1
|
Persano F, Parodi A, Pallaeva T, Kolesova E, Zamyatnin AA, Pokrovsky VS, De Matteis V, Leporatti S, Cascione M. Atomic Force Microscopy: A Versatile Tool in Cancer Research. Cancers (Basel) 2025; 17:858. [PMID: 40075706 PMCID: PMC11899184 DOI: 10.3390/cancers17050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The implementation of novel analytic methodologies in cancer and biomedical research has enabled the quantification of parameters that were previously disregarded only a few decades ago. A notable example of this paradigm shift is the widespread integration of atomic force microscopy (AFM) into biomedical laboratories, significantly advancing our understanding of cancer cell biology and treatment response. AFM allows for the meticulous monitoring of different parameters at the molecular and nanoscale levels, encompassing critical aspects such as cell morphology, roughness, adhesion, stiffness, and elasticity. These parameters can be systematically investigated in correlation with specific cell treatment, providing important insights into morpho-mechanical properties during normal and treated conditions. The resolution of this system holds the potential for its systematic adoption in clinics; its application could produce useful diagnostic information regarding the aggressiveness of cancer and the efficacy of treatment. This review endeavors to analyze the current literature, underscoring the pivotal role of AFM in biomedical research, especially in cancer cases, while also contemplating its prospective application in a clinical context.
Collapse
Affiliation(s)
- Francesca Persano
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
| | - Tatiana Pallaeva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
- Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Ekaterina Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
| | - Andrey A. Zamyatnin
- Department of Biological Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vadim S. Pokrovsky
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
- N.N. Blokhin Medical Research Center of Oncology, 115478 Moscow, Russia
- Patrice Lumumba People’s Friendship University, 117198 Moscow, Russia
| | - Valeria De Matteis
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Mariafrancesca Cascione
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
2
|
Mousavi S, Hardy JG. In-situ microscopy and digital image correlation to study the mechanical characteristics of polymer-based materials. DISCOVER MATERIALS 2025; 5:41. [PMID: 39981354 PMCID: PMC11836150 DOI: 10.1007/s43939-025-00208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
In-situ microscopic methods can help researchers to analyse microstructural changes of materials structures under different conditions (e.g., temperature and pressure) at various length scales. Digital Image Correlation (DIC) combines image registration and tracking to enable accurate measurements of changes in materials in 2D and 3D. This review focuses on combining microscopy and DIC to study the properties of materials (including natural/synthetic biomaterials, biological samples and their composites) in academic, public and industry settings, including exciting examples of bioimaging.
Collapse
Affiliation(s)
- Seyedtaghi Mousavi
- Department of Biochemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB UK
- Materials Science Lancaster, Lancaster University, Lancaster, Lancashire LA1 4YB UK
| |
Collapse
|
3
|
Medina-Ramirez IE, Macias-Diaz JE, Masuoka-Ito D, Zapien JA. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research. DISCOVER NANO 2024; 19:64. [PMID: 38594446 PMCID: PMC11003950 DOI: 10.1186/s11671-024-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.
Collapse
Affiliation(s)
- Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| | - J E Macias-Diaz
- Department of Mathematics and Physics, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
4
|
Matheson AB, Koutsos V, Euston SR, Clegg PS. Atomic Force Microscopy of Phytosterol Based Edible Oleogels. Gels 2023; 9:750. [PMID: 37754431 PMCID: PMC10530765 DOI: 10.3390/gels9090750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
This work reviews the use of atomic force microscopy (AFM) as a tool to investigate oleogels of edible triglyceride oils. Specific attention is given to those oleogels based on phytosterols and their esters, a class of material the authors have studied extensively. This work consists of a summary of the role of AFM in imaging edible oleogels, including the processing and preparation steps required to obtain high-quality AFM images of them. Finally, there is a comparison between AFM and other techniques that may be used to obtain structural information from oleogel samples. The aim of this review is to provide a useful introduction and summary of the technique for researchers in the fields of gels and food sciences looking to perform AFM measurements on edible oleogels.
