1
|
Liu J, Cui Z. Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins. Bioconjug Chem 2020; 31:1587-1595. [PMID: 32379972 DOI: 10.1021/acs.bioconjchem.0c00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Live cell imaging brings us into a new era of direct visualization of biological processes and molecular dynamics in real time. To visualize dynamic cellular processes and virus-host interactions, fluorescent labeling of proteins of interest is often necessary. Fluorescent proteins are widely used for protein imaging, but they have some intrinsic deficiencies such as big size, photobleaching, and spectrum restriction. Thus, a variety of labeling strategies have been established and continuously developed. To protect the natural biological function(s) of the protein of interest, especially in viral life cycle, in vivo labeling requires smaller-sized tags, more specificity, and lower cytotoxicity. Here, we briefly summarized the principles, development, and their applications mainly in the virology field of three strategies for fluorescent labeling of proteins of interest including self-labeling enzyme derivatives, stainable peptide tags, and non-canonical amino acid incorporation. These labeling techniques greatly expand the fluorescent labeling toolbox and provide new opportunities for imaging biological processes.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ankri R, Basu A, Ulku AC, Bruschini C, Charbon E, Weiss S, Michalet X. Single-Photon, Time-Gated, Phasor-Based Fluorescence Lifetime Imaging through Highly Scattering Medium. ACS PHOTONICS 2020; 7:68-79. [PMID: 35936550 PMCID: PMC9355389 DOI: 10.1021/acsphotonics.9b00874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescence lifetime imaging (FLI) is increasingly recognized as a powerful tool for biochemical and cellular investigations, including in vivo applications. Fluorescence lifetime is an intrinsic characteristic of any fluorescent dye which, to a large extent, does not depend on excitation intensity and signal level. In particular, it allows distinguishing dyes with similar emission spectra, offering additional multiplexing capabilities. However, in vivo FLI in the visible range is complicated by the contamination by (i) tissue autofluorescence, which decreases contrast, and by (ii) light scattering and absorption in tissues, which significantly reduce fluorescence intensity and modify the temporal profile of the signal. Here, we demonstrate how these issues can be accounted for and overcome, using a new time-gated single-photon avalanche diode array camera, SwissSPAD2, combined with phasor analysis to provide a simple and fast visual method for lifetime imaging. In particular, we show how phasor dispersion increases with increasing scattering and/or decreasing fluorescence intensity. Next, we show that as long as the fluorescence signal of interest is larger than the phantom autofluorescence, the presence of a distinct lifetime can be clearly identified with appropriate background correction. We use these results to demonstrate the detection of A459 cells expressing the fluorescent protein mCyRFP1 through highly scattering and autofluorescent phantom layers. These results showcase the possibility to perform FLI in challenging conditions, using standard, bright, visible fluorophore or fluorescence proteins.
Collapse
Affiliation(s)
- Rinat Ankri
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
- Corresponding Authors:.
| | - Arkaprabha Basu
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Arin Can Ulku
- School of Engineering, École Polytechnique Fédérale de Lausanne, Neuchâtel 1015, Switzerland
| | - Claudio Bruschini
- School of Engineering, École Polytechnique Fédérale de Lausanne, Neuchâtel 1015, Switzerland
| | - Edoardo Charbon
- School of Engineering, École Polytechnique Fédérale de Lausanne, Neuchâtel 1015, Switzerland
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
- Corresponding Authors:.
| |
Collapse
|
3
|
Kong Y, Cirillo JD. Fluorescence Imaging of Mycobacterial Infection in Live Mice Using Fluorescent Protein-Expressing Strains. Methods Mol Biol 2018; 1790:75-85. [PMID: 29858784 DOI: 10.1007/978-1-4939-7860-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fluorescence imaging has been applied to various areas of biological research, including studies of physiological, neurological, oncological, cell biological, molecular, developmental, immunological, and infectious processes. In this chapter, we describe methods of fluorescent imaging applied to examination of subcutaneous and pulmonary mycobacterial infections in an animal model. Since slow growth of Mycobacterium tuberculosis (Mtb) hinders development of new diagnostics, therapeutics, and vaccines for tuberculosis (TB), we developed fluorescent protein (FP) expressing mycobacterial strains for in vivo imaging, which can be used to track bacterial location and to quantitate bacterial load directly in living animals. After comparison of imaging data using strains expressing different fluorescent proteins, we found that strains expressing L5-tdTomato display the greatest fluorescence. Here, we describe detailed protocols for tdTomato-labeled M. bovis BCG imaging in real time for subcutaneous and pulmonary infections in living mice. These procedures allow rapid and accurate determination of bacterial numbers in live mice.
