1
|
Zhang J, Song Z, Zhang Y, Zhang C, Xue Q, Zhang G, Tan F. Recent advances in biomarkers for predicting the efficacy of immunotherapy in non-small cell lung cancer. Front Immunol 2025; 16:1554871. [PMID: 40406096 PMCID: PMC12095235 DOI: 10.3389/fimmu.2025.1554871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/18/2025] [Indexed: 05/26/2025] Open
Abstract
Lung cancer continues to be the primary cause of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) accounting for approximately 85% of all instances. Recently, immune checkpoint inhibitors (ICIs) have transformed the treatment approach for NSCLC, however, only a subset of patients experiences significant benefits. Therefore, identifying reliable biomarkers to forecast the efficacy of ICIs is crucial for ensuring the safety and effectiveness of treatments, becoming a major focus of current research efforts. This review highlights the recent advances in predictive biomarkers for the efficacy of ICIs in the treatment of NSCLC, including PD-L1 expression, tertiary lymphoid structures (TLS), tumor-infiltrating lymphocytes (TILs), tumor genomic alterations, transcriptional signatures, circulating biomarkers, and the microbiome. Furthermore, it underscores the pivotal roles of liquid biopsy, sequencing technologies, and digital pathology in biomarker discovery. Special attention is given to the predictive value of TLS, circulating biomarkers, and transcriptional signatures. The review concludes that the integration of multiple biomarkers holds promise for achieving more accurate efficacy predictions and optimizing personalized immunotherapy strategies. By providing a comprehensive overview of the current progress, this review offers valuable insights into biomarker-based precision medicine for NSCLC and outlines future research directions.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zehao Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanjie Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chentong Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
BU A, WU G, HU L. [Progress and prospect of separation and analysis of single-cell and single-particle exosomes]. Se Pu 2025; 43:399-412. [PMID: 40331605 PMCID: PMC12059993 DOI: 10.3724/sp.j.1123.2024.11001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 05/08/2025] Open
Abstract
Exosomes are nanoscale vesicles secreted by cells and are encapsulated in lipid bilayers. They play crucial roles in cell communication and are involved in a variety of physiological and pathological processes, including immune regulation, angiogenesis, and tumor initiation and metastasis. Exosomes carry a variety of biomolecules from maternal cells and are therefore important vehicles for discovering disease markers. Traditional detection methods only provide average cell-population information for a given sample and cannot establish clear relationships between the biological functions of exosomes and subtype owing to the significant heterogeneity associated with exosomes from different cell subsets. Therefore, characterizing exosomes at the single-cell and single-particle levels requires exosome specificities to be further explored and the characteristics of various exosome subtypes to be distinguished. Commonly used single-particle exosome characterization technologies include flow cytometry, super-resolution microscopy, atomic force microscopy, surface-enhanced Raman spectroscopy, proximity barcoding assay and MS. In this paper, we summarize recent advances in the separation and characterization of single-cell exosomes based on microfluidics and provide future applications prospects for emerging technologies (such as Olink proteomics, click chemistry, and molecular imprinting) for studying single-cell and single-particle exosomes.
Collapse
|
3
|
Li H, Chiang CL, Kwak KJ, Lee HL, Wang X, Romano G, Saviana M, Toft R, Cheng TS, Chang Y, Hsiang BD, Liu GW, Mo X, Ma Y, Pan J, Rima XY, Kim TN, Reategui E, Shen CN, Chu YS, Croce C, Chang PMH, Yeh YC, Carbone DP, Huang CYF, Chiang CL, Nana-Sinkam P, Lee LJ. Extracellular Vesicular Delta-Like Ligand 3 and Subtype Transcription Factors for Small Cell Lung Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416711. [PMID: 40285610 DOI: 10.1002/advs.202416711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/15/2025] [Indexed: 04/29/2025]
Abstract
Small cell lung cancer (SCLC) is associated with high mortality and limited therapeutic options. There is increasing recognition that SCLC harbors molecular heterogeneity. Using a new liquid biopsy assay, it is demonstrated that SCLC subtypes, as determined by patient tumor tissue staining and cell lines, can be accurately identified by measuring the mRNA expression of subtype transcription factors (ASCL1, POU2F3, and NEUROD1) in circulating exosome-rich extracellular vesicles (Exo). Additionally, upregulation of Delta-like ligand 3 (DLL3) mRNA in Exo and its membrane protein (mProtein) in extracellular vesicles associated with tumor (tEV) may distinguish both limited- and extensive-stage SCLC patients from high-risk smokers, with AUC/ROC values of 0.836 and 0.839, respectively. By incorporating Exo-ASCL1 and Exo-POU2F3 mRNA expression with DLL3 Exo-mRNA/tEV-mProtein expression, the classifier enhances the AUC/ROC to 0.912 and 0.963 for limited- and extensive-stage SCLC patients, respectively.
