1
|
Pandit S, Kim MA, Jung JE, Choi HM, Jeon JG. Usnic acid brief exposure suppresses cariogenic properties and complexity of Streptococcus mutans biofilms. Biofilm 2024; 8:100241. [PMID: 39698471 PMCID: PMC11652789 DOI: 10.1016/j.bioflm.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids. The blanket of exopolysaccharides over the bacterial communities hinders the buffering by saliva, contributing to the initiation of tooth decay followed by the progression of dental caries. Considering the current interest towards the use of natural antimicrobial agents to disarm the cariogenic properties of dental biofilm, this study evaluated the antimicrobial activity and the effect of twice daily brief exposure (1 min) of usnic acid on acid production, acid tolerance and development of 3-dimensional architecture of Streptococcus mutans biofilm. Herein, biofilms were briefly treated twice daily during biofilm development and biofilms were analyzed by using biochemical, microbiological and microscopic examination. Results obtained in this study showed a significant reduction in virulence properties of biofilm cells treated with usnic acid in compared to non-treated biofilms. Furthermore, twice daily brief exposure of usnic acid significantly disrupted the acid production and reduced the complexity of Streptococcus mutans biofilm by disrupting the EPS production. Brief exposure of usnic acid inhibited the production of glucosyltransferase (GTF) enzymes and their enzymatic activity leading to inhibition in production of EPS on the biofilm matrix. In conclusion, usnic acid treatment reduced the cariogenic properties and complexity of S. mutans biofilm by inhibiting acid production, acid tolerance and disrupting extracellular polysaccharide (EPS) formation, indicating its potential for preventing dental caries.
Collapse
Affiliation(s)
- Santosh Pandit
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Mi-A Kim
- Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji-Eun Jung
- Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyeon-Mi Choi
- Department of Dentistry, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Jae-Gyu Jeon
- Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Gerardi D, Bernardi S, Bruni A, Falisi G, Botticelli G. Characterization and morphological methods for oral biofilm visualization: where are we nowadays? AIMS Microbiol 2024; 10:391-414. [PMID: 38919718 PMCID: PMC11194622 DOI: 10.3934/microbiol.2024020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The oral microbiome represents an essential component of the oral ecosystem whose symbiotic relationship contributes to health maintenance. The biofilm represents a state of living of microorganisms surrounding themselves with a complex and tridimensional organized polymeric support and defense matrix. The substrates where the oral biofilm adhere can suffer from damages due to the microbial community metabolisms. Therefore, microbial biofilm represents the main etiological factor of the two pathologies of dental interest with the highest incidence, such as carious pathology and periodontal pathology. The study, analysis, and understanding of the characteristics of the biofilm, starting from the macroscopic structure up to the microscopic architecture, appear essential. This review examined the morphological methods used through the years to identify species, adhesion mechanisms that contribute to biofilm formation and stability, and how the action of microbicidal molecules is effective against pathological biofilm. Microscopy is the primary technique for the morphological characterization of biofilm. Light microscopy, which includes the stereomicroscope and confocal laser microscopy (CLSM), allows the visualization of microbial communities in their natural state, providing valuable information on the spatial arrangement of different microorganisms within the biofilm and revealing microbial diversity in the biofilm matrix. The stereomicroscope provides a three-dimensional view of the sample, allowing detailed observation of the structure, thickness, morphology, and distribution of the various species in the biofilm while CLSM provides information on its three-dimensional architecture, microbial composition, and dynamic development. Electron microscopy, scanning (SEM) or transmission (TEM), allows the high-resolution investigation of the architecture of the biofilm, analyzing the bacterial population, the extracellular polymeric matrix (EPS), and the mechanisms of the physical and chemical forces that contribute to the adhesion of the biofilm to the substrates, on a nanometric scale. More advanced microscopic methodologies, such as scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HR-TEM), and correlative microscopy, have enabled the evaluation of antibacterial treatments, due to the potential to reveal the efficacy of different molecules in breaking down the biofilm. In conclusion, evidence based on scientific literature shows that established microscopic methods represent the most common tools used to characterize biofilm and its morphology in oral microbiology. Further protocols and studies on the application of advanced microscopic techniques are needed to obtain precise details on the microbiological and pathological aspects of oral biofilm.
Collapse
Affiliation(s)
- Davide Gerardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Angelo Bruni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianluca Botticelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Mattern R, Ernst S, Böcher S, Braun A, Wenzler JS, Conrads G. CLSM-Guided Imaging for Quantifying Endodontic Disinfection. Antibiotics (Basel) 2024; 13:54. [PMID: 38247613 PMCID: PMC10812411 DOI: 10.3390/antibiotics13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Elimination of microbes in the root canal system is crucial for achieving long-term success in endodontic treatment. Further efforts in study design and standardization are needed in order to improve the validity and comparability of in vitro results on endodontic disinfection procedures, in turn improving clinical outcomes. This study optimizes two models at all steps: tooth selection, pretreatment, inoculation method (by growth or centrifugation), and confocal laser scanning microscopy (CLSM)-guided imaging of LIVE/DEAD-stained specimens. Individual anatomical conditions lead to substantial differences in penetration depth. Sclerosis grading (SCG), a classification system introduced in this study, provides information about the sclerosis status of the dentine and is helpful for careful, specific, and comparable tooth selection in in vitro studies. Sonically activated EDTA for the pretreatment of roots, inoculation of Enterococcus faecalis in an overflow model, 3-4 weeks of incubation, as well as polishing of dentine slices before staining, led to advances in the visualization of bacterial penetration and irrigation depths. In contrast, NaOCl pretreatment negatively affected performance reproducibility and should be avoided in any pretreatment. Nonsclerotized teeth (SCG0) can be used for microbial semilunar-shaped inoculation by centrifugation as a "quick-and-dirty" model for initial orientation. In conclusion, CLSM-guided imaging for quantifying endodontic infection/disinfection is a very powerful method after the fine-tuning of materials and methods.
Collapse
Affiliation(s)
- Rebecca Mattern
- Department of Operative Dentistry, Periodontology, and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany; (R.M.); (S.B.); (A.B.); (J.-S.W.)
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology, and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Sabrina Ernst
- Confocal Microscopy Facility, Interdisciplinary Center for Clinical Research IZKF, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany;
| | - Sarah Böcher
- Department of Operative Dentistry, Periodontology, and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany; (R.M.); (S.B.); (A.B.); (J.-S.W.)
| | - Andreas Braun
- Department of Operative Dentistry, Periodontology, and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany; (R.M.); (S.B.); (A.B.); (J.-S.W.)
| | - Johannes-Simon Wenzler
- Department of Operative Dentistry, Periodontology, and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany; (R.M.); (S.B.); (A.B.); (J.-S.W.)