Collapse
Affiliation(s)
- Ying Kong
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
4
|
Transgenic Techniques for Investigating Cell Biology During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542088 DOI: 10.1007/978-981-10-7545-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ascidians are increasingly being used as a system for investigating cell biology during development. The extreme genetic and cellular simplicity of ascidian embryos in combination with superior experimental tractability make this an ideal system for in vivo analysis of dynamic cellular processes. Transgenic approaches to cellular and sub-cellular analysis of ascidian development have begun to yield new insights into the mechanisms regulating developmental signaling and morphogenesis. This chapter focuses on the targeted expression of fusion proteins in ascidian embryos and how this technique is being deployed to garner new insights into the cell biology of development.
Collapse
|
5
|
Kong Y, Yang D, Cirillo SLG, Li S, Akin A, Francis KP, Maloney T, Cirillo JD. Application of Fluorescent Protein Expressing Strains to Evaluation of Anti-Tuberculosis Therapeutic Efficacy In Vitro and In Vivo. PLoS One 2016; 11:e0149972. [PMID: 26934495 PMCID: PMC4774912 DOI: 10.1371/journal.pone.0149972] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
The slow growth of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), hinders development of new diagnostics, therapeutics and vaccines. Using non-invasive real-time imaging technologies to monitor the disease process in live animals would facilitate TB research in all areas. We developed fluorescent protein (FP) expressing Mycobacterium bovis BCG strains for in vivo imaging, which can be used to track bacterial location, and to quantify bacterial load in live animals. We selected an optimal FP for in vivo imaging, by first cloning six FPs: tdTomato, mCherry, mPlum, mKate, Katushka and mKeima, into mycobacteria under either a mycobacterial Hsp60 or L5 promoter, and compared their fluorescent signals in vitro and in vivo. Fluorescence from each FP-expressing strain was measured with a multimode reader using the optimal excitation and emission wavelengths for the FP. After normalizing bacterial numbers with optical density, the strain expressing L5-tdTomato displayed the highest fluorescence. We used the tdTomato-labeled M. bovis BCG to obtain real-time images of pulmonary infections in living mice and rapidly determined the number of bacteria present. Further comparison between L5-tdTomato and Hsp60-tdTomato revealed that L5-tdTomato carried four-fold more tdTomato gene copies than Hsp60-tdTomato, which eventually led to higher protein expression of tdTomato. Evaluating anti-TB efficacy of rifampicin and isoniazid therapy in vitro and in vivo using the L5-tdTomato strain demonstrated that this strain can be used to identify anti-TB therapeutic efficacy as quickly as 24 h post-treatment. These M. bovis BCG reporter strains represent a valuable new tool for evaluation of therapeutics, vaccines and virulence.
Collapse
Affiliation(s)
- Ying Kong
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Dong Yang
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Suat L. G. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A & M Health Science Center, Bryan, Texas, United States of America
| | - Shaoji Li
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ali Akin
- Caliper Life Sciences, PerkinElmer, Waltham, Massachusetts, United States of America
| | - Kevin P. Francis
- Caliper Life Sciences, PerkinElmer, Waltham, Massachusetts, United States of America
| | - Taylor Maloney
- Department of Microbial Pathogenesis and Immunology, Texas A & M Health Science Center, Bryan, Texas, United States of America
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A & M Health Science Center, Bryan, Texas, United States of America
| |
Collapse
|
6
|
Pletneva NV, Pletnev VZ, Souslova E, Chudakov DM, Lukyanov S, Martynov VI, Arhipova S, Artemyev I, Wlodawer A, Dauter Z, Pletnev S. Yellow fluorescent protein phiYFPv (Phialidium): structure and structure-based mutagenesis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1005-12. [PMID: 23695245 PMCID: PMC3663121 DOI: 10.1107/s0907444913004034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/09/2013] [Indexed: 11/10/2022]
Abstract
The yellow fluorescent protein phiYFPv (λem(max) ≃ 537 nm) with improved folding has been developed from the spectrally identical wild-type phiYFP found in the marine jellyfish Phialidium. The latter fluorescent protein is one of only two known cases of naturally occurring proteins that exhibit emission spectra in the yellow-orange range (535-555 nm). Here, the crystal structure of phiYFPv has been determined at 2.05 Å resolution. The `yellow' chromophore formed from the sequence triad Thr65-Tyr66-Gly67 adopts the bicyclic structure typical of fluorophores emitting in the green spectral range. It was demonstrated that perfect antiparallel π-stacking of chromophore Tyr66 and the proximal Tyr203, as well as Val205, facing the chromophore phenolic ring are chiefly responsible for the observed yellow emission of phiYFPv at 537 nm. Structure-based site-directed mutagenesis has been used to identify the key functional residues in the chromophore environment. The obtained results have been utilized to improve the properties of phiYFPv and its homologous monomeric biomarker tagYFP.