Collapse
Affiliation(s)
- Andrew B. Matheson
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3FD, UK
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Sanderson Building, Edinburgh EH9 3FB, UK
| | - Stephen R. Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 0C3, Canada
| | - Paul S. Clegg
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3FD, UK
| |
Collapse
|
5
|
Eroles M, Lopez-Alonso J, Ortega A, Boudier T, Gharzeddine K, Lafont F, Franz CM, Millet A, Valotteau C, Rico F. Coupled mechanical mapping and interference contrast microscopy reveal viscoelastic and adhesion hallmarks of monocyte differentiation into macrophages. NANOSCALE 2023. [PMID: 37378568 DOI: 10.1039/d3nr00757j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Monocytes activated by pro-inflammatory signals adhere to the vascular endothelium and migrate from the bloodstream to the tissue ultimately differentiating into macrophages. Cell mechanics and adhesion play a crucial role in macrophage functions during this inflammatory process. However, how monocytes change their adhesion and mechanical properties upon differentiation into macrophages is still not well understood. In this work, we used various tools to quantify the morphology, adhesion, and viscoelasticity of monocytes and differentiatted macrophages. Combination of atomic force microscopy (AFM) high resolution viscoelastic mapping with interference contrast microscopy (ICM) at the single-cell level revealed viscoelasticity and adhesion hallmarks during monocyte differentiation into macrophages. Quantitative holographic tomography imaging revealed a dramatic increase in cell volume and surface area during monocyte differentiation and the emergence of round and spread macrophage subpopulations. AFM viscoelastic mapping showed important stiffening (increase of the apparent Young's modulus, E0) and solidification (decrease of cell fluidity, β) on differentiated cells that correlated with increased adhesion area. These changes were enhanced in macrophages with a spread phenotype. Remarkably, when adhesion was perturbed, differentiated macrophages remained stiffer and more solid-like than monocytes, suggesting a permanent reorganization of the cytoskeleton. We speculate that the stiffer and more solid-like microvilli and lamellipodia might help macrophages to minimize energy dissipation during mechanosensitive activities. Thus, our results revealed viscoelastic and adhesion hallmarks of monocyte differentiation that may be important for biological function.
Collapse
Affiliation(s)
- Mar Eroles
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | - Javier Lopez-Alonso
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alexandre Ortega
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | | | - Khaldoun Gharzeddine
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, La Tronche, France
- Department of Hepatogastroenterology, Centre Hospitalier Universitaire de Grenoble Alpes, La Tronche, France
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Arnaud Millet
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, La Tronche, France
- Department of Hepatogastroenterology, Centre Hospitalier Universitaire de Grenoble Alpes, La Tronche, France
| | - Claire Valotteau
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | - Felix Rico
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
6
|
Inomata N, Miyamoto T, Okabe K, Ono T. Measurement of cellular thermal properties and their temperature dependence based on frequency spectra via an on-chip-integrated microthermistor. LAB ON A CHIP 2023; 23:2411-2420. [PMID: 36880592 DOI: 10.1039/d2lc01185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To understand the mechanism of intracellular thermal transport, thermal properties must be elucidated, particularly thermal conductivity and specific heat capacity. However, these properties have not been extensively studied. In this study, we developed a cellular temperature measurement device with a high temperature resolution of 1.17 m °C under wet conditions and with the ability to introduce intracellular local heating using a focused infrared laser to cultured cells on the device surface. Using this device, we evaluated the thermal properties of single cells based on their temperature signals and responses. Measurements were taken using on-chip-integrated microthermistors with high temperature resolution at varying surrounding temperatures and frequencies of local infrared irradiation on cells prepared on the sensors. Frequency spectra were used to determine the intensities of the temperature signals with respect to heating times. Signal intensities at 37 °C and a frequency lower than 2 Hz were larger than those at 25 °C, which were similar to those of water. The apparent thermal conductivity and specific heat capacity, which were determined at different surrounding temperatures and local heating frequencies, were lower than and similar to those of water at 37 °C and 25 °C, respectively. Our results indicate that the thermal properties of cells depend on both temperatures and physiological activities in addition to local heating frequencies.
Collapse
Affiliation(s)
- Naoki Inomata
- Graduate School of Engineering, Tohoku University, 6-6-01 aza-Aoba Aoba, Sendai 980-8579, Japan.
| | - Takumi Miyamoto
- Graduate School of Engineering, Tohoku University, 6-6-01 aza-Aoba Aoba, Sendai 980-8579, Japan.
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033, Japan
| | - Takahito Ono
- Graduate School of Engineering, Tohoku University, 6-6-01 aza-Aoba Aoba, Sendai 980-8579, Japan.
| |
Collapse
|
7
|
Angeloni L, Popa B, Nouri-Goushki M, Minneboo M, Zadpoor AA, Ghatkesar MK, Fratila-Apachitei LE. Fluidic Force Microscopy and Atomic Force Microscopy Unveil New Insights into the Interactions of Preosteoblasts with 3D-Printed Submicron Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204662. [PMID: 36373704 DOI: 10.1002/smll.202204662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Physical patterns represent potential surface cues for promoting osteogenic differentiation of stem cells and improving osseointegration of orthopedic implants. Understanding the early cell-surface interactions and their effects on late cellular functions is essential for a rational design of such topographies, yet still elusive. In this work, fluidic force microscopy (FluidFM) and atomic force microscopy (AFM) combined with optical and electron microscopy are used to quantitatively investigate the interaction of preosteoblasts with 3D-printed patterns after 4 and 24 h of culture. The patterns consist of pillars with the same diameter (200 nm) and interspace (700 nm) but distinct heights (500 and 1000 nm) and osteogenic properties. FluidFM reveals a higher cell adhesion strength after 24 h of culture on the taller pillars (32 ± 7 kPa versus 21.5 ± 12.5 kPa). This is associated with attachment of cells partly on the sidewalls of these pillars, thus requiring larger normal forces for detachment. Furthermore, the higher resistance to shear forces observed for these cells indicates an enhanced anchorage and can be related to the persistence and stability of lamellipodia. The study explains the differential cell adhesion behavior induced by different pillar heights, enabling advancements in the rational design of osteogenic patterns.