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology, and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
4
|
Luiz MT, di Filippo LD, Dutra JAP, Viegas JSR, Silvestre ALP, Anselmi C, Duarte JL, Calixto GMF, Chorilli M. New Technological Approaches for Dental Caries Treatment: From Liquid Crystalline Systems to Nanocarriers. Pharmaceutics 2023; 15:pharmaceutics15030762. [PMID: 36986624 PMCID: PMC10054708 DOI: 10.3390/pharmaceutics15030762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Dental caries is the most common oral disease, with high prevalence rates in adolescents and low-income and lower-middle-income countries. This disease originates from acid production by bacteria, leading to demineralization of the dental enamel and the formation of cavities. The treatment of caries remains a global challenge and the development of effective drug delivery systems is a potential strategy. In this context, different drug delivery systems have been investigated to remove oral biofilms and remineralize dental enamel. For a successful application of these systems, it is necessary that they remain adhered to the surfaces of the teeth to allow enough time for the removal of biofilms and enamel remineralization, thus, the use of mucoadhesive systems is highly encouraged. Among the systems used for this purpose, liquid crystalline systems, polymer-based nanoparticles, lipid-based nanoparticles, and inorganic nanoparticles have demonstrated great potential for preventing and treating dental caries through their own antimicrobial and remineralization properties or through delivering drugs. Therefore, the present review addresses the main drug delivery systems investigated in the treatment and prevention of dental caries.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Leonardo Delello di Filippo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | | | | | - Caroline Anselmi
- School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3301-6998
| |
Collapse
|
5
|
Wang Y, Li T, Xue W, Zheng Y, Wang Y, Zhang N, Zhao Y, Wang J, Li Y, Wang C, Hu W. Physicochemical and Biological Insights Into the Molecular Interactions Between Extracellular DNA and Exopolysaccharides in Myxococcus xanthus Biofilms. Front Microbiol 2022; 13:861865. [PMID: 35531272 PMCID: PMC9073016 DOI: 10.3389/fmicb.2022.861865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular DNA (eDNA) is a critical component in the extracellular matrix (ECM) of bacterial biofilms, while little is known about the mechanisms underlying how eDNA integrates into the ECM through potential macromolecular interactions. Myxococcus xanthus biofilm was employed as a suitable model for the investigation due to the co-distribution of eDNA and exopolysaccharides (EPS) owing to their direct interactions in the ECM. DNA is able to combine with M. xanthus EPS to form a macromolecular conjugate, which is dominated by the electrostatic forces participating in the polymer-polymer interactions. Without intercalation binding, DNA-EPS interactions exhibit a certain degree of reversibility. Acting as a strong extracellular framework during biofilm formation process, the eDNA-EPS complex not only facilitates the initial cell adhesion and subsequent establishment of ECM architecture, but also renders cells within biofilms stress resistances that are relevant to the survival of M. xanthus in some hostile environments. Furthermore, the EPS protects the conjugated DNA from the degradation by nucleic acid hydrolases, which leads to the continuous and stable existence of eDNA in the native ECM of M. xanthus biofilms. These results will shed light on developing prevention and treatment strategies against biofilm-related risks.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Tingyi Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Weiwei Xue
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yue Zheng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yipeng Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ning Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yue Zhao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
- *Correspondence: Chuandong Wang,
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
- Wei Hu,
| |
Collapse
|
6
|
Keleş A, Keskin C, Kalkan M, Yakupoğulları Y, Gül M, Aydemir H, Şahin F. Visualization and characterization of Enterococcus faecalis biofilm structure in bovine dentin using 2D and 3D microscopic techniques. Arch Microbiol 2020; 203:269-277. [PMID: 32918096 DOI: 10.1007/s00203-020-02031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/11/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Bacterial biofilms are related to various dental and periodontal infectious diseases, and the characterization of this biological structure with micro-computed tomography (micro-CT) may offer valuable information for clinical and research applications. In this study, we aimed to develop a model to visualize three-dimensionally the biofilm structure on dentin using micro-CT. Dentin blocks were prepared and incubated in tryptic soy broth with Enterococcus faecalis (ATCC 29212). The control group did not receive any staining procedure, while groups 1 and 2 were stained with 100% and 50% barium sulfate, respectively. Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) were used to detect biofilm formation, barium sulfate penetration, and microbial cell density in the biofilm. Micro-computed tomography (micro-CT) (SkyScan 1172, Bruker Co., Belgium) was used to visualize biofilm formation on the dentin blocks. Biofilm thicknesses were measured from 10 different locations on the specimen surfaces, using CTAn v.1.14.4 software. Obtained data were statistically analyzed using Kruskal-Wallis and Dunn's tests. TEM photomicrographs showed that barium sulfate could penetrate the biofilm structure. CLSM analysis showed that viable and total cell densities were similar between the control and barium sulfate-treated groups (P > 0.05), indicating barium sulfate had no significant influence on cell density. In barium sulfate-treated blocks, biofilm could be discriminated from the dentin, and its thickness could be measured with micro-CT. This study showed that bacterial biofilm on dentin could be characterized by micro-CT after barium sulfate staining without causing any significant side effect on viable and total cell densities.
Collapse
Affiliation(s)
- Ali Keleş
- Department of Endodontics, Faculty of Dentistry, Ondokuz Mayıs University Samsun, Samsun, Turkey
| | - Cangül Keskin
- Department of Endodontics, Faculty of Dentistry, Ondokuz Mayıs University Samsun, Samsun, Turkey.
| | - Melis Kalkan
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Yusuf Yakupoğulları
- Department of Medical Microbiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Hikmet Aydemir
- Department of Endodontics, Faculty of Dentistry, Ondokuz Mayıs University Samsun, Samsun, Turkey
| | - Fikrettin Şahin
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
7
|
Characterization of Scardovia wiggsiae Biofilm by Original Scanning Electron Microscopy Protocol. Microorganisms 2020; 8:microorganisms8060807. [PMID: 32471210 PMCID: PMC7355790 DOI: 10.3390/microorganisms8060807] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023] Open
Abstract
Early childhood caries (ECC) is a severe manifestation of carious pathology with rapid and disruptive progression. The ECC microbiota includes a wide variety of bacterial species, among which is an anaerobic newly named species, Scardovia wiggsiae, a previously unidentified Bifidobacterium. Our aim was to provide the first ultrastructural characterization of S. wiggsiae and its biofilm by scanning electron microscopy (SEM) using a protocol that faithfully preserved the biofilm architecture and allowed an investigation at very high magnifications (order of nanometers) and with the appropriate resolution. To accomplish this task, we analyzed Streptococcus mutans’ biofilm by conventional SEM and VP-SEM protocols, in addition, we developed an original procedure, named OsO4-RR-TA-IL, which avoids dehydration, drying and sputter coating. This innovative protocol allowed high-resolution and high-magnification imaging (from 10000× to 35000×) in high-vacuum and high-voltage conditions. After comparing three methods, we chose OsO4-RR-TA-IL to investigate S. wiggsiae. It appeared as a fusiform elongated bacterium, without surface specialization, arranged in clusters and submerged in a rich biofilm matrix, which showed a well-developed micro-canalicular system. Our results provide the basis for the development of innovative strategies to quantify the effects of different treatments, in order to establish the best option to counteract ECC in pediatric patients.
Collapse
|
8
|
Du Q, Fu M, Zhou Y, Cao Y, Guo T, Zhou Z, Li M, Peng X, Zheng X, Li Y, Xu X, He J, Zhou X. Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study. Sci Rep 2020; 10:2961. [PMID: 32076013 PMCID: PMC7031525 DOI: 10.1038/s41598-020-59733-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/30/2020] [Indexed: 02/05/2023] Open
Abstract
Sucrose has long been regarded as the most cariogenic carbohydrate. However, why sucrose causes severer dental caries than other sugars is largely unknown. Considering that caries is a polymicrobial infection resulting from dysbiosis of oral biofilms, we hypothesized that sucrose can introduce a microbiota imbalance favoring caries to a greater degree than other sugars. To test this hypothesis, an in vitro saliva-derived multispecies biofilm model was established, and by comparing caries lesions on enamel blocks cocultured with biofilms treated with sucrose, glucose and lactose, we confirmed that this model can reproduce the in vivo finding that sucrose has the strongest cariogenic potential. In parallel, compared to a control treatment, sucrose treatment led to significant changes within the microbial structure and assembly of oral microflora, while no significant difference was detected between the lactose/glucose treatment group and the control. Specifically, sucrose supplementation disrupted the homeostasis between acid-producing and alkali-producing bacteria. Consistent with microbial dysbiosis, we observed the most significant disequilibrium between acid and alkali metabolism in sucrose-treated biofilms. Taken together, our data indicate that the cariogenicity of sugars is closely related to their ability to regulate the oral microecology. These findings advance our understanding of caries etiology from an ecological perspective.