Collapse
Affiliation(s)
- Nadya V. Pletneva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir Z. Pletnev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina Souslova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry M. Chudakov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergey Lukyanov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russian Federation
| | - Vladimir I. Martynov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Svetlena Arhipova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Artemyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
| | - Sergei Pletnev
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
- Basic Research Program, SAIC-Frederick, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
7
|
Sun Q, Li Z, Lan Z, Pfisterer C, Doerr M, Fischer S, Smith SC, Thiel W. Isomerization mechanism of the HcRed fluorescent protein chromophore. Phys Chem Chem Phys 2012; 14:11413-24. [PMID: 22801745 DOI: 10.1039/c2cp41217a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand how the protein achieves fluorescence, the isomerization mechanism of the HcRed chromophore is studied both under vacuum and in the solvated red fluorescent protein. Quantum mechanical (QM) and quantum mechanical/molecular mechanical (QM/MM) methods are applied both for the ground and the first excited state. The photoinduced processes in the chromophore mainly involve torsions around the imidazolinone-bridge bond (τ) and the phenoxy-bridge bond (φ). Under vacuum, the isomerization of the cis-trans chromophore essentially proceeds by τ twisting, while the radiationless decay requires φ torsion. By contrast, the isomerization of the cis-trans chromophore in HcRed occurs via simultaneous τ and φ twisting. The protein environment significantly reduces the barrier of this hula twist motion compared with vacuum. The excited-state isomerization barrier via the φ rotation of the cis-coplanar conformer in HcRed is computed to be significantly higher than that of the trans-non-coplanar conformer. This is consistent with the experimental observation that the cis-coplanar-conformation of the chromophore is related to the fluorescent properties of HcRed, while the trans-non-planar conformation is weakly fluorescent or non-fluorescent. Our study shows how the protein modifies the isomerization mechanism, notably by interactions involving the nearby residue Ile197, which keeps the chromophore coplanar and blocks the twisting motion that leads to photoinduced radiationless decay.
Collapse
Affiliation(s)
- Qiao Sun
- Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Brisbane, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kong Y, Akin AR, Francis KP, Zhang N, Troy TL, Xie H, Rao J, Cirillo SLG, Cirillo JD. Whole-body imaging of infection using fluorescence. ACTA ACUST UNITED AC 2011; Chapter 2:Unit 2C.3. [PMID: 21538304 DOI: 10.1002/9780471729259.mc02c03s21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Optical imaging is emerging as a powerful tool to study physiological, neurological, oncological, cell biological, molecular, developmental, immunological, and infectious processes. This unit describes the use of fluorescent reporters for biological organisms, components, or events. We describe the application of fluorescence imaging to examination of infectious processes, in particular subcutaneous and pulmonary bacterial infections, but the same approaches are applicable to nearly any infectious route. The strategies described use mycobacterial infections as an example, but nearly identical systems can be used for Pseudomonas, Legionella, Salmonella, Escherichia, Borrelia, and Staphylococus, suggesting that the approaches are generally applicable to nearly any infectious agent. Two strategies for fluorescence imaging are described: the first method uses reporter enzyme fluorescence (REF), and the second uses fluorescent proteins for fluorescence imaging. Methods are described in detail to facilitate successful application of these emerging technologies to nearly any experimental system.
Collapse
Affiliation(s)
- Ying Kong
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Sciences Center, College Station, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010; 90:1103-63. [PMID: 20664080 DOI: 10.1152/physrev.00038.2009] [Citation(s) in RCA: 962] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Green fluorescent protein (GFP) from the jellyfish Aequorea victoria and its homologs from diverse marine animals are widely used as universal genetically encoded fluorescent labels. Many laboratories have focused their efforts on identification and development of fluorescent proteins with novel characteristics and enhanced properties, resulting in a powerful toolkit for visualization of structural organization and dynamic processes in living cells and organisms. The diversity of currently available fluorescent proteins covers nearly the entire visible spectrum, providing numerous alternative possibilities for multicolor labeling and studies of protein interactions. Photoactivatable fluorescent proteins enable tracking of photolabeled molecules and cells in space and time and can also be used for super-resolution imaging. Genetically encoded sensors make it possible to monitor the activity of enzymes and the concentrations of various analytes. Fast-maturing fluorescent proteins, cell clocks, and timers further expand the options for real time studies in living tissues. Here we focus on the structure, evolution, and function of GFP-like proteins and their numerous applications for in vivo imaging, with particular attention to recent techniques.