Collapse
Affiliation(s)
- Livia Angeloni
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Bogdan Popa
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Mahdiyeh Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Murali K Ghatkesar
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| |
Collapse
|
8
|
Kahle ER, Patel N, Sreenivasappa HB, Marcolongo MS, Han L. Targeting cell-matrix interface mechanobiology by integrating AFM with fluorescence microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:67-81. [PMID: 36055517 PMCID: PMC9691605 DOI: 10.1016/j.pbiomolbio.2022.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Mechanosensing at the interface of a cell and its surrounding microenvironment is an essential driving force of physiological processes. Understanding molecular activities at the cell-matrix interface has the potential to provide novel targets for improving tissue regeneration and early disease intervention. In the past few decades, the advancement of atomic force microscopy (AFM) has offered a unique platform for probing mechanobiology at this crucial microdomain. In this review, we describe key advances under this topic through the use of an integrated system of AFM (as a biomechanical testing tool) with complementary immunofluorescence (IF) imaging (as an in situ navigation system). We first describe the body of work investigating the micromechanics of the pericellular matrix (PCM), the immediate cell micro-niche, in healthy, diseased, and genetically modified tissues, with a focus on articular cartilage. We then summarize the key findings in understanding cellular biomechanics and mechanotransduction, in which, molecular mechanisms governing transmembrane ion channel-mediated mechanosensing, cytoskeleton remodeling, and nucleus remodeling have been studied in various cell and tissue types. Lastly, we provide an overview of major technical advances that have enabled more in-depth studies of mechanobiology, including the integration of AFM with a side-view microscope, multiple optomicroscopy, a fluorescence recovery after photobleaching (FRAP) module, and a tensile stretching device. The innovations described here have contributed greatly to advancing the fundamental knowledge of extracellular matrix biomechanics and cell mechanobiology for improved understanding, detection, and intervention of various diseases.
Collapse
Affiliation(s)
- Elizabeth R Kahle
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Harini B Sreenivasappa
- Cell Imaging Center, Office of Research and Innovation, Drexel University, PA 19104, United States
| | - Michele S Marcolongo
- Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
9
|
Multiscale Mechanical Performance of Wood: From Nano- to Macro-Scale across Structure Hierarchy and Size Effects. NANOMATERIALS 2022; 12:nano12071139. [PMID: 35407258 PMCID: PMC9000298 DOI: 10.3390/nano12071139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
This review describes methods and results of studying the mechanical properties of wood at all scales: from nano- to macro-scale. The connection between the mechanical properties of material and its structure at all these levels is explored. It is shown that the existing size effects in the mechanical properties of wood, in a range of the characteristic sizes of the structure of about six orders of magnitude, correspond to the empirical Hall-Petch relation. This “law” was revealed more than 60 years ago in metals and alloys and later in other materials. The nature, as well as the particular type of the size dependences in different classes of materials can vary, but the general trend, “the smaller the stronger”, remains true both for wood and for other cellulose-containing materials. The possible mechanisms of the size effects in wood are being discussed. The correlations between the mechanical and thermophysical properties of wood are described. Several examples are used to demonstrate the possibility to forecast the macromechanical properties of wood by means of contactless thermographic express methods based on measuring temperature diffusivity. The research technique for dendrochronological and dendroclimatological studies by means of the analysis of microhardness and Young’s modulus radial dependences in annual growth rings is described.
Collapse
|
10
|
High Doses of Silica Nanoparticles Obtained by Microemulsion and Green Routes Compromise Human Alveolar Cells Morphology and Stiffness Differently. Bioinorg Chem Appl 2022; 2022:2343167. [PMID: 35140761 PMCID: PMC8820933 DOI: 10.1155/2022/2343167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
Among all the inorganic nanomaterials used in commercial products, industry, and medicine, the amorphous silica nanoparticles (SiO2 NPs) appeared to be often tolerated in living organisms. However, despite several toxicity studies, some concerns about the exposure to high doses of SiO2 NPs with different sizes were raised. Then, we used the microemulsion method to obtain stable SiO2 NPs having different sizes (110 nm, 50 nm, and 25 nm). In addition, a new one-pot green synthetic route using leaves extract of Laurus nobilis was performed, obtaining monodispersed ultrasmall SiO2 NPs without the use of dangerous chemicals. The NPs achieved by microemulsion were further functionalized with amino groups making the NPs surface positively charged. Then, high doses of SiO2 NPs (1 mg/mL and 3 mg/mL) achieved from the two routes, having different sizes and surface charges, were used to assess their impact on human alveolar cells (A549), being the best cell model mimicking the inhalation route. Cell viability and caspase-3 induction were analyzed as well as the cellular uptake, obtaining that the smallest (25 nm) and positive-charged NPs were more able to induce cytotoxicity, reaching values of about 60% of cell death. Surprisingly, cells incubated with green SiO2 NPs did not show strong toxicity, and 70% of them remained vital. This result was unusual for ultrasmall nanoobjects, generally highly toxic. The actin reorganization, nuclear morphology alteration, and cell membrane elasticity analyses confirmed the trend achieved from the biological assays. The obtained data demonstrate that the increase in cellular softness, i.e., the decrease in Young’s modulus, could be associated with the smaller and positive NPs, recording values of about 3 kPa. On the contrary, green NPs triggered a slight decrease of stiffness values (c.a. 6 kPa) compared to the untreated cells (c.a. 8 kPa). As the softer cells were implicated in cancer progression and metastasization, this evidence strongly supported the idea of a link between the cell elasticity and physicochemical properties of NPs that, in turn, influenced the interaction with the cell membrane. Thus, the green SiO2 NPs compromised cells to a lesser extent than the other SiO2 NPs types. In this scenario, the elasticity evaluation could be an interesting tool to understand the toxicity of NPs with the aim of predicting some pathological phenomena associated with their exposure.