Collapse
Affiliation(s)
- Qian Du
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Fu
- University of Chinese Academy Sciences-Shenzhen Hospital, Shenzhen, China
| | - Yuan Zhou
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yangpei Cao
- The Department of Endodontics and the Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA, 90033, USA
| | - Zhou Zhou
- Clinical Skills Training Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyun Li
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zheng
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Xu
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jinzhi He
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Xuedong Zhou
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Souza JGS, Costa Oliveira BE, Bertolini M, Lima CV, Retamal-Valdes B, de Faveri M, Feres M, Barão VAR. Titanium particles and ions favor dysbiosis in oral biofilms. J Periodontal Res 2019; 55:258-266. [PMID: 31762055 DOI: 10.1111/jre.12711] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/20/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the effect of titanium (Ti) particles and ions on oral biofilm growth and composition. BACKGROUND Particles and ions of Ti released from dental implants can trigger unfavorable biological responses in human cells. However, their effect on oral biofilms composition has not been tested. METHODS In this blind in situ study, volunteers wore a palatal appliance containing Ti disks for 7 days to allow biofilm formation. Disks were then collected and biofilms were treated, in vitro, with Ti particles (0.75% and 1%), ions (10 and 20 ppm), or a combination of both (1% particles + 20 ppm ions). Biofilms exposed only to medium was used as control group. After 24 hours, biofilms were collected and analyzed by checkerboard DNA-DNA hybridization. Direct effects of Ti particles and ions on biofilm/cellular morphology were evaluated by transmission electron microscopy (TEM). RESULTS Ti particles affected biofilm composition, increasing population of four bacterial species (P < .05), while Ti ions showed higher levels of putative pathogens from the orange complex with reduction in species from the yellow complex (P < .05), compared with control. The combination of particles + ions increased green complex and reduced yellow complex proportions (P < .05). TEM showed clusters of particles agglomerated in extracellular environment, while Ti ions were precipitated in both extracellular and intracellular sites. CONCLUSIONS Ti products, especially Ti ions, have the potential to change the microbiological composition of biofilms formed on Ti surfaces. Therefore, the presence of Ti products around dental implants may contribute to microbial dysbiosis and peri-implantitis.
Collapse
Affiliation(s)
- João G S Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Bárbara E Costa Oliveira
- Department of Physiological Science, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Carolina Veloso Lima
- Department of Physiological Science, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Belén Retamal-Valdes
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Marcelo de Faveri
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Magda Feres
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| |
Collapse
|
10
|
Hrubanova K, Krzyzanek V, Nebesarova J, Ruzicka F, Pilat Z, Samek O. Monitoring Candida parapsilosis and Staphylococcus epidermidis Biofilms by a Combination of Scanning Electron Microscopy and Raman Spectroscopy. SENSORS 2018; 18:s18124089. [PMID: 30469521 PMCID: PMC6308600 DOI: 10.3390/s18124089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 02/03/2023]
Abstract
The biofilm-forming microbial species Candida parapsilosis and Staphylococcus epidermidis have been recently linked to serious infections associated with implanted medical devices. We studied microbial biofilms by high resolution scanning electron microscopy (SEM), which allowed us to visualize the biofilm structure, including the distribution of cells inside the extracellular matrix and the areas of surface adhesion. We compared classical SEM (chemically fixed samples) with cryogenic SEM, which employs physical sample preparation based on plunging the sample into various liquid cryogens, as well as high-pressure freezing (HPF). For imaging the biofilm interior, we applied the freeze-fracture technique. In this study, we show that the different means of sample preparation have a fundamental influence on the observed biofilm structure. We complemented the SEM observations with Raman spectroscopic analysis, which allowed us to assess the time-dependent chemical composition changes of the biofilm in vivo. We identified the individual spectral peaks of the biomolecules present in the biofilm and we employed principal component analysis (PCA) to follow the temporal development of the chemical composition.
Collapse
Affiliation(s)
- Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, CZ-61264 Brno, Czech Republic.
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, CZ-61264 Brno, Czech Republic.
| | - Jana Nebesarova
- Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic.
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital, CZ-65691 Brno, Czech Republic.
| | - Zdenek Pilat
- Institute of Scientific Instruments of the Czech Academy of Sciences, CZ-61264 Brno, Czech Republic.
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, CZ-61264 Brno, Czech Republic.
| |
Collapse
|
11
|
Sampaio AA, Souza SE, Ricomini-Filho AP, Del Bel Cury AA, Cavalcanti YW, Cury JA. Candida albicans Increases Dentine Demineralization Provoked by Streptococcus mutans Biofilm. Caries Res 2018; 53:322-331. [PMID: 30448846 DOI: 10.1159/000494033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Streptococcus mutans are considered the most cariogenic bacteria, but it has been suggested that Candida albicans could increase their cariogenicity. However, the effect of this dual-species microorganisms' combination on dentine caries has not been experimentally evaluated. Biofilms of C. albicans, S. mutans and C. albicans + S. mutans (n = 12/biofilm) were grown in ultra-filtered tryptone yeast extract broth culture medium for 96 h on root dentine slabs of known surface hardness and exposed 8 times per day for 3 min to 10% sucrose. The medium was changed 2 times per day (after the 8 cariogenic challenges and after the overnight period of famine), and aliquots were analyzed to determinate the pH (indicator of biofilm acidogenicity). After 96 h, the biofilms were collected to determine the wet weight, colony-forming units, and the amounts of extracellular polysaccharides (soluble and insoluble). Dentine demineralization was assessed by surface hardness loss (% SHL). The architecture of the biofilms was analyzed by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Data were analyzed by ANOVA followed by Tukey's test (α = 0.05). The dual-species C. albicans + S. mutans biofilm provoked higher % SHL on dentine (p < 0.05) than the S. mutans and C. albicans biofilm. This was supported by the results of biofilm acidogenicity and the amounts of soluble (6.4 ± 2.14 vs. 4.0 ± 0.94 and 1.9 ± 0.97, respectively) and insoluble extracellular polysaccharides (24.9 ± 9.22 vs. 18.9 ± 5.92 and 0.7 ± 0.48, respectively) (p < 0.05). The C. albicans biofilm alone presented low cariogenicity. The images by CLSM and TEM, respectively, suggest that the C. albicans + S. mutans biofilm is more voluminous than the S. mutans biofilm, and S. mutans cells interact with C. albicans throughout polysaccharides from the biofilm matrix. These findings show that C. albicans enhances the cariogenic potential of the S. mutans biofilm, increasing dentine demineralization.