Collapse
|
10
|
Sun Q, Doerr M, Li Z, Smith SC, Thiel W. QM/MM studies of structural and energetic properties of the far-red fluorescent protein HcRed. Phys Chem Chem Phys 2010; 12:2450-8. [PMID: 20449359 DOI: 10.1039/b918523b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The far-red fluorescent protein HcRed was investigated using molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) calculations. Three models of HcRed (anionic chromophore) were considered, differing in the protonation states of nearby Glu residues (A: Glu214 and Glu146 both protonated; B: Glu214 protonated and Glu146 deprotonated; C: Glu214 and Glu146 both deprotonated). SCC-DFTB/MM MD simulations of model B yield good agreement with the available crystallographic data at ambient pH. Bond lengths in the QM region are well reproduced, with a root mean square (rms) deviation between experimental and average MD data of 0.079 A; the chromophore is almost co-planar, which is consistent with experimental observation; and the five hydrogen bonds involving the chromophore are conserved. QM/MM geometry optimizations were performed on representative snapshot structures from the MD simulations for each model. They confirm the structural features observed in the MD simulations. According to the DFT(B3LYP)/MM results, the cis-conformation of the chromophore is more stable than the trans-form by 9.1-12.9 kcal mol(-1) in model B, and by 12.4-19.9 kcal mol(-1) in model C, consistent with the experimental preference for the cis-isomer. However, in model A when both Glu214 and Glu146 are protonated, the stability is inverted with the trans-form being favored. The different protonation states of the titratable active-site residues Glu214 and Glu146 thus critically influence the manner in which the relative stability and degree of planarity of the cis- and trans-conformers vary with pH. Coupled with the known correlation of chromophore conformation with fluorescence efficiency, this work provides a detailed structural basis for the observed phenomenon that red fluorescent proteins such as HcRed, mKate and Rtms5 show bright fluorescence at high pH.
Collapse
Affiliation(s)
- Qiao Sun
- Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Brisbane, Australia
| | | | | | | | | |
Collapse
|
11
|
Abstract
For the past three decades, methods for culturing mouse embryos ex vivo have been optimized in order to improve embryo viability and physiology throughout critical stages of embryogenesis. Combining advances made in the production of transgenic animals and in the development of different varieties of fluorescent proteins (FPs), time-lapse imaging is becoming more and more popular in the analysis of dynamic events during mouse development. Targeting FPs to specific cell types or subcellular compartments has enabled researchers to study cell proliferation, apoptosis, migration, and changes in cell morphology in living mouse embryos in real time. Here we provide a guide for time-lapse imaging of early stages of mouse embryo development.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
12
|
Abstract
The capacity to image a growing embryo while simultaneously studying the developmental function of specific molecules provides invaluable information on embryogenesis. However, until recently, this approach was accomplished with difficulty both because of the advanced technology needed and because an easy method of minimizing damage to the embryo was unavailable. Here, we present a novel way of adapting the well-known EC culture of whole chick embryos to time-lapse imaging and to functional molecular studies using blocking agents. The novelty of our method stems from the ability to apply blocking agents ex ovo as well as in ovo. We were able to study the function of a set of molecules by culturing developing embryos ex ovo in tissue culture media containing these molecules or by injecting them underneath the live embryo in ovo. The in ovo preparation is particularly valuable, because it extends the period of time during which the developmental function of the molecule can be studied and it provides an easy, reproducible method for screening a batch of molecules. These new techniques will prove very helpful in visualizing and understanding the role of specific molecules during embryonic morphogenesis, including blood vessel formation.
Collapse
Affiliation(s)
- Nissrine El-Ghali
- Biology Department, California State University, Northridge, Northridge, California 91330, USA
| | | | | | | |
Collapse
|
13
|
Colas JF, Sharpe J. Live optical projection tomography. Organogenesis 2009; 5:211-6. [PMID: 20539740 PMCID: PMC2878749 DOI: 10.4161/org.5.4.10426] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 09/06/2009] [Accepted: 10/26/2009] [Indexed: 01/27/2023] Open
Abstract
Optical projection tomography (OPT) is a technology ideally suited for imaging embryonic organs. We emphasize here recent successes in translating this potential into the field of live imaging. Live OPT (also known as 4D OPT, or time-lapse OPT) is already in position to accumulate good quantitative data on the developmental dynamics of organogenesis, a prerequisite for building realistic computer models and tackling new biological problems. Yet, live OPT is being further developed by merging state-of-the-art mouse embryo culture with the OPT system. We discuss the technological challenges that this entails and the prospects for expansion of this molecular imaging technique into a wider range of applications.