Collapse
|
11
|
Li M, Xi N, Wang YC, Liu LQ. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Acta Pharmacol Sin 2021; 42:323-339. [PMID: 32807839 PMCID: PMC8027022 DOI: 10.1038/s41401-020-0494-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
Mechanics are intrinsic properties which appears throughout the formation, development, and aging processes of biological systems. Mechanics have been shown to play important roles in regulating the development and metastasis of tumors, and understanding tumor mechanics has emerged as a promising way to reveal the underlying mechanisms guiding tumor behaviors. In particular, tumors are highly complex diseases associated with multifaceted factors, including alterations in cancerous cells, tissues, and organs as well as microenvironmental cues, indicating that investigating tumor mechanics on multiple levels is significantly helpful for comprehensively understanding the effects of mechanics on tumor progression. Recently, diverse techniques have been developed for probing the mechanics of tumors, among which atomic force microscopy (AFM) has appeared as an excellent platform enabling simultaneously characterizing the structures and mechanical properties of living biological systems ranging from individual molecules and cells to tissue samples with unprecedented spatiotemporal resolution, offering novel possibilities for understanding tumor physics and contributing much to the studies of cancer. In this review, we survey the recent progress that has been achieved with the use of AFM for revealing micro/nanoscale mechanics in tumor development and metastasis. Challenges and future progress are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
| | - Yue-Chao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian-Qing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Liang W, Shi H, Yang X, Wang J, Yang W, Zhang H, Liu L. Recent advances in AFM-based biological characterization and applications at multiple levels. SOFT MATTER 2020; 16:8962-8984. [PMID: 32996549 DOI: 10.1039/d0sm01106a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy (AFM) has found a wide range of bio-applications in the past few decades due to its ability to measure biological samples in natural environments at a high spatial resolution. AFM has become a key platform in biomedical, bioengineering and drug research fields, enabling mechanical and morphological characterization of live biological systems. Hence, we provide a comprehensive review on recent advances in the use of AFM for characterizing the biomechanical properties of multi-scale biological samples, ranging from molecule, cell to tissue levels. First, we present the fundamental principles of AFM and two AFM-based models for the characterization of biomechanical properties of biological samples, covering key AFM devices and AFM bioimaging as well as theoretical models for characterizing the elasticity and viscosity of biomaterials. Then, we elaborate on a series of new experimental findings through analysis of biomechanics. Finally, we discuss the future directions and challenges. It is envisioned that the AFM technique will enable many remarkable discoveries, and will have far-reaching impacts on bio-related studies and applications in the future.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Haohao Shi
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Hemin Zhang
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang 110016, China.
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
13
|
Visser MJ, Pretorius E. Atomic Force Microscopy: The Characterisation of Amyloid Protein Structure in Pathology. Curr Top Med Chem 2020; 19:2958-2973. [DOI: 10.2174/1568026619666191121143240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
:
Proteins are versatile macromolecules that perform a variety of functions and participate in
virtually all cellular processes. The functionality of a protein greatly depends on its structure and alterations
may result in the development of diseases. Most well-known of these are protein misfolding disorders,
which include Alzheimer’s and Parkinson’s diseases as well as type 2 diabetes mellitus, where
soluble proteins transition into insoluble amyloid fibrils. Atomic Force Microscopy (AFM) is capable of
providing a topographical map of the protein and/or its aggregates, as well as probing the nanomechanical
properties of a sample. Moreover, AFM requires relatively simple sample preparation, which presents
the possibility of combining this technique with other research modalities, such as confocal laser
scanning microscopy, Raman spectroscopy and stimulated emission depletion microscopy. In this review,
the basic principles of AFM are discussed, followed by a brief overview of how it has been applied
in biological research. Finally, we focus specifically on its use as a characterisation method to
study protein structure at the nanoscale in pathophysiological conditions, considering both molecules
implicated in disease pathogenesis and the plasma protein fibrinogen. In conclusion, AFM is a userfriendly
tool that supplies multi-parametric data, rendering it a most valuable technique.