Collapse
Affiliation(s)
- Hong Li
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Chi-Ling Chiang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | | | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan
| | - Xinyu Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Michela Saviana
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Robin Toft
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yuehshih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
- School of Medicine, College of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bi-Da Hsiang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Guan-Wan Liu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Junjie Pan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xilal Y Rima
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Truc Nguyen Kim
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Eduardo Reategui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Chia-Ning Shen
- Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Carlo Croce
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Peter Mu-Hsin Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yi-Chen Yeh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - David P Carbone
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chi-Lu Chiang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| |
Collapse
|
4
|
Hade MD, Butsch BL, Palacio PL, Nguyen KT, Shantaram D, Noria S, Brethauer SA, Needleman BJ, Hsueh W, Reategui E, Magana SM. Human differentiated adipocytes can serve as surrogate mature adipocytes for adipocyte-derived extracellular vesicle analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636729. [PMID: 39974962 PMCID: PMC11839020 DOI: 10.1101/2025.02.05.636729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Obesity is a growing global health concern, contributing to diseases such as cancer, autoimmune disorders, and neurodegenerative conditions. Adipose tissue dysfunction, characterized by abnormal adipokine secretion and chronic inflammation, plays a key role in these conditions. Adipose-derived extracellular vesicles (ADEVs) have emerged as critical mediators in obesity-related diseases. However, the study of mature adipocyte-derived EVs (mAdipo-EVs) is limited due to the short lifespan of mature adipocytes in culture, low EV yields, and the low abundance of these EV subpopulations in the circulation. Additionally, most studies rely on rodent models, which have differences in adipose tissue biology compared to humans. To overcome these challenges, we developed a standardized approach for differentiating human preadipocytes (preAdipos) into mature differentiated adipocytes (difAdipos), which produce high-yield, human adipocyte EVs (Adipo-EVs). Using visceral adipose tissue from bariatric surgical patients, we isolated the stromal vascular fraction (SVF) and differentiated preAdipos into difAdipos. Brightfield microscopy revealed that difAdipos exhibited morphological characteristics comparable to mature adipocytes (mAdipos) directly isolated from visceral adipose tissue, confirming their structural similarity. Additionally, qPCR analysis demonstrated decreased preadipocyte markers and increased mature adipocyte markers, further validating successful differentiation. Functionally, difAdipos exhibited lipolytic activity comparable to mAdipos, supporting their functional resemblance to native adipocytes. We then isolated preAdipo-EVs and difAdipo-EVs using tangential flow filtration and characterized them using bulk and single EV analysis. DifAdipo-EVs displayed classical EV and adipocyte-specific markers, with significant differences in biomarker expression compared to preAdipo-EVs. These findings demonstrate that difAdipos serve as a reliable surrogate for mature adipocytes, offering a consistent and scalable source of adipocyte-derived EVs for studying obesity and its associated disorders. Keywords: extracellular vesicles, adipocyte, adipose, adipocyte-derived extracellular vesicles, obesity.
Collapse
|
5
|
Zhang G, Huang X, Liu S, Xu Y, Wang N, Yang C, Zhu Z. Demystifying EV heterogeneity: emerging microfluidic technologies for isolation and multiplexed profiling of extracellular vesicles. LAB ON A CHIP 2025; 25:1228-1255. [PMID: 39775292 DOI: 10.1039/d4lc00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers carrying complex molecular cargoes, including proteins, nucleic acids, glycans, etc. These vesicles are closely associated with specific physiological characteristics, which makes them invaluable in the detection and monitoring of various diseases. However, traditional isolation methods are often labour-intensive, inefficient, and time-consuming. In addition, single biomarker analyses are no longer accurate enough to meet diagnostic needs. Routine isolation and molecular analysis of high-purity EVs in clinical applications is even more challenging. In this review, we discuss a promising solution, microfluidic-based techniques, that combine efficient isolation and multiplex detection of EVs, to further demystify EV heterogeneity. These microfluidic-based EV multiplexing platforms will hopefully facilitate development of liquid biopsies and offer promising opportunities for personalised therapy.