Collapse
Affiliation(s)
- Jean-François Colas
- EMBL-CRG Systems Biology Program; Centre for Genomic Regulation; UPF; Barcelona, Spain; Istituciô Catalana de Recerca i Estudis Avançats; Barcelona, Spain
| | | |
Collapse
|
14
|
Jeziorska DM, Jordan KW, Vance KW. A systems biology approach to understanding cis-regulatory module function. Semin Cell Dev Biol 2009; 20:856-62. [PMID: 19660565 DOI: 10.1016/j.semcdb.2009.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/29/2009] [Indexed: 12/27/2022]
Abstract
The genomic instructions used to regulate development are encoded within a set of functional DNA elements called cis-regulatory modules (CRMs). These elements determine the precise patterns of temporal and spatial gene expression. Here we summarize recent progress made towards cataloguing and characterizing the complete repertoire of CRMs. We describe CRMs as genomic information processing devices containing clusters of transcription factor binding sites and we position CRMs as nodes within large gene regulatory networks. We define CRM architecture and describe how these genomic elements process the information they encode to their target genes. Furthermore, we present an overview describing high-throughput techniques to identify CRMs genome wide and experimental methodologies to validate their function on a large scale. This review emphasizes the advantages and power of a systems biology approach which integrates computational and experimental technologies to further our understanding of CRM function.
Collapse
Affiliation(s)
- Danuta M Jeziorska
- Departments of Systems Biology and Biological Sciences, University of Warwick, Biomedical Research Institute, Gibbet Hill, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
15
|
Nowotschin S, Eakin GS, Hadjantonakis AK. Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis 2009; 47:330-6. [PMID: 19358158 PMCID: PMC2875877 DOI: 10.1002/dvg.20500] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To simultaneously follow multiple subcellular characteristics, for example, cell position and cell morphology, in living specimens requires multiple subcellular labels. Toward this goal, we generated dual-tagged mouse embryonic stem (ES) cells constitutively expressing differentially localized, spectrally distinct, genetically encoded fluorescent protein fusions. We have used human histone H2B fusions to fluorescent proteins to mark chromatin. This provides a descriptor of cell position, division, and death. An additional descriptor of cell morphology is achieved by combining this transgene with select lipid-modified fluorescent protein fusions that mark the plasma membrane. Using this strategy, wewere able to live image cellular dynamics in three dimensions over time both in cultured ES cells and in mouse embryos generated using dual-tagged ES cells. This study, therefore, presents the feasibility of applying multiple spectrally and subcellularly distinct fluorescent protein reporters for live imaging studies in ES cells and mouse embryos. Furthermore, the increasing availability of spectral variant fluorescent proteins along with the development of methods that permit improved spectral separation now facilitate multiplexing of fluorescent reporters to provide readouts of a variety of anatomical and physiological behaviors simultaneously in living specimens.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Guy S. Eakin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | | |
Collapse
|
16
|
Pletnev S, Shcherbo D, Chudakov DM, Pletneva N, Merzlyak EM, Wlodawer A, Dauter Z, Pletnev V. A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J Biol Chem 2008; 283:28980-7. [PMID: 18682399 PMCID: PMC2570900 DOI: 10.1074/jbc.m800599200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/17/2008] [Indexed: 11/06/2022] Open
Abstract
The far-red fluorescent protein mKate (lambda(ex), 588 nm; lambda(em), 635 nm; chromophore-forming triad Met(63)-Tyr(64)-Gly(65)), originating from wild-type red fluorescent progenitor eqFP578 (sea anemone Entacmaea quadricolor), is monomeric and characterized by the pronounced pH dependence of fluorescence, relatively high brightness, and high photostability. The protein has been crystallized at a pH ranging from 2 to 9 in three space groups, and four structures have been determined by x-ray crystallography at the resolution of 1.75-2.6 A. The pH-dependent fluorescence of mKate has been shown to be due to reversible cis-trans isomerization of the chromophore phenolic ring. In the non-fluorescent state at pH 2.0, the chromophore of mKate is in the trans-isomeric form. The weakly fluorescent state of the protein at pH 4.2 is characterized by a mixture of trans and cis isomers. The chromophore in a highly fluorescent state at pH 7.0/9.0 adopts the cis form. Three key residues, Ser(143), Leu(174), and Arg(197) residing in the vicinity of the chromophore, have been identified as being primarily responsible for the far-red shift in the spectra. A group of residues consisting of Val(93), Arg(122), Glu(155), Arg(157), Asp(159), His(169), Ile(171), Asn(173), Val(192), Tyr(194), and Val(216), are most likely responsible for the observed monomeric state of the protein in solution.
