.
| |
Collapse
|
38
|
Theodorakis PE, Müller EA, Craster RV, Matar OK. Physical insights into the blood-brain barrier translocation mechanisms. Phys Biol 2017; 14:041001. [PMID: 28586313 DOI: 10.1088/1478-3975/aa708a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.
Collapse
|
39
|
Long-term regulation of gene expression in muscle cells by systemically delivered siRNA. J Control Release 2017; 256:101-113. [DOI: 10.1016/j.jconrel.2017.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
|
40
|
Nakanishi M, Grebe R, Bhutto IA, Edwards M, McLeod DS, Lutty GA. Albumen Transport to Bruch's Membrane and RPE by Choriocapillaris Caveolae. Invest Ophthalmol Vis Sci 2016; 57:2213-24. [PMID: 27116549 PMCID: PMC4849865 DOI: 10.1167/iovs.15-17934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The choriocapillaris (CC), the capillary network of the choroid, is positioned adjacent to Bruch's membrane (BM) and the RPE. The aim of this study was to clarify the mechanism(s) for transport of serum albumen from CC lumen to RPE. METHODS Alexa647 conjugated to BSA (BSA-A647) or PBS was administrated via the femoral vein to young and aged wild-type (WT; C57BL/6J) mice and Caveolin-1 knockout mice (Cav1(-/-)). Mice were perfused with PBS and killed at 30 minutes, 1 hour, and 4 hours after injection. Eyecups were cryopreserved, and cryosections were analyzed on a Zeiss 710 confocal microscope. Bovine serum albumin conjugated to gold nanoparticles (BSA-GNP) was administrated through the left common carotid artery. Mice were perfused with PBS and killed at 30 minutes after injection. Eyecups were embedded after fixation, and 70-nm-thick sections were analyzed on a Hitachi H7600 transmission electron microscope. RESULTS In eyes of WT young mice, BSA-A647 was transported to the RPE at 30 minutes and diffused to the photoreceptor layer by 1 hour. In contrast, most BSA-A647 was found in the CC in Cav1(-/-) eyes. The majority of BSA-GNP found in the CC of young WT mice was on the luminal side in caveolae at 30 minutes after injection. In aged WT mice, BSA-GNPs were found in defective tight junctions between endothelial cells and appeared trapped at the diaphragm of fenestrations. CONCLUSIONS Normally, CC carefully regulates transport system of BSA from lumen to BM by caveolae-mediated transcytosis; however, endothelium cells of aged control WT mice have leaky tight junctions and lacked regulated BSA transport.
Collapse
|
41
|
Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever. Sci Rep 2016; 6:31855. [PMID: 27546060 PMCID: PMC4992822 DOI: 10.1038/srep31855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/28/2016] [Indexed: 01/04/2023] Open
Abstract
Vascular leakage is a life-threatening complication of dengue virus (DENV) infection. Previously, association between “paracellular” endothelial hyperpermeability and plasma leakage had been extensively investigated. However, whether “transcellular” endothelial leakage is involved in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) remained unknown. We thus investigated effects of DENV (serotype 2) infection on transcellular transport of albumin, the main oncotic plasma protein, through human endothelial cell monolayer by Western blotting, immunofluorescence staining, fluorescence imaging, and fluorometry. The data showed that Alexa488-conjugated bovine serum albumin (Alexa488-BSA) was detectable inside DENV2-infected cells and its level was progressively increased during 48-h post-infection. While paracellular transport could be excluded using FITC-conjugated dextran, Alexa488-BSA was progressively increased and decreased in lower and upper chambers of Transwell, respectively. Pretreatment with nystatin, an inhibitor of caveolae-dependent endocytic pathway, significantly decreased albumin internalization into the DENV2-infected cells, whereas inhibitors of other endocytic pathways showed no significant effects. Co-localization of the internalized Alexa488-BSA and caveolin-1 was also observed. Our findings indicate that DENV infection enhances caveolae-mediated albumin transcytosis through human endothelial cells that may ultimately induce plasma leakage from intravascular compartment. Further elucidation of this model in vivo may lead to effective prevention and better therapeutic outcome of DHF/DSS.