Collapse
Affiliation(s)
- Guihua Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaodan Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yiling Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Nan Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Hade MD, Greenwald J, Palacio PL, Nguyen KT, Shantaram D, Butsch BL, Kim Y, Noria S, Brethauer SA, Needleman BJ, Hsueh W, Wysocki VH, Reátegui E, Magaña SM. Novel multiparametric bulk and single extracellular vesicle pipeline for adipose cell-specific biomarker discovery in paired human biospecimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.590172. [PMID: 38659953 PMCID: PMC11042368 DOI: 10.1101/2024.04.18.590172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Obesity remains a growing and global public health burden across a broad spectrum of metabolic, systemic, and neurodegenerative diseases. Previously considered merely a fat storage depot, adipose tissue is now recognized as an active endocrine organ crucial for metabolic and systemic regulation of local and distant organs. A burgeoning line of investigation centers on adipose-derived extracellular vesicles (ADEVs) and their pivotal role in obesity-associated pathobiology. However, robust methodologies are lacking for specifically isolating and characterizing human ADEVs. To bridge this gap, we have developed a robust multiparametric framework incorporating bulk and single EV characterization, proteomics, and mRNA phenotyping. EVs from matched human visceral adipose tissue, mature adipocyte-conditioned media, and plasma collected from the same individual bariatric surgical patients were analyzed and subjected to bottom-up proteomics analysis. This framework integrates bulk EV proteomics for cell-specific marker identification and subsequent single EV interrogation with single-particle interferometric reflectance imaging (SP-IRIS) and total internal reflection fluorescence (TIRF) microscopy. Our proteomics analysis revealed 76 unique proteins from adipose tissue-derived EVs (ATEVs), 512 unique proteins from adipocyte EVs (aEVs), and 1003 shared proteins. Prominent pathways enriched in ATEVs included lipid metabolism, extracellular matrix organization, and immune modulation, while aEVs exhibited enhanced roles in chromatin remodeling, oxidative stress responses, and metabolic regulation. Notably, adipose tissue-specific proteins such as adiponectin and perilipin were highly enriched in ADEVs and confirmed in circulating plasma EVs. Colocalization of key EV and adipocyte markers, including CD63 and PPARG, were validated in circulating plasma EVs. In summary, our study paves the way toward a tissue and cell-specific, multiparametric framework for an 'adiposity EV signature' in obesity-driven diseases.
Collapse
|
7
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Nguyen KT, Rima XY, Nguyen LTH, Wang X, Kwak KJ, Yoon MJ, Li H, Chiang C, Doon‐Ralls J, Scherler K, Fallen S, Godfrey SL, Wallick JA, Magaña SM, Palmer AF, Lee I, Nunn CC, Reeves KM, Kaplan HG, Goldman JD, Heath JR, Wang K, Pancholi P, Lee LJ, Reátegui E. Integrated Antigenic and Nucleic Acid Detection in Single Virions and Extracellular Vesicles with Viral Content. Adv Healthc Mater 2025; 14:e2400622. [PMID: 38820600 PMCID: PMC11773111 DOI: 10.1002/adhm.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Virion-mediated outbreaks are imminent and despite rapid responses, continue to cause adverse symptoms and death. Therefore, tunable, sensitive, high-throughput assays are needed to help diagnose future virion-mediated outbreaks. Herein, it is developed a tunable in situ assay to selectively enrich virions and extracellular vesicles (EVs) and simultaneously detect antigens and nucleic acids at a single-particle resolution. The Biochip Antigen and RNA Assay (BARA) enhanced sensitivities compared to quantitative reverse-transcription polymerase chain reaction (qRT-PCR), enabling the detection of virions in asymptomatic patients, genetic mutations in single virions, and enabling the continued long-term expression of viral RNA in the EV-enriched subpopulation in the plasma of patients with post-acute sequelae of the coronavirus disease of 2019 (COVID-19). BARA revealed highly accurate diagnoses of COVID-19 by simultaneously detecting the spike glycoprotein and nucleocapsid-encoding RNA in saliva and nasopharyngeal swab samples. Altogether, the single-particle detection of antigens and viral RNA provides a tunable framework for the diagnosis, monitoring, and mutation screening of current and future outbreaks.