Collapse
Affiliation(s)
- Sergei Pletnev
- Macromolecular Crystallography Laboratory, NCI, National Institutes of Health, Argonne, Illinois 60439, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM. Bright far-red fluorescent protein for whole-body imaging. Nat Methods 2007; 4:741-6. [PMID: 17721542 DOI: 10.1038/nmeth1083] [Citation(s) in RCA: 478] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/30/2007] [Indexed: 11/09/2022]
Abstract
For deep imaging of animal tissues, the optical window favorable for light penetration is in near-infrared wavelengths, which requires proteins with emission spectra in the far-red wavelengths. Here we report a far-red fluorescent protein, named Katushka, which is seven- to tenfold brighter compared to the spectrally close HcRed or mPlum, and is characterized by fast maturation as well as a high pH-stability and photostability. These unique characteristics make Katushka the protein of choice for visualization in living tissues. We demonstrate superiority of Katushka for whole-body imaging by direct comparison with other red and far-red fluorescent proteins. We also describe a monomeric version of Katushka, named mKate, which is characterized by high brightness and photostability, and should be an excellent fluorescent label for protein tagging in the far-red part of the spectrum.
Collapse
Affiliation(s)
- Dmitry Shcherbo
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Passamaneck YJ, Hadjantonakis AK, Di Gregorio A. Dynamic and polarized muscle cell behaviors accompany tail morphogenesis in the ascidian Ciona intestinalis. PLoS One 2007; 2:e714. [PMID: 17684560 PMCID: PMC1934933 DOI: 10.1371/journal.pone.0000714] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/04/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Axial elongation is a key morphogenetic process that serves to shape developing organisms. Tail extension in the ascidian larva represents a striking example of this process, wherein paraxially positioned muscle cells undergo elongation and differentiation independent of the segmentation process that characterizes the formation of paraxial mesoderm in vertebrates. Investigating the cell behaviors underlying the morphogenesis of muscle in ascidians may therefore reveal the evolutionarily conserved mechanisms operating during this process. METHODOLOGY/PRINCIPLE FINDINGS A live cell imaging approach utilizing subcellularly-localized fluorescent proteins was employed to investigate muscle cell behaviors during tail extension in the ascidian Ciona intestinalis. Changes in the position and morphology of individual muscle cells were analyzed in vivo in wild type embryos undergoing tail extension and in embryos in which muscle development was perturbed. Muscle cells were observed to undergo elongation in the absence of positional reorganization. Furthermore, high-speed high-resolution live imaging revealed that the onset and progression of tail extension were characterized by the presence of dynamic and polarized actin-based protrusive activity at the plasma membrane of individual muscle cells. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that in the Ciona muscle, tissue elongation resulted from gradual and coordinated changes in cell geometry and not from changes in cell topology. Proper formation of muscle cells was found to be necessary not only for muscle tissue elongation, but also more generally for completion of tail extension. Based upon the characterized dynamic changes in cell morphology and plasma membrane protrusive activity, a three-phase model is proposed to describe the cell behavior operating during muscle morphogenesis in the ascidian embryo.
Collapse
Affiliation(s)
- Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | | | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
19
|
Brendolan A, Rosado MM, Carsetti R, Selleri L, Dear TN. Development and function of the mammalian spleen. Bioessays 2007; 29:166-77. [PMID: 17226804 DOI: 10.1002/bies.20528] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vertebrate spleen has important functions in immunity and haematopoiesis, many of which have been well studied. In contrast, we know much less about the mechanisms governing its early embryonic development. However, as a result of work over the past decade-mostly using knockout mice--significant progress has been made in unravelling the genetic processes governing the spleen's early development. Key genetic regulators, such as Tlx1 and Pbx1, have been identified, and we know some of the early transcriptional hierarchies that control the early patterning and proliferation of the splenic primordium. In mouse and humans, asplenia can arise as a result of laterality defects, or the spleen can be absent with no other discernible abnormalities. Surprisingly, given the spleen's diverse functions, asplenic individuals suffer no major haematopoietic or immune defects apart from a susceptibility to infection with encapsulated bacteria. Recent evidence has shed light on a previously unknown role of the spleen in the development and maintenance of specific B cell populations that are involved in the initial response to infection caused by encapsulated bacteria. The lack of these populations in asplenic mice and humans may go some way to explaining this susceptibility.