Collapse
Affiliation(s)
- Aline A Sampaio
- Piracicaba Dental School, UNICAMP, Piracicaba, Brazil.,Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Samilly E Souza
- Piracicaba Dental School, UNICAMP, Piracicaba, Brazil.,Federal University of Bahia, Salvador, Brazil
| | | | | | - Yuri W Cavalcanti
- Piracicaba Dental School, UNICAMP, Piracicaba, Brazil.,Federal University of Paraíba, João Pessoa, Brazil
| | - Jaime A Cury
- Piracicaba Dental School, UNICAMP, Piracicaba, Brazil,
| |
Collapse
|
12
|
Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, Jung HI, Ren Z, Li Y, Gubara S, Alawi F, Zero D, Hara AT, Cormode DP, Koo H. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun 2018; 9:2920. [PMID: 30065293 PMCID: PMC6068184 DOI: 10.1038/s41467-018-05342-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023] Open
Abstract
Ferumoxytol is a nanoparticle formulation approved by the U.S. Food and Drug Administration for systemic use to treat iron deficiency. Here, we show that, in addition, ferumoxytol disrupts intractable oral biofilms and prevents tooth decay (dental caries) via intrinsic peroxidase-like activity. Ferumoxytol binds within the biofilm ultrastructure and generates free radicals from hydrogen peroxide (H2O2), causing in situ bacterial death via cell membrane disruption and extracellular polymeric substances matrix degradation. In combination with low concentrations of H2O2, ferumoxytol inhibits biofilm accumulation on natural teeth in a human-derived ex vivo biofilm model, and prevents acid damage of the mineralized tissue. Topical oral treatment with ferumoxytol and H2O2 suppresses the development of dental caries in vivo, preventing the onset of severe tooth decay (cavities) in a rodent model of the disease. Microbiome and histological analyses show no adverse effects on oral microbiota diversity, and gingival and mucosal tissues. Our results reveal a new biomedical application for ferumoxytol as topical treatment of a prevalent and costly biofilm-induced oral disease. Ferumoxytol is a nanoparticle formulation approved for systemic use to treat iron deficiency. Liu et al. show that topical use of ferumoxytol, in combination with low concentrations of H2O2, disrupts intractable oral biofilms and prevents tooth decay in vitro and in an animal model.
Collapse
Affiliation(s)
- Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yue Huang
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aurea Simon-Soro
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hoi-In Jung
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhi Ren
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Li
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah Gubara
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Domenick Zero
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Anderson T Hara
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Spinola MS, Nóbrega DF, Del Bel Cury AA, Ricomini Filho AP, Cury JA, Tenuta LMA. Fluoride Penetration and Clearance Are Higher in Exopolysaccharide-Containing Bacterial Pellets. Caries Res 2018; 53:16-23. [PMID: 29874649 DOI: 10.1159/000488596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/09/2018] [Indexed: 11/19/2022] Open
Abstract
Extracellular polysaccharides (EPS) could increase the penetration of fluoride through dental biofilm, reducing its cariogenicity. We measured the concentration of fluoride in EPS-containing (EPS+) or not-containing (EPS-) Streptococcus mutans bacterial pellets resembling test biofilms, before and up to 60 min after a 0.05% NaF rinse in situ. Fluoride penetration and clearance were higher in EPS+ bacterial pellets. The data suggest that EPS enhances fluoride penetration, but also accelerates fluoride clearance from dental biofilms.
Collapse
Affiliation(s)
- Manuela S Spinola
- Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | | | | | | | - Livia Maria Andaló Tenuta
- Piracicaba Dental School, University of Campinas, Piracicaba, .,School of Dentistry, University of Michigan, Ann Arbor, Michigan,
| |
Collapse
|
14
|
Hrubanova K, Nebesarova J, Ruzicka F, Krzyzanek V. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm. Micron 2018; 110:28-35. [PMID: 29715620 DOI: 10.1016/j.micron.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
Abstract
In this study we present an innovative method for the preparation of fully hydrated samples of microbial biofilms of cultures Staphylococcus epidermidis, Candida parapsilosis and Candida albicans. Cryo-scanning electron microscopy (cryo-SEM) and high-pressure freezing (HPF) rank among cutting edge techniques in the electron microscopy of hydrated samples such as biofilms. However, the combination of these techniques is not always easily applicable. Therefore, we present a method of combining high-pressure freezing using EM PACT2 (Leica Microsystems), which fixes hydrated samples on small sapphire discs, with a high resolution SEM equipped with the widely used cryo-preparation system ALTO 2500 (Gatan). Using a holder developed in house, a freeze-fracturing technique was applied to image and investigate microbial cultures cultivated on the sapphire discs. In our experiments, we focused on the ultrastructure of the extracellular matrix produced during cultivation and the relationships among microbial cells in the biofilm. The main goal of our investigations was the detailed visualization of areas of the biofilm where the microbial cells adhere to the substrate/surface. We show the feasibility of this technique, which is clearly demonstrated in experiments with various freeze-etching times.
Collapse
Affiliation(s)
- Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Nebesarova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital, Brno, Czech Republic
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
15
|
Thurnheer T, Belibasakis GN. Streptococcus oralis maintains homeostasis in oral biofilms by antagonizing the cariogenic pathogen Streptococcus mutans. Mol Oral Microbiol 2018; 33:234-239. [PMID: 29327482 DOI: 10.1111/omi.12216] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
Bacteria residing in oral biofilms live in a state of dynamic equilibrium with one another. The intricate synergistic or antagonistic interactions between them are crucial for determining this balance. Using the six-species Zürich "supragingival" biofilm model, this study aimed to investigate interactions regarding growth and localization of the constituent species. As control, an inoculum containing all six strains was used, whereas in each of the further five inocula one of the bacterial species was alternately absent, and in the last, both streptococci were absent. Biofilms were grown anaerobically on hydroxyapatite disks, and after 64 h they were harvested and quantified by culture analyses. For visualization, fluorescence in situ hybridization and confocal laser scanning microscopy were used. Compared with the control, no statistically significant difference of total colony-forming units was observed in the absence of any of the biofilm species, except for Fusobacterium nucleatum, whose absence caused a significant decrease in total bacterial numbers. Absence of Streptococcus oralis resulted in a significant decrease in Actinomyces oris, and increase in Streptococcus mutans (P < .001). Absence of A. oris, Veillonella dispar or S. mutans did not cause any changes. The structure of the biofilm with regards to the localization of the species did not result in observable changes. In summary, the most striking observation of the present study was that absence of S. oralis resulted in limited growth of commensal A. oris and overgrowth of S. mutans. These data establish highlight S. oralis as commensal keeper of homeostasis in the biofilm by antagonizing S. mutans, so preventing a caries-favoring dysbiotic state.
Collapse
Affiliation(s)
- T Thurnheer
- Clinic of Preventive Dentistry, Periodontology and Cariology, Divison of Oral Microbiology and Immunology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
16
|
Bacterial colonization in the apical part of extracted human teeth following root-end resection and filling: a confocal laser scanning microscopy study. Clin Oral Investig 2017; 22:267-274. [PMID: 28349219 DOI: 10.1007/s00784-017-2107-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate Enterococcus faecalis colonization at the apical part of root canals following root-end resection and filling using confocal laser scanning microscopy (CLSM). MATERIALS AND METHODS The apical 3-mm root-ends of 55 extracted single rooted human teeth were resected, and 3-mm retrograde cavities were prepared and filled using either mineral trioxide aggregate (MTA), intermediate restorative material (IRM), or Biodentine (n = 10 each); 25 teeth served as controls. The roots were placed in an experimental model, sterilized, and coronally filled with E. faecalis bacterial suspension for 21 days. Then, the apical 3-mm segments were cut to get two slabs (coronal and apical). The slabs were stained using LIVE/DEAD BacLight Bacterial Viability Kit and evaluated using CLSM. RESULTS The fluorescence-stained areas were larger in the bucco-lingual directions compared with the mesio-distal directions (p < 0.05). The mean and maximal depths of bacterial colonization into the dentinal tubules were 755 and 1643 μm, respectively, with no differences between the root-end filling materials (p > 0.05). However, more live bacteria were found in the MTA group in comparison to IRM and Biodentine groups (p < 0.05). CONCLUSIONS CLSM can be used to histologically demonstrate bacterial root-end colonization following root-end filling. This colonization at the filling-dentine interfaces and deeper into the dentinal tubules may be inhomogeneous, favoring the bucco-lingual aspects of the root. CLINICAL RELEVANCE Following root-end resection and filling bacterial colonization may lead to inflammatory reactions at the periapical tissues; the viability of the colonized bacteria may be affected by the type of root-end filling material.