Collapse
Affiliation(s)
- Maria J.E. Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
14
|
Iturri J, Weber A, Moreno-Cencerrado A, Vivanco MDM, Benítez R, Leporatti S, Toca-Herrera JL. Resveratrol-Induced Temporal Variation in the Mechanical Properties of MCF-7 Breast Cancer Cells Investigated by Atomic Force Microscopy. Int J Mol Sci 2019; 20:E3275. [PMID: 31277289 PMCID: PMC6651212 DOI: 10.3390/ijms20133275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Atomic force microscopy (AFM) combined with fluorescence microscopy has been used to quantify cytomechanical modifications induced by resveratrol (at a fixed concentration of 50 µM) in a breast cancer cell line (MCF-7) upon temporal variation. Cell indentation methodology has been utilized to determine simultaneous variations of Young's modulus, the maximum adhesion force, and tether formation, thereby determining cell motility and adhesiveness. Effects of treatment were measured at several time-points (0-6 h, 24 h, and 48 h); longer exposures resulted in cell death. Our results demonstrated that AFM can be efficiently used as a diagnostic tool to monitor irreversible morpho/nano-mechanical changes in cancer cells during the early steps of drug treatment.
Collapse
Affiliation(s)
- Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology (DNBT), BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria.
| | - Andreas Weber
- Institute for Biophysics, Department of Nanobiotechnology (DNBT), BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| | - Alberto Moreno-Cencerrado
- Institute for Biophysics, Department of Nanobiotechnology (DNBT), BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
- Research Institute of Molecular Pathology (IMP). Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Rafael Benítez
- Department Matemáticas para la Economía y la Empresa, Facultad de Economía, Universidad de Valencia, Avda. Tarongers s/n, 46022 Valencia, Spain
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Polo di Nanotecnologia c/o Campus Ecoteckne, Via Monteroni, 73100 Lecce, Italy.
| | - José Luis Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology (DNBT), BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| |
Collapse
|
15
|
Efremov YM, Velay-Lizancos M, Weaver CJ, Athamneh AI, Zavattieri PD, Suter DM, Raman A. Anisotropy vs isotropy in living cell indentation with AFM. Sci Rep 2019; 9:5757. [PMID: 30962474 PMCID: PMC6453879 DOI: 10.1038/s41598-019-42077-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The measurement of local mechanical properties of living cells by nano/micro indentation relies on the foundational assumption of locally isotropic cellular deformation. As a consequence of assumed isotropy, the cell membrane and underlying cytoskeleton are expected to locally deform axisymmetrically when indented by a spherical tip. Here, we directly observe the local geometry of deformation of membrane and cytoskeleton of different living adherent cells during nanoindentation with the integrated Atomic Force (AFM) and spinning disk confocal (SDC) microscope. We show that the presence of the perinuclear actin cap (apical stress fibers), such as those encountered in cells subject to physiological forces, causes a strongly non-axisymmetric membrane deformation during indentation reflecting local mechanical anisotropy. In contrast, axisymmetric membrane deformation reflecting mechanical isotropy was found in cells without actin cap: cancerous cells MDA-MB-231, which naturally lack the actin cap, and NIH 3T3 cells in which the actin cap is disrupted by latrunculin A. Careful studies were undertaken to quantify the effect of the live cell fluorescent stains on the measured mechanical properties. Using finite element computations and the numerical analysis, we explored the capability of one of the simplest anisotropic models – transverse isotropy model with three local mechanical parameters (longitudinal and transverse modulus and planar shear modulus) – to capture the observed non-axisymmetric deformation. These results help identifying which cell types are likely to exhibit non-isotropic properties, how to measure and quantify cellular deformation during AFM indentation using live cell stains and SDC, and suggest modelling guidelines to recover quantitative estimates of the mechanical properties of living cells.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| | | | - Cory J Weaver
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,University of South Carolina, Department of Biological Sciences, Jones PSC Building, 712 Main Street, room 517, Columbia, SC, 29208, USA
| | - Ahmad I Athamneh
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Pablo D Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Daniel M Suter
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA. .,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA. .,Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA. .,Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana, USA.
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
16
|
De Matteis V, Cascione M, Toma CC, Pellegrino P, Rizzello L, Rinaldi R. Tailoring Cell Morphomechanical Perturbations Through Metal Oxide Nanoparticles. NANOSCALE RESEARCH LETTERS 2019; 14:109. [PMID: 30923929 PMCID: PMC6439097 DOI: 10.1186/s11671-019-2941-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/14/2019] [Indexed: 05/17/2023]
Abstract
The nowadays growing use of nanoparticles (NPs) in commercial products does not match a comprehensive understanding of their potential harmfulness. More in vitro investigations are required to address how the physicochemical properties of NPs guide their engulfment within cells and their intracellular trafficking, fate, and toxicity. These nano-bio interactions have not been extensively addressed yet, especially from a mechanical viewpoint. Cell mechanic is a critical indicator of cell health because it regulates processes like cell migration, tissue integrity, and differentiation via cytoskeleton rearrangements. Here, we investigated in vitro the elasticity perturbation of Caco-2 and A549 cell lines, in terms of Young's modulus modification induced by SiO2NPS and TiO2NPS. TiO2NPs demonstrated stronger effects on cell elasticity compared to SiO2NPs, as they induced significant morphological and morphometric changes in actin network. TiO2NPS increased the elasticity in Caco-2 cells, while opposite effects have been observed on A549 cells. These results demonstrate the existence of a correlation between the alteration of cell elasticity and NPs toxicity that depends, in turn, on the NPs physicochemical properties and the specific cell tested.