Collapse
Affiliation(s)
- Kim Truc Nguyen
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Xilal Y. Rima
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
- Diabetes and Metabolism Research CenterThe Ohio State University Wexner Medical CenterColumbusOH43210USA
| | - Luong T. H. Nguyen
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Xinyu Wang
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | | | - Min Jin Yoon
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Hong Li
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Chi‐Ling Chiang
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Jacob Doon‐Ralls
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | | | | | | | | | - Setty M. Magaña
- Translational NeuroimmunologyCenter for Clinical and Translational ResearchNationwide Children's HospitalColumbusOH43205USA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Inyoul Lee
- Institute for Systems BiologySeattleWA98109USA
| | | | | | | | - Jason D. Goldman
- Providence Swedish Medical CenterSeattleWA98104USA
- Division of Allergy and Infectious DiseasesUniversity of WashingtonSeattleWA98195USA
| | | | - Kai Wang
- Institute for Systems BiologySeattleWA98109USA
| | - Preeti Pancholi
- Department of PathologyThe Ohio State University Wexner Medical CenterColumbusOH43203USA
| | - L. James Lee
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
9
|
Amolegbe SM, Johnston NC, Ambrosi A, Ganguly A, Howcroft TK, Kuo LS, Labosky PA, Rudnicki DD, Satterlee JS, Tagle DA, Happel C. Extracellular RNA communication: A decade of NIH common fund support illuminates exRNA biology. J Extracell Vesicles 2025; 14:e70016. [PMID: 39815775 PMCID: PMC11735951 DOI: 10.1002/jev2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
The discovery that extracellular RNAs (exRNA) can act as endocrine signalling molecules established a novel paradigm in intercellular communication. ExRNAs can be transported, both locally and systemically in virtually all body fluids. In association with an array of carrier vehicles of varying complexity, exRNA can alter target cell phenotype. This highlights the important role secreted exRNAs have in regulating human health and disease. The NIH Common Fund exRNA Communication program was established in 2012 to accelerate and catalyze progress in the exRNA biology field. The program addressed both exRNA and exRNA carriers, and served to generate foundational knowledge for the field from basic exRNA biology to future potential clinical applications as biomarkers and therapeutics. To address scientific challenges, the exRNA Communication program developed novel tools and technologies to isolate exRNA carriers and analyze their cargo. Here, we discuss the outcomes of the NIH Common Fund exRNA Communication program, as well as the evolution of exRNA as a scientific field through the analysis of scientific publications and NIH funding. ExRNA and associated carriers have potential clinical use as biomarkers, diagnostics, and therapeutics. Recent translational applications include exRNA-related technologies repurposed as novel diagnostics in response to the COVID-19 pandemic, the clinical use of extracellular vesicle-based biomarker assays, and exRNA carriers as drug delivery platforms. This comprehensive landscape analysis illustrates how discoveries and innovations in exRNA biology are being translated both into the commercial market and the clinic. Analysis of program outcomes and NIH funding trends demonstrate the impact of this NIH Common Fund program.
Collapse
Affiliation(s)
- Sara M. Amolegbe
- Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Nicolas C. Johnston
- National Institute on Drug AbuseNational Institutes of HealthBethesdaMarylandUSA
| | - Angela Ambrosi
- Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Aniruddha Ganguly
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - T. Kevin Howcroft
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Lillian S. Kuo
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | - Dobrila D. Rudnicki
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - John S. Satterlee
- National Institute on Drug AbuseNational Institutes of HealthBethesdaMarylandUSA
| | - Danilo A. Tagle
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Christine Happel
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
10
|
Cuellar-Gaviria TZ, Rincon-Benavides MA, Halipci Topsakal HN, Salazar-Puerta AI, Jaramillo-Garrido S, Kordowski M, Vasquez-Martinez CA, Nguyen KT, Rima XY, Rana PSJB, Combita-Heredia O, Deng B, Dathathreya K, McComb DW, Reategui E, Wozniak D, Higuita-Castro N, Gallego-Perez D. Tissue nano-transfection of antimicrobial genes drives bacterial biofilm killing in wounds and is potentially mediated by extracellular vesicles. J Control Release 2024; 376:1300-1315. [PMID: 39491627 PMCID: PMC11780627 DOI: 10.1016/j.jconrel.2024.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The emergence of bacteria that are resistant to antibiotics is on track to become a major global health crisis. Therefore, there is an urgent need for new treatment options. Here, we studied the implementation of tissue-nanotransfection (TNT) to treat Staphylococcus aureus-infected wounds by delivering gene cargos that boost the levels of naturally produced antimicrobial peptides. The Cathelicidin Antimicrobial Peptide gene (CAMP), which produces the antimicrobial peptide LL-37, was used as model gene cargo. In vitro evaluation showed successful transfection and an increase in the transcription and translation of CAMP-coding plasmid in mouse primary epithelial cells. Moreover, we found that the extracellular vesicles (EVs) derived from the transfected cells (in vitro and in vivo) carried significantly higher concentrations of CAMP transcripts and LL-37 peptide compared to control EVs, possibly mediating the trafficking of the antimicrobial contents to other neighboring cells. The TNT platform was then used in vivo on an excisional wound model in mice to nanotransfect the CAMP-coding plasmid on the edge of infected wounds. After 4 days of daily treatment, we observed a significant decrease in the bacterial load in the CAMP-treated group compared to the sham group. Moreover, histological analysis and bacterial load quantification also revealed that TNT of CAMP on S. aureus-infected wounds was effective in treating biofilm progression by reducing the bacterial load. Lastly, we observed a significant increase in macrophage recruitment to the infected tissue, a robust increase in vascularization, as well as and an increased expression of IL10 and Fli1. Our results demonstrate that TNT-based delivery of gene cargos coding for antimicrobial compounds to the wound is a promising approach for combating biofilm infections in wounds.