Collapse
|
17
|
O'Toole D, Hunter R, Allen T, Zekarias B, Lehmann J, Kim KS, Grab D, Corbeil LB. Effect of Histophilus somni on Heart and Brain Microvascular Endothelial Cells. Vet Pathol 2017; 54:629-639. [PMID: 28178428 DOI: 10.1177/0300985817691581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histophilus somni is a pathogenic gram-negative bacterium responsible for pneumonia and septicemia in cattle. Sequelae include infectious thrombotic meningoencephalitis (ITME), myocarditis, arthritis, and abortion. These syndromes are associated with widespread vasculitis and thrombosis, implicating a role for endothelium in pathogenesis. Histopathologic and immunohistochemical investigation of 10 natural cases of bovine H. somni myocarditis and 1 case of ITME revealed intravascular H. somni in large biofilm-like aggregates adherent to the luminal surface of microvascular endothelium. Ultrastructurally, bacterial communities were extracellular and closely associated with degenerating or contracted endothelial cells. Histophilus somni was identified by bacterial culture and/or immunohistochemistry. Western blots of the bacterial isolates revealed that they expressed the immunodominant protective 40 kDa OMP and immunoglobulin-binding protein A (IbpA) antigens. The latter is a large surface antigen and shed fibrillar antigen with multiple domains. The cytotoxic DR2Fic domain of IbpA was conserved as demonstrated by polymerase chain reaction. Treatment of endothelial cells in vitro with IbpA in crude culture supernatants or purified recombinant GST-IbpA DR2Fic (rDR2) cytotoxin induced retraction of cultured bovine brain microvascular endothelial cells. By contrast, no retraction of bovine endothelium was induced by mutant rDR2H/A with an inactive Fic motif or by a GST control, indicating that the cytotoxic DR2Fic motif plays an important role in endothelial cell retraction in vasculitis. The formation of biofilm-like aggregates by H. somni on bovine microvascular endothelium may be fundamental to its pathogenesis in heart and brain.
Collapse
Affiliation(s)
- D O'Toole
- 1 Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, WY, USA
| | - R Hunter
- 2 Hunter Cattle Company LLC, Wheatland, WY, USA
| | - T Allen
- 1 Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, WY, USA.,3 Current: Advantage Veterinary, Nampa, ID, USA
| | - B Zekarias
- 4 Department of Pathology, University of California, San Diego, CA, USA.,5 Current: Ceva-Biommune, Lenexa, KS, USA
| | - J Lehmann
- 5 Current: Ceva-Biommune, Lenexa, KS, USA.,6 Current: BioLegend San Diego, CA, USA
| | - K S Kim
- 7 School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - D Grab
- 7 School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - L B Corbeil
- 4 Department of Pathology, University of California, San Diego, CA, USA
| |
Collapse
|
18
|
Zhang T, Wang Z, Hancock REW, de la Fuente-Núñez C, Haapasalo M. Treatment of Oral Biofilms by a D-Enantiomeric Peptide. PLoS One 2016; 11:e0166997. [PMID: 27880799 PMCID: PMC5120842 DOI: 10.1371/journal.pone.0166997] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022] Open
Abstract
Almost all dental diseases are caused by biofilms that consist of multispecies communities. DJK-5, which is a short D-enantiomeric, protease-resistant peptide with broad-spectrum anti-biofilm activity, was tested for its effect on oral multispecies biofilms. Peptide DJK-5 at 10 μg/mL effectively prevented the growth of these microbes in culture media in a time-dependent manner. In addition to the prevention of growth, peptide DJK-5 completely killed both Streptococcus mutans and Enterococcus faecalis suspended from biofilms after 30 minutes of incubation in liquid culture media. DJK-5 also led to the effective killing of microbes in plaque biofilm. The proportion of bacterial cells killed by 10 μg/mL of DJK-5 was similar after 1 and 3 days, both exceeding 85%. DJK-5 was able to significantly prevent biofilm formation over 3 days (P = 0.000). After 72 hours of exposure, DJK-5 significantly reduced and almost completely prevented plaque biofilm production by more than 90% of biovolume compared to untreated controls (P = 0.000). The proportion of dead biofilm bacteria at the 10 μg/mL DJK-5 concentration was similar for 1- and 3-day-old biofilms, whereby >86% of the bacteria were killed. DJK-5 was also able to kill >79% and >85% of bacteria, respectively, after one-time and three brief treatments of 3-day-old biofilms. The combination of DJK-5 and chlorhexidine showed the best bacterial killing among all treatments, with ~83% and >88% of bacterial cells killed after 1 and 3 minutes, respectively. No significant difference was found in the percentage of biofilm killing amongst three donor plaque samples after DJK-5 treatment. In particular, DJK-5 showed strong performance in inhibiting biofilm development and eradicating pre-formed oral biofilms compared to L-enantiomeric peptide 1018. DJK-5 was very effective against oral biofilms when used alone or combined with chlorhexidine, and may be a promising agent for use in oral anti-biofilm strategies in the future.
Collapse
Affiliation(s)
- Tian Zhang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - César de la Fuente-Núñez
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. J Bacteriol 2016; 198:2651-61. [PMID: 27161116 DOI: 10.1128/jb.00021-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/01/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. IMPORTANCE Dental caries is one of the most prevalent and costly infectious diseases worldwide, caused by a biofilm formed on tooth surfaces. Novel strategies that compromise the ability of virulent species to assemble and maintain pathogenic biofilms could be an effective alternative to conventional antimicrobials that indiscriminately kill other oral species, including commensal bacteria. l-Arginine at 1.5% has been shown to be clinically effective in modulating cariogenic biofilms via alkali production by arginolytic bacteria. Using a mixed-species ecological model, we show new mechanisms by which l-arginine disrupts the process of biofilm matrix assembly and the dynamic microbial interactions that are associated with cariogenic biofilm development, without impacting the bacterial viability. These results may aid in the development of enhanced methods to control biofilms using l-arginine.
Collapse
|
20
|
Ren Z, Chen L, Li J, Li Y. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity. J Oral Microbiol 2016; 8:31095. [PMID: 27105419 PMCID: PMC4841093 DOI: 10.3402/jom.v8.31095] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 11/14/2022] Open
Abstract
Glycosyltransferase (Gtf) is one of the crucial virulence factors of Streptococcus mutans, a major etiological pathogen of dental caries. All the available evidence indicates that extracellular polysaccharide, particularly glucans produced by S. mutans Gtfs, contribute to the cariogenicity of dental biofilms. Therefore, inhibition of Gtf activity and the consequential polysaccharide synthesis may impair the virulence of cariogenic biofilms, which could be an alternative strategy to prevent the biofilm-related disease. Up to now, many Gtf inhibitors have been recognized in natural products, which remain the major and largely unexplored source of Gtf inhibitors. These include catechin-based polyphenols, flavonoids, proanthocyanidin oligomers, polymeric polyphenols, and some other plant-derived compounds. Metal ions, oxidizing agents, and some other synthetic compounds represent another source of Gtf inhibitors, with some novel molecules either discovered by structure-based virtual screening or synthesized based on key structures of known inhibitors as templates. Antibodies that inhibit one or more Gtfs have also been developed as topical agents. Although many agents have been shown to possess potent inhibitory activity against glucan synthesis by Gtfs, bacterial cell adherence, and caries development in animal models, much research remains to be performed to find out their mechanism of action, biological safety, cariostatic efficacies, and overall influence on the entire oral community. As a strategy to inhibit the virulence of cariogenic microbes rather than eradicate them from the microbial community, Gtf inhibition represents an approach of great potential to prevent dental caries.