Collapse
|
42
|
Pascariu M, Bendayan M, Ghitescu L. Correlated Endothelial Caveolin Overexpression and Increased Transcytosis in Experimental Diabetes. J Histochem Cytochem 2016; 52:65-76. [PMID: 14688218 DOI: 10.1177/002215540405200107] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigated the mechanism by which diabetes renders the capillary endothelium more permeable to macromolecules in the lungs of short-term diabetic rats. We used quantitative immunocytochemistry (ICC) to comparatively assess the permeability of alveolar capillaries to serum albumin in diabetic and normoglycemic animals. The effect of diabetes on the population of endothelial caveolae was evaluated by morphometry and by ICC and immunochemical quantification of the amount of caveolin in the whole cell or associated with the purified endothelial plasma membrane. A net increase in the amount of serum albumin taken up by the plasmalemmal vesicles of alveolar endothelial cells and transported to the interstitium was documented in diabetic animals. Interendothelial junctions were not permeated by albumin molecules. The alveolar endothelial cells of hyperglycemic rats contain more caveolae (1.3-fold), accounting for a larger (1.5-fold) fraction of the endothelial volume than those of normal animals. The hypertrophy of the caveolar compartment is accompanied by overexpression of endothelial caveolin 1. Although the aggregated thickness of the endothelial and alveolar epithelium basement membranes increases in diabetes (1.3-fold), the porosity of this structure appears to be unchanged. Capillary hyperpermeability to plasma macromolecules recorded in the early phase of diabetes is explained by an intensification of transendothelial vesicular transport and not by the destabilization of the interendothelial junctions.
Collapse
Affiliation(s)
- Mirela Pascariu
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreál, Quebec, Canada
| | | | | |
Collapse
|
43
|
Effect of high-glucose conditions on human periodontal ligament endothelial cells: in vitro analysis. Odontology 2016; 105:76-83. [DOI: 10.1007/s10266-016-0235-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/04/2016] [Indexed: 01/19/2023]
|
44
|
Alemán R, Mompeó B, Castaño I. Streptozotocin-induced diabetes, and the optic nerve blood barrier. ACTA ACUST UNITED AC 2016; 91:170-6. [PMID: 26832629 DOI: 10.1016/j.oftal.2015.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 12/12/2015] [Accepted: 12/26/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the features of the endoneurial micro-vessels of the optic nerve in streptozotocin-induced diabetic animals. METHODS Optic nerves from control and streptozotocin-induced diabetic animals were studied by light and transmission electron microscopy. Patency was determined by indirect immunofluorescence albumin detection. The expression of major histocompatibility complex class II molecules was performed by direct immunofluorescence. The endoneurial vessels were counted, and the endothelial cell, the basement membrane, and the surface of the transverse section of the nerve were measured. RESULTS Vessels of diabetic rats showed vessel wall thickening, preservation of pericytes, an increase in endothelial cell transcytosis, and an increased number of perivascular macrophage cells. It may be concluded that the effects of hyperglycaemia on the inner vessels of the optic nerve are more similar to the cerebral diabetic vessels than to the retinal vessels in diabetic animals.
Collapse
Affiliation(s)
- R Alemán
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas, España.
| | - B Mompeó
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas, España
| | - I Castaño
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas, España
| |
Collapse
|
45
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
46
|
van Niekerk G, Davis T, Engelbrecht AM. Was the evolutionary road towards adaptive immunity paved with endothelium? Biol Direct 2015; 10:47. [PMID: 26341882 PMCID: PMC4560925 DOI: 10.1186/s13062-015-0079-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The characterization of a completely novel adaptive immune system (AIS) in jawless vertebrates (hagfish and lampreys) presents an excellent opportunity for exploring similarities and differences in design principles. It also highlights a somewhat neglected question: Why did vertebrates, representing only 5 % of all animals, evolve a system as complex as an AIS twice, whereas invertebrates failed to do so? A number of theories have been presented in answer to this question. However, these theories either fail to explain why invertebrates would not similarly develop an AIS and are confounded by issues of causality, or have been challenged by more recent findings. PRESENTATION OF THE HYPOTHESIS Instead of identifying a selective pressure that would drive the development of an AIS, we hypothesise that invertebrates failed to develop an AIS because of the evolutionary constraints imposed by these animals' physiological context. In particular, we argue that a number of vascular innovations in vertebrates allowed the effective implementation of an AIS. A lower blood volume allowed for a higher antibody titer (i.e., less 'diluted' antibody concentration), rendering these immune effectors more cost-effective. In addition, both a high circulatory velocity and the ability of endothelium to coordinate immune cell trafficking promote 'epitope sampling'. Collectively, these innovations allowed the effective implementation of AIS in vertebrates. TESTING THE HYPOTHESIS The hypothesis posits that a number of innovations to the vascular system provided the release from constraints which allowed the implementation of an AIS. However, this hypothesis would be refuted by phylogenetic analysis demonstrating that the AIS preceded these vascular innovations. The hypothesis also suggests that vascular performance would have an impact on the efficacy of an AIS, thus predicting a correlation between the vascular parameters of a species and its relative investment in AIS. The contribution of certain vascular innovations in augmenting immune functionality of an AIS can be tested by modelling the effect of different vascular parameters on AIS efficacy. IMPLICATIONS OF THE HYPOTHESIS The hypothesis not only explains the immunological dimorphism between vertebrates and invertebrates but also brings to attention the fact that immunity is dependent on more than just an immune system.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7600, South Africa.
| | - Tanja Davis
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7600, South Africa.