Collapse
Affiliation(s)
- Tatiana Z Cuellar-Gaviria
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Maria Angelica Rincon-Benavides
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hatice Nur Halipci Topsakal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Istanbul Atlas University, Istanbul 34408, Turkiye
| | | | | | - Mia Kordowski
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos A Vasquez-Martinez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; CONACYT - Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca 68020, Mexico
| | - Kim Truc Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Pranav S J B Rana
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | | | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH 43210, USA
| | - Kavya Dathathreya
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reategui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Wozniak
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Wang T, Huang W, Gao X, Deng Y, Huang J. Single extracellular vesicle research: From cell population to a single cell. Biochem Biophys Res Commun 2024; 734:150439. [PMID: 39083971 DOI: 10.1016/j.bbrc.2024.150439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Extracellular vesicles (EVs) are secreted by cells with a membrane structure and complex components such as DNA, RNA and proteins. These biomolecules play an important role in cell communication, cell proliferation, cell migration, vascularization, immune response and other physiological and pathological processes. Most current research on EVs focused on populations of EVs. Heterogeneity of EVs is neglected. Considering the heterogeneity of single EVs may offer critical molecular insights into cell-cell interactions, it is necessary to enhance our understanding about molecular characteristics from EVs derived from cell population to a single EV of derived from a single cell. This transformation is expected to provide a new insight into the understanding of cellular biology and the accurate description of the law of disease progress. In this article, we review the current research progress of single EV analysis technology for single EVs derived from cell population (SECP) and discuss its main applications in biological and clinical medicine research. After that, we propose the development direction, main difficulties and application prospect of single EV analysis technology for single EVs derived from single cells (SESC) according to our own research work, to provide new perspectives for the field of EV research.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqiu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Gao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuliang Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Hang Y, Huang J, Ding M, Shen Y, Zhou Y, Cai W. Extracellular vesicles reshape the tumor microenvironment to improve cancer immunotherapy: Current knowledge and future prospects. Int Immunopharmacol 2024; 140:112820. [PMID: 39096874 DOI: 10.1016/j.intimp.2024.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor immunotherapy has revolutionized cancer treatment, but limitations remain, including low response rates and immune complications. Extracellular vesicles (EVs) are emerging as a new class of therapeutic agents for various diseases. Recent research shows that changes in the amount and composition of EVs can reshape the tumor microenvironment (TME), potentially improving the effectiveness of immunotherapy. This exciting discovery has sparked clinical interest in using EVs to enhance the immune system's response to cancer. In this Review, we delve into the world of EVs, exploring their origins, how they're generated, and their complex interactions within the TME. We also discuss the crucial role EVs play in reshaping the TME during tumor development. Specifically, we examine how their cargo, including molecules like PD-1 and non-coding RNA, influences the behavior of key immune cells within the TME. Additionally, we explore the current applications of EVs in various cancer therapies, the latest advancements in engineering EVs for improved immunotherapy, and the challenges faced in translating this research into clinical practice. By gaining a deeper understanding of how EVs impact the TME, we can potentially uncover new therapeutic vulnerabilities and significantly enhance the effectiveness of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Yu Hang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JingYi Huang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Ding
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhua Shen
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YaoZhong Zhou
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China.
| | - Wan Cai
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
13
|
Wu J, Chen Y. Unraveling the Connection: Extracellular Vesicles and Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:8139-8157. [PMID: 39139506 PMCID: PMC11321355 DOI: 10.2147/ijn.s477851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
14
|
He Y, Zeng X, Xiong Y, Shen C, Huang K, Chen P. Portable Aptasensor Based on Parallel Rolling Circle Amplification for Tumor-Derived Exosomes Liquid Biopsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403371. [PMID: 38923850 PMCID: PMC11348067 DOI: 10.1002/advs.202403371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Here, a separation-free and label-free portable aptasensor is developed for rapid and sensitive analysis of tumor-derived exosomes (TEXs). It integrated a parallel rolling circle amplification (RCA) reaction, selective binding of metal ions or small molecules to nucleic acid-specific conformations, and a low-cost, highly sensitive handheld fluorometer. Lung cancer, for example, is targeted with two typical biomarkers (mucin 1 and programmed cell death ligand 1 (PD-L1)) on its exosomes. The affinity of aptamers to the targets modulated the amount of RCA products (T-Hg2+-T and cytosine (C)-rich single-stranded DNA), which in turn affected the fluorescence intensity of quantum dots (QDs) and methylene blue (MB). The results revealed that the limit of detection (LOD) of the handheld fluorometer for cell-derived exosomes can be as low as 30 particles mL-1. Moreover, its specificity, sensitivity, and area under the curve (AUC) are 93% (14/15), 92% (23/25), and 0.956, as determined by the analysis of 40 clinical samples. Retesting 16 of these samples with the handheld fluorometer yielded strong concordance between the fluorometer results and those acquired from clinical computed tomography (CT) and pathology.