Collapse
Affiliation(s)
- Zhi Ren
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | | | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China; @scu.edu.cn; @scu.edu.cn
| | | |
Collapse
|
21
|
Riley P, Moore D, Ahmed F, Sharif MO, Worthington HV, Cochrane Oral Health Group. Xylitol-containing products for preventing dental caries in children and adults. Cochrane Database Syst Rev 2015; 2015:CD010743. [PMID: 25809586 PMCID: PMC9345289 DOI: 10.1002/14651858.cd010743.pub2] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Dental caries is a highly prevalent chronic disease which affects the majority of people. It has been postulated that the consumption of xylitol could help to prevent caries. The evidence on the effects of xylitol products is not clear and therefore it is important to summarise the available evidence to determine its effectiveness and safety. OBJECTIVES To assess the effects of different xylitol-containing products for the prevention of dental caries in children and adults. SEARCH METHODS We searched the following electronic databases: the Cochrane Oral Health Group Trials Register (to 14 August 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2014, Issue 7), MEDLINE via OVID (1946 to 14 August 2014), EMBASE via OVID (1980 to 14 August 2014), CINAHL via EBSCO (1980 to 14 August 2014), Web of Science Conference Proceedings (1990 to 14 August 2014), Proquest Dissertations and Theses (1861 to 14 August 2014). We searched the US National Institutes of Health Trials Register (http://clinicaltrials.gov) and the WHO Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA We included randomised controlled trials assessing the effects of xylitol products on dental caries in children and adults. DATA COLLECTION AND ANALYSIS Two review authors independently screened the results of the electronic searches, extracted data and assessed the risk of bias of the included studies. We attempted to contact study authors for missing data or clarification where feasible. For continuous outcomes, we used means and standard deviations to obtain the mean difference and 95% confidence interval (CI). We used the continuous data to calculate prevented fractions (PF) and 95% CIs to summarise the percentage reduction in caries. For dichotomous outcomes, we reported risk ratios (RR) and 95% CIs. As there were less than four studies included in the meta-analysis, we used a fixed-effect model. We planned to use a random-effects model in the event that there were four or more studies in a meta-analysis. MAIN RESULTS We included 10 studies that analysed a total of 5903 participants. One study was assessed as being at low risk of bias, two were assessed as being at unclear risk of bias, with the remaining seven being at high risk of bias.The main finding of the review was that, over 2.5 to 3 years of use, a fluoride toothpaste containing 10% xylitol may reduce caries by 13% when compared to a fluoride-only toothpaste (PF -0.13, 95% CI -0.18 to -0.08, 4216 children analysed, low-quality evidence).The remaining evidence on children, from small single studies with risk of bias issues and great uncertainty associated with the effect estimates, was insufficient to determine a benefit from xylitol products. One study reported that xylitol syrup (8 g per day) reduced caries by 58% (95% CI 33% to 83%, 94 infants analysed, low quality evidence) when compared to a low-dose xylitol syrup (2.67 g per day) consumed for 1 year.The following results had 95% CIs that were compatible with both a reduction and an increase in caries associated with xylitol: xylitol lozenges versus no treatment in children (very low quality body of evidence); xylitol sucking tablets versus no treatment in infants (very low quality body of evidence); xylitol tablets versus control (sorbitol) tablets in infants (very low quality body of evidence); xylitol wipes versus control wipes in infants (low quality body of evidence).There was only one study investigating the effects of xylitol lozenges, when compared to control lozenges, in adults (low quality body of evidence). The effect estimate had a 95% CI that was compatible with both a reduction and an increase in caries associated with xylitol.Four studies reported that there were no adverse effects from any of the interventions. Two studies reported similar rates of adverse effects between study arms. The remaining studies either mentioned adverse effects but did not report any usable data, or did not mention them at all. Adverse effects include sores in the mouth, cramps, bloating, constipation, flatulence, and loose stool or diarrhoea. AUTHORS' CONCLUSIONS We found some low quality evidence to suggest that fluoride toothpaste containing xylitol may be more effective than fluoride-only toothpaste for preventing caries in the permanent teeth of children, and that there are no associated adverse-effects from such toothpastes. The effect estimate should be interpreted with caution due to high risk of bias and the fact that it results from two studies that were carried out by the same authors in the same population. The remaining evidence we found is of low to very low quality and is insufficient to determine whether any other xylitol-containing products can prevent caries in infants, older children, or adults.
Collapse
Affiliation(s)
- Philip Riley
- School of Dentistry, The University of ManchesterCochrane Oral Health GroupJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Deborah Moore
- School of Dentistry, The University of ManchesterOxford RoadManchesterUKM13 9PL
| | - Farooq Ahmed
- University of Manchester Dental HospitalOrthodonticsHigher Cambridge StreetManchesterUKM15 6FH
| | - Mohammad O Sharif
- Eastman Dental HospitalSchool of Dentistry256 Gray's Inn RoadLondonUKWC1X 8LD
| | - Helen V Worthington
- School of Dentistry, The University of ManchesterCochrane Oral Health GroupJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | | |
Collapse
|
22
|
Klein MI, Hwang G, Santos PHS, Campanella OH, Koo H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol 2015; 5:10. [PMID: 25763359 PMCID: PMC4327733 DOI: 10.3389/fcimb.2015.00010] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/17/2015] [Indexed: 11/18/2022] Open
Abstract
Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.
Collapse
Affiliation(s)
- Marlise I Klein
- Center for Oral Biology, University of Rochester Rochester, NY, USA
| | - Geelsu Hwang
- Biofilm Research Lab, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Paulo H S Santos
- Whistler Center for Carbohydrate Research, Purdue University West Lafayette, IN, USA
| | - Osvaldo H Campanella
- Whistler Center for Carbohydrate Research, Purdue University West Lafayette, IN, USA
| | - Hyun Koo
- Biofilm Research Lab, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
23
|
Peters LB, Peterson B, Jaramillo DE, van der Sluis L. The Use of Scanning Electron Microscopy (SEM) in Visualizing the Root Canal Biofilm. SPRINGER SERIES ON BIOFILMS 2015. [DOI: 10.1007/978-3-662-47415-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Antimicrobial photodynamic therapy and dental plaque: a systematic review of the literature. ScientificWorldJournal 2014; 2014:824538. [PMID: 25379545 PMCID: PMC4212597 DOI: 10.1155/2014/824538] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
Background. The aim of this study was to perform a systematic review of the literature on the efficacy of antimicrobial photodynamic therapy (PDTa) on cariogenic dental biofilm. Types of Studies Reviewed. Studies in vivo, in vitro, and in situ were included. Articles that did not address PDTa, those that did not involve cariogenic biofilm, those that used microorganisms in the plankton phase, and reviews were excluded. Data extraction and quality assessments were performed independently by two raters using a scale. Results. Two hundred forty articles were retrieved; only seventeen of them met the eligibility criteria and were analyzed in the present review. Considerable variability was found regarding the methodologies and application protocols for antimicrobial PDTa. Two articles reported unfavorable results. Practical Implications. The present systematic review does not allow drawing any concrete conclusions regarding the efficacy of antimicrobial PDTa, although this method seems to be a promising option.