Collapse
Affiliation(s)
- Valeria De Matteis
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Mariafrancesca Cascione
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Chiara Cristina Toma
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Paolo Pellegrino
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Loris Rizzello
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| |
Collapse
|
17
|
Rosso G, Liashkovich I, Shahin V. In Situ Investigation of Interrelationships Between Morphology and Biomechanics of Endothelial and Glial Cells and their Nuclei. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801638. [PMID: 30643730 PMCID: PMC6325600 DOI: 10.1002/advs.201801638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 05/22/2023]
Abstract
Morphology and biomechanics of cells and nuclei are interlinked with one another and play key roles in fundamental physiological processes. While powerful approaches are available for performing separate morphological and biomechanical investigations on cells and nuclei, simultaneous investigations in situ are challenging. Here, an appropriate approach is presented based on the simultaneous combination of atomic force microscopy and confocal microscopy in situ. Two cell types with entirely different morphologies, physiological roles, and biomechanical environments are investigated: vascular endothelial cells (ECs) with dense cytoskeletal actin, and nervous system glial cells (Schwann cells (SCs)) with dense vimentin network. Results reveal that ECs and their nuclei show high pliability and tend to undergo deformation only at compression sites. SCs, in contrast, show greater ability to resist mechanical deformation. Likewise, SC nuclei are harder to deform than EC nuclei, despite that SC nuclei have significantly lower amounts of lamins A/C, which reportedly scale with nuclear stiffness. The morphology-biomechanics interrelationships in SCs, ECs, and their nuclei may be a key factor in ensuring their physiological functions. In adult SCs, mechanosensitivity is presumably traded for mechanical strength to protect the neurons they encase, whereas ECs maintain mechanosensitivity to ensure specific local physiological response to mechanical stimuli.
Collapse
Affiliation(s)
- Gonzalo Rosso
- Biotechnology CenterTechnische Universität DresdenTatzberg 47/4901307DresdenGermany
| | - Ivan Liashkovich
- Institute of Physiology IIUniversity of MünsterRobert‐Koch Str. 27b48149MünsterGermany
| | - Victor Shahin
- Institute of Physiology IIUniversity of MünsterRobert‐Koch Str. 27b48149MünsterGermany
| |
Collapse
|
18
|
|
19
|
Stylianou A, Kontomaris SV, Grant C, Alexandratou E. Atomic Force Microscopy on Biological Materials Related to Pathological Conditions. SCANNING 2019; 2019:8452851. [PMID: 31214274 PMCID: PMC6535871 DOI: 10.1155/2019/8452851] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 05/16/2023]
Abstract
Atomic force microscopy (AFM) is an easy-to-use, powerful, high-resolution microscope that allows the user to image any surface and under any aqueous condition. AFM has been used in the investigation of the structural and mechanical properties of a wide range of biological matters including biomolecules, biomaterials, cells, and tissues. It provides the capacity to acquire high-resolution images of biosamples at the nanoscale and allows at readily carrying out mechanical characterization. The capacity of AFM to image and interact with surfaces, under physiologically relevant conditions, is of great importance for realistic and accurate medical and pharmaceutical applications. The aim of this paper is to review recent trends of the use of AFM on biological materials related to health and sickness. First, we present AFM components and its different imaging modes and we continue with combined imaging and coupled AFM systems. Then, we discuss the use of AFM to nanocharacterize collagen, the major fibrous protein of the human body, which has been correlated with many pathological conditions. In the next section, AFM nanolevel surface characterization as a tool to detect possible pathological conditions such as osteoarthritis and cancer is presented. Finally, we demonstrate the use of AFM for studying other pathological conditions, such as Alzheimer's disease and human immunodeficiency virus (HIV), through the investigation of amyloid fibrils and viruses, respectively. Consequently, AFM stands out as the ideal research instrument for exploring the detection of pathological conditions even at very early stages, making it very attractive in the area of bio- and nanomedicine.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2238, Cyprus
| | - Stylianos-Vasileios Kontomaris
- Mobile Radio Communications Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
- Athens Metropolitan College, Sorou 74, Marousi 15125, Greece
| | - Colin Grant
- Hitachi High-Technologies Europe, Techspace One, Keckwick Lane, Warrington WA4 4AB, UK
| | - Eleni Alexandratou
- Biomedical Optics and Applied Biophysics Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
| |
Collapse
|
20
|
Transforming Growth Factor-β Promotes Morphomechanical Effects Involved in Epithelial to Mesenchymal Transition in Living Hepatocellular Carcinoma. Int J Mol Sci 2018; 20:ijms20010108. [PMID: 30597907 PMCID: PMC6337381 DOI: 10.3390/ijms20010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/20/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelial mesenchymal transition (EMT) is a physiological multistep process involving epithelial cells acquiring a mesenchymal-like phenotype. It is widely demonstrated that EMT is linked to tumor progression and metastasis. The transforming growth factor (TGF)-β pathways have been widely investigated, but its role in the hepatocarcinoma EMT is still unclear. While the biochemical pathways have been extensively studied, the alteration of biomechanical behavior correlated to cellular phenotype and motility is not yet fully understood. To better define the involvement of TGF-β1 in the metastatic progression process in different hepatocarcinoma cell lines (HepG2, PLC/PRF/5, HLE), we applied a systematic morphomechanical approach in order to investigate the physical and the structural characteristics. In addition, we evaluated the antitumor effect of LY2157299, a TGF-βR1 kinase inhibitor, from a biomechanical point of view, using Atomic Force and Confocal Microscopy. Our approach allows for validation of biological data, therefore it may be used in the future as a diagnostic tool to be combined with conventional biomolecular techniques.