Collapse
Affiliation(s)
- Yaqin He
- Department of Laboratory MedicineMed+X Center for ManufacturingNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Xianghu Zeng
- Department of Laboratory MedicineMed+X Center for ManufacturingNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ying Xiong
- Department of Laboratory MedicineMed+X Center for ManufacturingNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Congcong Shen
- Department of Laboratory MedicineMed+X Center for ManufacturingNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ke Huang
- College of Chemistry and Material ScienceSichuan Normal UniversityChengduSichuan610068China
| | - Piaopiao Chen
- Department of Laboratory MedicineMed+X Center for ManufacturingNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
15
|
Qi C, Li Y, Zeng H, Wei Q, Tan S, Zhang Y, Li W, Tian P. Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer. Clin Exp Med 2024; 24:162. [PMID: 39026109 PMCID: PMC11258158 DOI: 10.1007/s10238-024-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths and represents a substantial disease burden worldwide. Immune checkpoint inhibitors combined with chemotherapy are the standard first-line therapy for advanced NSCLC without driver mutations. Programmed death-ligand 1 (PD-L1) is currently the only approved immunotherapy marker. PD-L1 detection methods are diverse and have developed rapidly in recent years, such as improved immunohistochemical detection methods, the application of liquid biopsy in PD-L1 detection, genetic testing, radionuclide imaging, and the use of machine learning methods to construct PD-L1 prediction models. This review focuses on the detection methods and challenges of PD-L1 from different sources, and discusses the influencing factors of PD-L1 detection and the value of combined biomarkers. Provide support for clinical screening of immunotherapy-advantage groups and formulation of personalized treatment decisions.
Collapse
Affiliation(s)
- Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Zhao R, Deng X, Tang Y, Yang X, Ge Z, Wang D, Shen Y, Jiang L, Lin W, Zheng C, Wang G. Mitigating Critical Peripheral Nerve Deficit Therapy with Reactive Oxygen Species/Ca 2+-Responsive Dynamic Hydrogel-Mediated mRNA Delivery. ACS NANO 2024; 18:16556-16576. [PMID: 38889128 DOI: 10.1021/acsnano.3c13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Critical peripheral nerve deficiencies present as one of the most formidable conundrums in the realm of clinical medicine, frequently culminating in structural degradation and derangement of the neuromuscular apparatus. Engineered extracellular vesicles (EVs) exhibit the potential to ameliorate nerve impairments. However, the advent of Wallerian degeneration (WD), an inexorable phenomenon that ensues post peripheral nerve injury, serves as an insurmountable impediment to the direct therapeutic efficacy of EVs. In this investigation, we have fashioned a dynamic network for the conveyance of PTEN-induced kinase 1 (PINK1) mRNA (E-EV-P@HPCEP) using an adaptive hydrogel with reactive oxygen species (ROS)/Ca2+ responsive ability as the vehicle, bearing dual-targeted, engineered EVs. This intricate system is to precisely deliver PINK1 to senescent Schwann cells (SCs) while concurrently orchestrating a transformation in the inflammatory-senescent milieu following injury, thereby stymying the progression of WD in peripheral nerve fibers through the stimulation of autophagy within the mitochondria of the injured cells and the maintenance of mitochondrial mass equilibrium. WD, conventionally regarded as an inexorable process, E-EV-P@HPCEP achieved functionalized EV targeting, orchestrating a dual-response dynamic release mechanism via boronate ester bonds and calcium chelation, effectuating an enhancement in the inflammatory-senescent microenvironment, which expedites the therapeutic management of nerve deficiencies and augments the overall reparative outcome.
Collapse
Affiliation(s)
- Renliang Zhao
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiangtian Deng
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Tang
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaozhong Yang
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zilu Ge
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Dong Wang
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yifan Shen
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lianghua Jiang
- Department of Orthopedic Trauma, The First People's Hospital of Kunshan affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P. R. China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| | - Guanglin Wang
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
17
|
Hisey CL, Rima XY, Doon-Ralls J, Nagaraj CK, Mayone S, Nguyen KT, Wiggins S, Dorayappan KDP, Selvendiran K, Wood D, Hu C, Patel D, Palmer A, Hansford D, Reategui E. Light-induced Extracellular Vesicle Adsorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590318. [PMID: 38712200 PMCID: PMC11071350 DOI: 10.1101/2024.04.24.590318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles. The versatility of LEVA is demonstrated using commercial GFP-EV standards, EVs from glioblastoma bioreactors, and E. coli outer membrane vesicles (OMVs), with the resulting patterns used for single EV characterization, single cell migration on migrasome-mimetic trails, and OMV-mediated neutrophil swarming. LEVA will enable rapid advancements in the study of matrix- and surface-bound EVs and other particles, and should encourage researchers from many disciplines to create novel diagnostic, biomimetic, immunoengineering, and therapeutic screening assays.