Collapse
|
25
|
Yoshida Y, Konno H, Nagano K, Abiko Y, Nakamura Y, Tanaka Y, Yoshimura F. The influence of a glucosyltransferase, encoded bygtfP, on biofilm formation byStreptococcus sanguinisin a dual-species model. APMIS 2014; 122:951-60. [DOI: 10.1111/apm.12238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yasuo Yoshida
- Department of Microbiology; Aichi Gakuin University School of Dentistry; Nagoya Japan
| | - Hiroyasu Konno
- Department of Microbiology; Aichi Gakuin University School of Dentistry; Nagoya Japan
- Department of Removable Prosthodontics; Aichi Gakuin University School of Dentistry; Nagoya Japan
| | - Keiji Nagano
- Department of Microbiology; Aichi Gakuin University School of Dentistry; Nagoya Japan
| | - Yuki Abiko
- Department of Microbiology; Aichi Gakuin University School of Dentistry; Nagoya Japan
| | - Yoshinori Nakamura
- Department of Removable Prosthodontics; Aichi Gakuin University School of Dentistry; Nagoya Japan
| | - Yoshinobu Tanaka
- Department of Removable Prosthodontics; Aichi Gakuin University School of Dentistry; Nagoya Japan
| | - Fuminobu Yoshimura
- Department of Microbiology; Aichi Gakuin University School of Dentistry; Nagoya Japan
| |
Collapse
|
26
|
de Melo WCMA, Avci P, de Oliveira MN, Gupta A, Vecchio D, Sadasivam M, Chandran R, Huang YY, Yin R, Perussi LR, Tegos GP, Perussi JR, Dai T, Hamblin MR. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti Infect Ther 2014; 11:669-93. [PMID: 23879608 DOI: 10.1586/14787210.2013.811861] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents.
Collapse
Affiliation(s)
- Wanessa C M A de Melo
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
In vitro activity of Carvacrol against titanium-adherent oral biofilms and planktonic cultures. Clin Oral Investig 2014; 18:2001-13. [PMID: 24458367 DOI: 10.1007/s00784-013-1179-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/26/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of this study was to test the effect of Carvacrol against oral pathogens and their preformed biofilms on titanium disc surface. METHODS Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and biofilm inhibitory concentration (BIC) were performed to evaluate Carvacrol antibacterial activity, while flow cytometry (FCM) was used to verify the Carvacrol effect on esterase activity and membrane permeability. Carvacrol was tested in vitro on single- and multi-species biofilms formed on titanium disc by Streptococcus mutans ATCC 25175, Porphyromonas gingivalis ATCC 33277 or Fusobacterium nucleatum ATCC 25586, in different combinations, comparing its effect to that of chlorhexidine. RESULTS The pathogens were sensitive to Carvacrol with MICs and MBCs values of 0.25 % and 0.50 % and BICs of 0.5 % for S. mutans ATCC 25175 and 1 % for P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586. FCM analysis showed that treatment of planktonic cultures with Carvacrol caused an increase of damaged cells and a decrement of bacteria with active esterase activity. Moreover, Carvacrol demonstrated greater biofilm formation preventive property compared to chlorhexidine against titanium-adherent single- and multi-specie biofilms, with statistically significant values. CONCLUSIONS Carvacrol showed inhibitory activity against the tested oral pathogens and biofilm formation preventive property on their oral biofilm; then, it could be utilized to control and prevent the colonization of microorganisms with particular significance in human oral diseases. CLINICAL RELEVANCE This natural compound may be proposed in daily hygiene formulations or as an alternative agent supporting traditional antimicrobial protocols to prevent periodontal diseases in implanted patients.
Collapse
|
28
|
Weber K, Delben J, Bromage TG, Duarte S. Comparison of SEM and VPSEM imaging techniques with respect toStreptococcus mutansbiofilm topography. FEMS Microbiol Lett 2013; 350:175-9. [DOI: 10.1111/1574-6968.12334] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kathryn Weber
- Basic Science and Craniofacial Biology; New York University College of Dentistry; New York NY USA
| | - Juliana Delben
- Basic Science and Craniofacial Biology; New York University College of Dentistry; New York NY USA
| | - Timothy G. Bromage
- Department of Biomaterials and Biomimetics; New York University College of Dentistry; New York NY USA
| | - Simone Duarte
- Basic Science and Craniofacial Biology; New York University College of Dentistry; New York NY USA
| |
Collapse
|
29
|
Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 2013; 92:1065-73. [PMID: 24045647 DOI: 10.1177/0022034513504218] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.
Collapse
Affiliation(s)
- H Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
30
|
Shahid SK. Rhinosinusitis in children. ISRN OTOLARYNGOLOGY 2012; 2012:851831. [PMID: 23762621 PMCID: PMC3671714 DOI: 10.5402/2012/851831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/01/2012] [Indexed: 11/25/2022]
Abstract
Rhinosinusitis is the inflammation of the mucous membranes of nose and paranasal sinus(es). 5-13% of upper respiratory tract infections in children complicate into acute rhinosinusitis. Though not life threatening, it profoundly affects child's school performance and sleep pattern. If untreated, it could progress to chronic rhinosinusitis (CRS). The pathogens involved in perpetuation of CRS consist of multidrug-resistant mixed microflora. CRS is challenging to manage and could further extend to cause eye or intracranial complications. In children, CRS diagnosis is often either missed or incomprehensive. Due to this, morbidity and strain on healthcare budget are tremendous. Flexible fiberoptic endoscopy has revolutionized management of CRS. Its utility in children is being increasingly recognized. Optimal management entails specific appropriate antimicrobials as well as treatment of underlying causes. The aim is to normalize sinus anatomy and physiology and regain normal mucociliary function and clearance.
Collapse
Affiliation(s)
- Sukhbir K. Shahid
- Department of Pediatrics and Neonatology, Shahid Clinic and Hospital, Maharashtra, Mumbai 400 077, India
| |
Collapse
|
31
|
Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR, Heydorn A, Koo H. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 2012; 8:e1002623. [PMID: 22496649 PMCID: PMC3320608 DOI: 10.1371/journal.ppat.1002623] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms.
Collapse
Affiliation(s)
- Jin Xiao
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Marlise I. Klein
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Megan L. Falsetta
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Bingwen Lu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Claire M. Delahunty
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Arne Heydorn
- Department of General Medicine, Glostrup Hospital, Glostrup, Denmark
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
32
|
Trappetti C, Ogunniyi AD, Oggioni MR, Paton JC. Extracellular matrix formation enhances the ability of Streptococcus pneumoniae to cause invasive disease. PLoS One 2011; 6:e19844. [PMID: 21611130 PMCID: PMC3097209 DOI: 10.1371/journal.pone.0019844] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022] Open
Abstract
During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100-fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease.
Collapse
Affiliation(s)
- Claudia Trappetti
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Abiodun D. Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| | - Marco R. Oggioni
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italy
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 2011; 45:69-86. [PMID: 21346355 PMCID: PMC3068567 DOI: 10.1159/000324598] [Citation(s) in RCA: 733] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 01/26/2011] [Indexed: 12/18/2022] Open
Abstract
The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation.
Collapse
Affiliation(s)
- W H Bowen
- Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA.
| | | |
Collapse
|
34
|
Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl Environ Microbiol 2010; 77:1254-62. [PMID: 21169451 DOI: 10.1128/aem.02001-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigation of microscale associations. Electron microscopy has been used extensively for geomicrobial investigations, and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions by conventional electron microscopy approaches with imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding the nature of interactions between microbial extracellular polymers and their environment.