Collapse
|
21
|
Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy. Nat Protoc 2018; 13:2200-2216. [DOI: 10.1038/s41596-018-0031-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Caluori G, Pribyl J, Pesl M, Oliver-De La Cruz J, Nardone G, Skladal P, Forte G. Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics. Front Physiol 2018; 9:1121. [PMID: 30174612 PMCID: PMC6107778 DOI: 10.3389/fphys.2018.01121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
The cell biomechanical properties play a key role in the determination of the changes during the essential cellular functions, such as contraction, growth, and migration. Recent advances in nano-technologies have enabled the development of new experimental and modeling approaches to study cell biomechanics, with a level of insights and reliability that were not possible in the past. The use of atomic force microscopy (AFM) for force spectroscopy allows nanoscale mapping of the cell topography and mechanical properties under, nearly physiological conditions. A proper evaluation process of such data is an essential factor to obtain accurate values of the cell elastic properties (primarily Young's modulus). Several numerical models were published in the literature, describing the depth sensing indentation as interaction process between the elastic surface and indenting probe. However, many studies are still relying on the nowadays outdated Hertzian model from the nineteenth century, or its modification by Sneddon. The lack of comparison between the Hertz/Sneddon model with their modern modifications blocks the development of advanced analysis software and further progress of AFM promising technology into biological sciences. In this work, we applied a rationalized use of mechanical models for advanced postprocessing and interpretation of AFM data. We investigated the effect of the mechanical model choice on the final evaluation of cellular elasticity. We then selected samples subjected to different physicochemical modulators, to show how a critical use of AFM data handling can provide more information than simple elastic modulus estimation. Our contribution is intended as a methodological discussion of the limitations and benefits of AFM-based advanced mechanical analysis, to refine the quantification of cellular elastic properties and its correlation to undergoing cellular processes in vitro.
Collapse
Affiliation(s)
- Guido Caluori
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Interventional Cardiac Electrophysiology, Brno, Czechia.,Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Jan Pribyl
- Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Martin Pesl
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Interventional Cardiac Electrophysiology, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,First Department of Internal Medicine/Cardioangiology, St. Anne's Hospital, Masaryk University, Brno, Czechia
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia
| | - Giorgia Nardone
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia
| | - Petr Skladal
- Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Giancarlo Forte
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia.,Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Atomic force microscopy for imaging and nanomechanical characterisation of live nematode epicuticle: A comparative Caenorhabditis elegans and Turbatrix aceti study. Ultramicroscopy 2018; 194:40-47. [PMID: 30071372 DOI: 10.1016/j.ultramic.2018.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/28/2018] [Accepted: 07/22/2018] [Indexed: 11/24/2022]
Abstract
Atomic force microscopy (AFM), a powerful tool in interdisciplinary biomedical research, has been applied here to investigate the surface of live nematodes epicuticle. We have used AFM in PeakForce Tapping non-resonant imaging and nanomechanical characterisation mode to investigate and compare the surface features of epicuticle of two free-living microscopic nematodes, Caenorhabditis elegans and Turbatrix aceti. We have successfully immobilised live anesthetized adult nematodes on glass supports using either layer-by-layer-deposited polyelectrolyte films or bioadhesive coatings, which allowed for imaging the living nematodes in native environment. We have obtained AFM images and corresponding nanomechanical maps of annular rings and furrows, demonstrating the differences in topography and structure between the species. Our results demonstrate that AFM in PeakForce Tapping mode can be used to image and characterise surfaces of relatively-large live immobilised multicellular organisms, which can be further applied to a number of invertebrates.