Collapse
|
18
|
Nguyen KT, Rima XY, Hisey CL, Doon-Ralls J, Nagaraj CK, Reátegui E. Limiting Brownian Motion to Enhance Immunogold Phenotyping and Superimpose Optical and Non-Optical Single-EP Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581663. [PMID: 38464234 PMCID: PMC10925179 DOI: 10.1101/2024.02.22.581663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Optical and non-optical techniques propelled the field of single extracellular particle (EP) research through phenotypic and morphological analyses, revealing the similarities, differences, and co-isolation of EP subpopulations. Overcoming the challenges of optical and non-optical techniques motivates the use of orthogonal techniques while analyzing extracellular particles (EPs), which require varying concentrations and preparations. Herein, we introduce the nano-positioning matrix (NPMx) technique capable of superimposing optical and non-optical modalities for a single-EP orthogonal analysis. The NPMx technique is realized by ultraviolet-mediated micropatterning to reduce the stochasticity of Brownian motion. While providing a systematic orthogonal measurement of a single EP via total internal reflection fluorescence microscopy and transmission electron microscopy, the NPMx technique is compatible with low-yield samples and can be utilized for non-biased electrostatic capture and enhanced positive immunogold sorting. The success of the NPMx technique thus provides a novel platform by marrying already trusted optical and non-optical techniques at a single-EP resolution.
Collapse
|
19
|
Yue M, Hu S, Sun H, Tuo B, Jia B, Chen C, Wang W, Liu J, Liu Y, Sun Z, Hu J. Extracellular vesicles remodel tumor environment for cancer immunotherapy. Mol Cancer 2023; 22:203. [PMID: 38087360 PMCID: PMC10717809 DOI: 10.1186/s12943-023-01898-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Tumor immunotherapy has transformed neoplastic disease management, yet low response rates and immune complications persist as major challenges. Extracellular vesicles including exosomes have emerged as therapeutic agents actively involved in a diverse range of pathological conditions. Mounting evidence suggests that alterations in the quantity and composition of extracellular vesicles (EVs) contribute to the remodeling of the immune-suppressive tumor microenvironment (TME), thereby influencing the efficacy of immunotherapy. This revelation has sparked clinical interest in utilizing EVs for immune sensitization. In this perspective article, we present a comprehensive overview of the origins, generation, and interplay among various components of EVs within the TME. Furthermore, we discuss the pivotal role of EVs in reshaping the TME during tumorigenesis and their specific cargo, such as PD-1 and non-coding RNA, which influence the phenotypes of critical immune cells within the TME. Additionally, we summarize the applications of EVs in different anti-tumor therapies, the latest advancements in engineering EVs for cancer immunotherapy, and the challenges encountered in clinical translation. In light of these findings, we advocate for a broader understanding of the impact of EVs on the TME, as this will unveil overlooked therapeutic vulnerabilities and potentially enhance the efficacy of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Ming Yue
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
20
|
Ma Y, Sun L, Zhang J, Chiang C, Pan J, Wang X, Kwak KJ, Li H, Zhao R, Rima XY, Zhang C, Zhang A, Liu Y, He Z, Hansford D, Reategui E, Liu C, Lee AS, Yuan Y, Lee LJ. Exosomal mRNAs for Angiogenic-Osteogenic Coupled Bone Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302622. [PMID: 37847907 PMCID: PMC10667797 DOI: 10.1002/advs.202302622] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/25/2023] [Indexed: 10/19/2023]
Abstract
Regenerative medicine in tissue engineering often relies on stem cells and specific growth factors at a supraphysiological dose. These approaches are costly and may cause severe side effects. Herein, therapeutic small extracellular vesicles (t-sEVs) endogenously loaded with a cocktail of human vascular endothelial growth factor A (VEGF-A) and human bone morphogenetic protein 2 (BMP-2) mRNAs within a customized injectable PEGylated poly (glycerol sebacate) acrylate (PEGS-A) hydrogel for bone regeneration in rats with challenging femur critical-size defects are introduced. Abundant t-sEVs are produced by a facile cellular nanoelectroporation system based on a commercially available track-etched membrane (TM-nanoEP) to deliver plasmid DNAs to human adipose-derived mesenchymal stem cells (hAdMSCs). Upregulated microRNAs associated with the therapeutic mRNAs are enriched in t-sEVs for enhanced angiogenic-osteogenic regeneration. Localized and controlled release of t-sEVs within the PEGS-A hydrogel leads to the retention of therapeutics in the defect site for highly efficient bone regeneration with minimal low accumulation in other organs.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOH43210USA
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education and Frontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and Technology200237ShanghaiP. R. China
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Chi‐ling Chiang
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Junjie Pan
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Xinyu Wang
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | | | - Hong Li