Collapse
|
35
|
Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, Singh AP, Vorsa N. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res 2010; 44:116-26. [PMID: 20234135 DOI: 10.1159/000296306] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/27/2010] [Indexed: 11/19/2022] Open
Abstract
Cranberry crude extracts, in various vehicles, have shown inhibitory effects on the formation of oral biofilms in vitro. The presence of proanthocyanidins (PAC) in cranberry extracts has been linked to biological activities against specific virulence attributes of Streptococcus mutans, e.g. the inhibition of glucosyltransferase (Gtf) activity. The aim of the present study was to determine the influence of a highly purified and chemically defined cranberry PAC fraction on S. mutans biofilm formation on saliva-coated hydroxyapatite surface, and on dental caries development in Sprague-Dawley rats. In addition, we examined the ability of specific PAC (ranging from low-molecular-weight monomers and dimers to high-molecular-weight oligomers/polymers) to inhibit GtfB activity and glycolytic pH drop by S. mutans cells, in an attempt to identify specific bioactive compounds. Topical applications (60-second exposure, twice daily) with PAC (1.5 mg/ml) during biofilm formation resulted in less biomass and fewer insoluble polysaccharides than the biofilms treated with vehicle control had (10% ethanol, v/v; p < 0.05). The incidence of smooth-surface caries in rats was significantly reduced by PAC treatment (twice daily), and resulted in less severe carious lesions compared to the vehicle control group (p < 0.05); the animals treated with PAC also showed significantly less caries severity on sulcal surfaces (p < 0.05). Furthermore, specific A-type PAC oligomers (dimers to dodecamers; 0.1 mg/ml) effectively diminished the synthesis of insoluble glucans by GtfB adsorbed on a saliva-coated hydroxyapatite surface, and also affected bacterial glycolysis. Our data show that cranberry PAC reduced the formation of biofilms by S. mutans in vitro and dental caries development in vivo, which may be attributed to the presence of specific bioactive A-type dimers and oligomers.
Collapse
Affiliation(s)
- H Koo
- Eastman Department of Dentistry, University of Rochester Medical Center, Rochester, NY 14620, USA. hyun_koo @ urmc.rochester.edu
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.
Collapse
|
37
|
Díaz-Visurraga J, García A, Cárdenas G. Lethal effect of chitosan-Ag (I) films on Staphylococcus aureus as evaluated by electron microscopy. J Appl Microbiol 2009; 108:633-46. [PMID: 19664066 DOI: 10.1111/j.1365-2672.2009.04447.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM This article investigated the lethal effect and morphological changes on Staphylococcus aureus strains ATCC 25923 and ATCC 6538P produced by chitosan-Ag (I) films as observed by electron microscopy. METHODS AND RESULTS The antimicrobial activity of films against staphylococci was determined using the broth dilution method and agar diffusion test. Killing curves, transmission and scanning electron microscopy (TEM and SEM) techniques were employed to evaluate the bacterial death and morphological changes in bacterial cells after exposure to chitosan-Ag (I) films. Films affected the cell structure of Staph. aureus, causing elongation of cells, disaggregation of grape-like cluster, contraction of bacterial cytoplasm, thickening of cell wall, increase in cell wall roughness, cell disruption with loss of intracellular material, filamentation and bacteriolysis, as seen in the micrographs following 3, 6, 12 and 16 h of incubation. CONCLUSIONS Obtained images clearly show that chitosan-Ag (I) films have a notable antistaphylococcal activity. SIGNIFICANCE AND IMPACT OF THE STUDY Information from this study can be employed in guiding future strategies to improve the design of materials for the food industry packaging.
Collapse
Affiliation(s)
- J Díaz-Visurraga
- CIPA-Chile, Faculty of Chemistry Sciences, Department of Polymers, Advanced Materials Laboratory, University of Concepcion, Concepcion, Chile
| | | | | |
Collapse
|
38
|
Sun Y, Dowd SE, Smith E, Rhoads DD, Wolcott RD. In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair Regen 2009; 16:805-13. [PMID: 19128252 DOI: 10.1111/j.1524-475x.2008.00434.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multispecies biofilms are becoming increasingly recognized as the naturally occurring state in which bacteria reside. One of the primary health issues that is now recognized to be exacerbated by biofilms are chronic, nonhealing wounds such as venous leg ulcers, diabetic foot ulcers, and pressure ulcers. Arguably three of the most important species associated with multispecies biofilms that our group sees clinically are Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus. This study was conducted to address the need for a chronic pathogenic biofilm laboratory model that allows for cooperative growth of these three organisms. We have developed a novel media formulation, simple laboratory system, quantitative polymerase chain reaction for monitoring population dynamics, and methods for objectively and subjectively measuring biofilm formation. The Lubbock chronic wound pathogenic biofilm withstood treatment with a 50-fold higher concentration of bleach than that which was completely bacteriocidal for fully turbid planktonic cultures. The Lubbock chronic wound pathogenic biofilm when treated with biofilm effectors such as gallium nitrate and triclosan responded with selective inhibition of Pseudomonas aeruginosa or Staphylococcus aureus, respectively, as has been reported in the literature. The ability of this 24-hour model to react as predicted using known biofilm effectors suggests that it will lend itself to future work in the development and testing of first-generation chronic wounds pathogenic biofilm therapeutics. We have defined a realistic in vitro multispecies biofilm model simulating the functional characteristics of chronic pathogenic biofilms and developed effective tools for its characterization and analyses.
Collapse
Affiliation(s)
- Yan Sun
- Medical Biofilm Research Institute, Lubbock, Texas 79410, USA
| | | | | | | | | |
Collapse
|
39
|
Quindós G, Villar-Vidal M, Eraso E. Actividad de la micafungina contra las biopelículas de Candida. Rev Iberoam Micol 2009; 26:49-55. [DOI: 10.1016/s1130-1406(09)70008-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/12/2009] [Indexed: 01/10/2023] Open
|
40
|
Hsiong SX, Cooke PH, Kong HJ, Fishman ML, Ericsson M, Mooney DJ. AFM imaging of RGD presenting synthetic extracellular matrix using gold nanoparticles. Macromol Biosci 2008; 8:469-77. [PMID: 18383570 DOI: 10.1002/mabi.200700313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several high-resolution imaging techniques such as FESEM, TEM and AFM are compared with respect to their application on alginate hydrogels, a widely used polysaccharide biomaterial. A new AFM method applicable to RGD peptides covalently conjugated to alginate hydrogels is described. High-resolution images of RGD adhesion ligand distribution were obtained by labeling biotinylated RGD peptides with streptavidin-labeled gold nanoparticles. This method may broadly provide a useful tool for sECM characterization and design for tissue regeneration strategies.
Collapse
Affiliation(s)
- Susan X Hsiong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
41
|
Silva WJD, Seneviratne J, Parahitiyawa N, Rosa EAR, Samaranayake LP, Cury AADB. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J 2008; 19:364-9. [DOI: 10.1590/s0103-64402008000400014] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 11/22/2022] Open
Abstract
2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay has been used to study Candida biofilm formation. However, considering that the XTT reduction assay is dependent on cell activity, its use for evaluating mature biofilms may lead to inaccuracies since biofilm bottom cell layers tend to be relatively quiescent at later stages of biofilm formation. The aim of this study was to improve XTT reduction assay by adding glucose supplements to the standard XTT formulation. Candida albicans ATCC 90028 was used to form 24-, 48- and 72-h biofilms. The oxidative activity at 90, 180 and 270 min of incubation was evaluated. The control consisted of standard XTT formulation without glucose supplements, and was modified by the addition of 50, 100 and 200 mM of glucose. The XTT assay with 200 mM glucose showed more accurate and consistent readings correlating with biofilm development at 24, 48 and 72 h. Biofilm growth yield after 180 min incubation, when evaluated with the 200 mM glucose supplemented XTT, produced the most consistent readings on repetitive testing. It may be concluded that glucose supplementation of XTT could minimize variation and produce more accurate data for the XTT assay.
Collapse
|