Collapse
|
24
|
Subcellular Imaging of Liquid Silicone Coated-Intestinal Epithelial Cells. Sci Rep 2018; 8:10763. [PMID: 30018393 PMCID: PMC6050225 DOI: 10.1038/s41598-018-28912-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/03/2018] [Indexed: 12/27/2022] Open
Abstract
Surface contamination and the formation of water bridge at the nanoscopic contact between an atomic force microscope tip and cell surface limits the maximum achievable spatial resolution on cells under ambient conditions. Structural information from fixed intestinal epithelial cell membrane is enhanced by fabricating a silicone liquid membrane that prevents ambient contaminants and accumulation of water at the interface between the cell membrane and the tip of an atomic force microscope. The clean and stable experimental platform permits the visualisation of the structure and orientation of microvilli present at the apical cell membrane under standard laboratory conditions together with registering subcellular details within a microvillus. The method developed here can be implemented for preserving and imaging contaminant-free morphology of fixed cells which is central for both fundamental studies in cell biology and in the emerging field of digital pathology.
Collapse
|
25
|
Cascione M, De Matteis V, Toma CC, Leporatti S. Morphomechanical Alterations Induced by Transforming Growth Factor-β1 in Epithelial Breast Cancer Cells. Cancers (Basel) 2018; 10:cancers10070234. [PMID: 30012949 PMCID: PMC6071091 DOI: 10.3390/cancers10070234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
The Epithelial to mesenchymal transition (EMT) is the process that drives epithelial tumor cells to acquire an invasive phenotype. The role of transforming growth factor-β1 (TGF-β1) in EMT is still debated. We used confocal laser scanning microscopy and scanning force spectroscopy to perform a morphomechanical analysis on epithelial breast cancer cells (MCF-7), comparing them before and after TGF-β1 exogenous stimulation (5 ng/mL for 48 h). After TGF-β1 treatment, loss of cell⁻cell adherence (mainly due to the reduction of E-cadherin expression of about 24%) and disaggregation of actin cortical fibers were observed in treated MCF-7. In addition, TGF-β1 induced an alteration of MCF-7 nuclei morphology as well as a decrease in the Young's modulus, owing to a rearrangement that involved the cytoskeletal networks and the nuclear region. These relevant variations in morphological features and mechanical properties, elicited by TGF-β1, suggested an increased capacity of MCF-7 to migrate, which was confirmed by a wound healing assay. By means of our biophysical approach, we highlighted the malignant progression of breast cancer cells induced by TGF-β1 exposure. We are confirming TGF-β1's role in EMT by means of morphomechanical evidence that could represent a turning point in understanding the molecular mechanisms involved in cancer progression.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari "Aldo Moro", p.zza G. Cesare, c/o Policlinico, 70124 Bari, Italy.
| | - Valeria De Matteis
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Chiara C Toma
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy.
| |
Collapse
|
26
|
Zemła J, Danilkiewicz J, Orzechowska B, Pabijan J, Seweryn S, Lekka M. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 2018; 73:115-124. [DOI: 10.1016/j.semcdb.2017.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/27/2022]
|
27
|
Cascione M, De Matteis V, Toma CC, Pellegrino P, Leporatti S, Rinaldi R. Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells. Exp Cell Res 2017; 360:303-309. [PMID: 28935466 DOI: 10.1016/j.yexcr.2017.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022]
Abstract
The EMT phenomenon is based on tumour progression. The cells lose their physiologic phenotype and assumed a mesenchymal phenotype characterized by an increased migratory capacity, invasiveness and high resistance to apoptosis. In this process, RHO family regulates the activation or suppression of ROCK (Rho-associated coiled-coil containing protein kinase) which in turn regulates the cytoskeleton dynamics. However, while the biochemical mechanisms are widely investigated, a comprehensive and careful estimation of biomechanical changes has not been extensively addressed. In this work, we used a strong ROCK inhibitor, Y-27632, to evaluate the effects of inhibition on living breast cancer epithelial cells by a biomechanical approach. Atomic Force Microscopy (AFM) was used to estimate changes of cellular elasticity, quantified by Young's modulus parameter. The morphometric alterations were analyzed by AFM topographies and Confocal Laser Scanning Microscopy (CLSM). Our study revealed a significant modification in the Young's modulus after treatment, especially as regards cytoskeletal region. Our evidences suggest that the use of Y-27632 enhanced the cell rigidity, preventing cell migration and arrested the metastasization process representing a potential powerful factor for cancer treatment.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari "Aldo Moro", c/o Policlinico Bari, Bari, Italy
| | - Valeria De Matteis
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Cristina Toma
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Paolo Pellegrino
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Polo di Nanotecnologia, c/o Campus Ecoteckne, Lecce, Italy.
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
28
|
Huszka G, Yang H, Gijs MAM. Microsphere-based super-resolution scanning optical microscope. OPTICS EXPRESS 2017; 25:15079-15092. [PMID: 28788940 DOI: 10.1364/oe.25.015079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm2, where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼104 μm2. Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.
Collapse
|
29
|
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2017; 16:523-540. [PMID: 28613180 DOI: 10.1109/tnb.2017.2714462] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Collapse
|