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7600, South Africa.
| |
Collapse
|
47
|
Rewatkar PV, Parton RG, Parekh HS, Parat MO. Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Adv Drug Deliv Rev 2015; 91:92-108. [PMID: 25579057 DOI: 10.1016/j.addr.2015.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
The development of novel therapies increasingly relies on sophisticated delivery systems that allow the drug or gene expression-modifying agent of interest entry into cells. These systems can promote cellular targeting and/or entry, and they vary in size, charge, and functional group chemistry. Their optimization requires an in depth knowledge of the cellular routes of entry in normal and pathological states. Caveolae are plasma membrane invaginations that have the potential to undergo endocytosis. We critically review the literature exploring whether drug or nucleic acid delivery systems exploit and/or promote cellular entry via caveolae. A vast majority of studies employ pharmacological tools, co-localization experiments and very few make use of molecular tools. We provide clarification on how results of such studies should be interpreted and make suggestions for future studies.
Collapse
Affiliation(s)
- Prarthana V Rewatkar
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, QLD 4072 Australia.
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Marie-Odile Parat
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
48
|
Zarebkohan A, Najafi F, Moghimi HR, Hemmati M, Deevband MR, Kazemi B. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. Eur J Pharm Sci 2015; 78:19-30. [PMID: 26118442 DOI: 10.1016/j.ejps.2015.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022]
Abstract
Blood-brain barrier inhibits most of drugs and genetic materials from reaching the brain. So, developing high efficiency carriers for gene and drug delivery to the brain, is the challenging area in pharmaceutical sciences. This investigation aimed to target DNA to brain using Serine-Arginine-Leucine (SRL) functionalized PAMAM dendrimers as a novel gene delivery system. The SRL peptide was linked on G4 PAMAM dendrimers using bifunctional PEG. DNA was then loaded in these functionalized nanoparticles and their physicochemical properties and cellular uptake/distribution evaluated by AFM, NMR, FTIR and fluorescence and confocal microscopy. Also, biodistribution and brain localization of nanoparticles were studied after IV injection of nanoparticles into rat tail. Unmodified nanoparticles were used as control in all evaluations. In vitro studies showed that SRL-modified nanoparticles have good transfection efficacy and low toxicity. Results also showed that SRL is a LRP ligand and SRL-modified nanoparticles internalized by clathrin/caveolin energy-dependent endocytosis to brain capillary endothelial cells. After intravenous administration, the SRL-modified nanoparticles were able to cross the blood-brain barrier and enter the brain parenchyma. Our result showed that, SRL-modified nanoparticles provide a safe and effective nanocarrier for brain gene delivery.
Collapse
Affiliation(s)
- Amir Zarebkohan
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Hamid Reza Moghimi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hemmati
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Deevband
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Biotechnology, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Estep TN. Pharmacokinetics and mechanisms of plasma removal of hemoglobin-based oxygen carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 43:203-15. [PMID: 26024447 DOI: 10.3109/21691401.2015.1047501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The circulatory persistence, distribution, and metabolism of hemoglobin-based oxygen carriers (HBOCs) is a major determinant of their safety and efficacy. In this communication, published data on the pharmacokinetics and routes of plasma elimination of HBOCs are summarized and evaluated. The circulating half-life of HBOCs is dose-dependent in both animals and humans. Half-life also increases with molecular weight in animals, at least up to the MDa range. The functional half-life of HBOCs is diminished by as much as 40% due to oxidation of the heme group relative to the overall rate of removal of hemoglobin (Hb) from plasma. Kidney excretion of HBOCs is greatly diminished compared to that of unmodified Hb, but the liver remains a primary site of catabolism. Both hepatocytes and Kupffer cells have been implicated in receptor-mediated HBOC uptake. Removal also occurs in the spleen and/or bone marrow and probably at dispersed sites in the endothelium as well. HBOCs extravasate into the lymph at a rate inversely proportional to their molecular weight and are taken up by monocyte/macrophage CD163 receptors, both as free Hb and in complexes with haptoglobin (Hp). The interactions with both Hp and the CD163 receptor are altered by Hb modification. However, monocyte/macrophage uptake may not be a quantitatively important route for the removal of clinically relevant doses of HBOCs. The relative contributions of different removal pathways have yet to be comprehensively determined, particularly in humans.
Collapse
|
50
|
Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320941. [PMID: 25866775 PMCID: PMC4383356 DOI: 10.1155/2015/320941] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
Abstract
Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Rajni Khan
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|