Collapse
Affiliation(s)
- Andrea Brendolan
- Department of Cell and Developmental Biology, Cornell University, Weill Medical School, New York, NY, USA
| | | | | | | | | |
Collapse
|
20
|
Di Gregorio A, Hadjantonakis AK. The multidimensionality of cell behaviors underlying morphogenesis: a case study in ascidians. Bioessays 2007; 28:874-9. [PMID: 16937345 DOI: 10.1002/bies.20453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Databases where different types of information from different sources can be integrated, cross-referenced and interactively accessed are necessary for building a quantitative understanding of the molecular and cell biology intrinsic to the morphogenesis of an embryo. Tassy and colleagues recently reported the development of software tailor-made to perform such a task, along with the generation and integration of three-dimensional anatomical models of embryos. They convincingly illustrated the utility of their approach by applying it to the early ascidian embryo.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
21
|
Abstract
Mitochondria have long been known to be the powerhouses of the cell but they also contribute to redox and Ca2+ homeostasis, provide intermediary metabolites and store proapoptotic factors. Mitochondria have a unique behavior during development. They are maternally transmitted with little (if any) paternal contribution, and they originate from a restricted founder population, which is amplified during oogenesis. Then, having established the full complement of mitochondria in the fully grown oocyte, there is no further increase of the mitochondrial population during early development. The localization of mitochondria in the egg during maturation and their segregation to blastomeres in the cleaving embryo are strictly regulated. Gradients in the distribution of mitochondria present in the egg have the potential to give rise to blastomeres receiving different numbers of mitochondria. Such maternally inherited differences in mitochondrial distribution are thought to play roles in defining the long-term viability of the blastomere in some cases and embryonic axes and patterning in others. Mitochondria may also regulate development by a number of other means, including modulating Ca2+ signaling, and the production of ATP, reactive oxygen species, and intermediary metabolites. If the participation of mitochondria in the regulation of sperm-triggered Ca2+ oscillations is now well established, the role of other properties of mitochondrial function during development remain largely unexplored probably due to the difficulty of accessing the mitochondrial compartment in an embryo. Maintaining a functional complement of maternally derived mitochondria is vital for the early embryo. Mitochondrial dysfunction may not only compromise developmental processes but also trigger apoptosis in the embryo. This dual role for mitochondria (to maintain life or to commit to cell death) may well represent a quality control system in the early embryo that will determine whether the embryo proceeds further into development or is quickly eliminated.
Collapse
Affiliation(s)
- Rémi Dumollard
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
22
|
Abstract
The primitive chordate Ciona intestinalis has emerged as a significant model system for the study of heart development. The Ciona embryo employs a conserved heart gene network in the context of extremely low cell numbers and reduced genetic redundancy. Here, I review recent studies on the molecular genetics of Ciona cardiogenesis as well as classic work on heart anatomy and physiology. I also discuss the potential of employing Ciona to decipher a comprehensive chordate gene network and to determine how this network controls heart morphogenesis.
Collapse
Affiliation(s)
- Brad Davidson
- Department of Molecular and Cellular Biology, Division of Genetics & Development, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
23
|
Kwon GS, Fraser ST, Eakin GS, Mangano M, Isern J, Sahr KE, Hadjantonakis AK, Baron MH. Tg(Afp-GFP) expression marks primitive and definitive endoderm lineages during mouse development. Dev Dyn 2006; 235:2549-58. [PMID: 16708394 PMCID: PMC1850385 DOI: 10.1002/dvdy.20843] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alpha-fetoprotein (Afp) is the most abundant serum protein in the developing embryo. It is secreted by the visceral endoderm, its derivative yolk sac endoderm, fetal liver hepatocytes, and the developing gut epithelium. The abundance of this protein suggested that Afp gene regulatory elements might serve to effectively drive reporter gene expression in developing endodermal tissues. To this end, we generated transgenic mouse lines Tg(Afp-GFP) using an Afp promoter/enhancer to drive expression of green fluorescent protein (GFP). Bright GFP fluorescence allowed the visualization, in real time, of visceral endoderm, yolk sac endoderm, fetal liver hepatocytes, and the epithelium of the gut and pancreas. Comparison of the localization of green fluorescence with that of endogenous Afp transcripts and protein indicated that the regulatory elements used to generate these mouse lines directed transgene expression in what appeared to be all Afp-expressing cells of the embryo, but only in a subset of fetal liver cells. The bright GFP signal permitted flow cytometric analysis of fetal liver hepatocytes. These mice represent a valuable resource for live imaging as well as identification, quantitation, and isolation of cells from the primitive and definitive endoderm lineages of the developing mouse embryo.
Collapse
Affiliation(s)
- Gloria S. Kwon
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY
- Neurosciences Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Stuart T. Fraser
- Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Guy S. Eakin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY
| | - Michael Mangano
- Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Joan Isern
- Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Kenneth E. Sahr
- Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY
- * Corresponding authors: Margaret H. Baron, Mount Sinai School of Medicine, Box 1079, Departments of Medicine and Molecular, Cell & Developmental Biology, 1425 Madison Avenue 11-70B, New York, NY 10029, , Anna-Katerina Hadjantonakis, Developmental Biology Program, Sloan-Kettering Institute, Box 371, 1275 York Avenue, New York, NY 10021,
| | - Margaret H. Baron
- Department of Medicine, Mount Sinai School of Medicine, New York, NY
- Department of Molecular, Cellular and Developmental Biology, Mount Sinai School of Medicine, New York, NY
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY
- * Corresponding authors: Margaret H. Baron, Mount Sinai School of Medicine, Box 1079, Departments of Medicine and Molecular, Cell & Developmental Biology, 1425 Madison Avenue 11-70B, New York, NY 10029, , Anna-Katerina Hadjantonakis, Developmental Biology Program, Sloan-Kettering Institute, Box 371, 1275 York Avenue, New York, NY 10021,
| |
Collapse
|
24
|
Rhee JM, Pirity MK, Lackan CS, Long JZ, Kondoh G, Takeda J, Hadjantonakis AK. In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 2006; 44:202-18. [PMID: 16604528 PMCID: PMC2887760 DOI: 10.1002/dvg.20203] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The visualization of live cell behaviors operating in situ combined with the power of mouse genetics represents a major step toward understanding the mechanisms regulating embryonic development, homeostasis, and disease progression in mammals. The availability of genetically encoded fluorescent protein reporters, combined with improved optical imaging modalities, have led to advances in our ability to examine cells in vivo. We developed a series of lipid-modified fluorescent protein fusions that are targeted to and label the secretory pathway and the plasma membrane, and that are amenable for use in mice. Here we report the generation of two strains of mice, each expressing a spectrally distinct lipid-modified GFP-variant fluorescent protein fusion. The CAG::GFP-GPI strain exhibited widespread expression of a glycosylphosphatidylinositol-tagged green fluorescent protein (GFP) fusion, while the CAG::myr-Venus strain exhibited widespread expression of a myristoyl-Venus yellow fluorescent protein fusion. Imaging of live transgenic embryonic stem (ES) cells, either live or fixed embryos and postnatal tissues demonstrated that glycosylphosphatidyl inositol- and myristoyl-tagged GFP-variant fusion proteins are targeted to and serve as markers of the plasma membrane. Moreover, our data suggest that these two lipid-modified protein fusions are dynamically targeted both to overlapping as well as distinct lipid-enriched compartments within cells. These transgenic strains not only represent high-contrast reporters of cell morphology and plasma membrane dynamics, but also may be used as in vivo sensors of lipid localization. Furthermore, combining these reporters with the study of mouse mutants will be a step forward in understanding the inter- and intracellular behaviors underlying morphogenesis in both normal and mutant contexts.
Collapse
Affiliation(s)
- Jerry M. Rhee
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Melinda K. Pirity
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Chantal S. Lackan
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Jonathan Z. Long
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Gen Kondoh
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junji Takeda
- Department of Social and Environmental Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
25
|
Abstract
With the sequence of the mouse genome known, it is now possible to create or identify mutations in every gene to determine the molecules necessary for normal development. Consequently, there is a growing need for advanced phenotyping tools to best understand defects produced by altering gene function. Perhaps nothing is more satisfying than to directly observe a process in action; to disturb it and see for ourselves how the process changes before our very eyes. No doubt, this desire is what drove the invention of the very first microscopes and continues to this day to fuel progress in the field of biological imaging. Because mouse embryos are small and develop embedded within many tissue layers within the nurturing environment of the mother, directly observing the dynamic, micro- and nanoscopic events of early mammalian development has proven to be one of the greater challenges for imaging scientists. Here, I will review some of the imaging methods being used to study mouse development, highlighting the results obtained from imaging.
Collapse
Affiliation(s)
- Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|