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Renliang Zhao
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital200233ShanghaiChina
| | - Xilal Y. Rima
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Chi Zhang
- College of PharmacyThe Ohio State UniversityColumbusOH43210USA
| | - Anan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education and Frontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and Technology200237ShanghaiP. R. China
| | - Yutong Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and Frontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and Technology200237ShanghaiP. R. China
| | - Zirui He
- Key Laboratory for Ultrafine Materials of Ministry of Education and Frontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and Technology200237ShanghaiP. R. China
| | - Derek Hansford
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Eduardo Reategui
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and Frontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and Technology200237ShanghaiP. R. China
| | - Andrew S. Lee
- School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School518055ShenzhenChina
- Institute for Cancer ResearchShenzhen Bay Laboratory518055ShenzhenChina
| | - Yuan Yuan
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
- Key Laboratory for Ultrafine Materials of Ministry of Education and Frontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and Technology200237ShanghaiP. R. China
| | - Ly James Lee
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOH43210USA
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
21
|
Zhang J, Rima XY, Wang X, Nguyen LTH, Huntoon K, Ma Y, Palacio PL, Nguyen KT, Albert K, Duong-Thi MD, Walters N, Kwak KJ, Yoon MJ, Li H, Doon-Ralls J, Hisey CL, Lee D, Wang Y, Ha J, Scherler K, Fallen S, Lee I, Palmer AF, Jiang W, Magaña SM, Wang K, Kim BYS, Lee LJ, Reátegui E. Engineering a tunable micropattern-array assay to sort single extracellular vesicles and particles to detect RNA and protein in situ. J Extracell Vesicles 2023; 12:e12369. [PMID: 37908159 PMCID: PMC10618633 DOI: 10.1002/jev2.12369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVP PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVP PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVP PRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVP PRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVP PRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise.
Collapse
Affiliation(s)
- Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xinyu Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kim Truc Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Karunya Albert
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Minh-Dao Duong-Thi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | - Min Jin Yoon
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Hong Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jacob Doon-Ralls
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Colin L Hisey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Daeyong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonghoon Ha
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Inyoul Lee
- Institute for Systems Biology, Seattle, Washington, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Spot Biosystems Ltd., Palo Alto, California, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Chiang CL, Ma Y, Hou YC, Pan J, Chen SY, Chien MH, Zhang ZX, Hsu WH, Wang X, Zhang J, Li H, Sun L, Fallen S, Lee I, Chen XY, Chu YS, Zhang C, Cheng TS, Jiang W, Kim BYS, Reategui E, Lee R, Yuan Y, Liu HC, Wang K, Hsiao M, Huang CYF, Shan YS, Lee AS, James Lee L. Dual targeted extracellular vesicles regulate oncogenic genes in advanced pancreatic cancer. Nat Commun 2023; 14:6692. [PMID: 37872156 PMCID: PMC10593751 DOI: 10.1038/s41467-023-42402-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumours carry multiple gene mutations and respond poorly to treatments. There is currently an unmet need for drug carriers that can deliver multiple gene cargoes to target high solid tumour burden like PDAC. Here, we report a dual targeted extracellular vesicle (dtEV) carrying high loads of therapeutic RNA that effectively suppresses large PDAC tumours in mice. The EV surface contains a CD64 protein that has a tissue targeting peptide and a humanized monoclonal antibody. Cells sequentially transfected with plasmid DNAs encoding for the RNA and protein of interest by Transwell®-based asymmetric cell electroporation release abundant targeted EVs with high RNA loading. Together with a low dose chemotherapy drug, Gemcitabine, dtEVs suppress large orthotopic PANC-1 and patient derived xenograft tumours and metastasis in mice and extended animal survival. Our work presents a clinically accessible and scalable way to produce abundant EVs for delivering multiple gene cargoes to large solid tumours.
Collapse
Affiliation(s)
- Chi-Ling Chiang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Junjie Pan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sin-Yu Chen
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Hsien Chien
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Zhi-Xuan Zhang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Wei-Hsiang Hsu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Xinyu Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Li
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | | | - Inyoul Lee
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Xing-Yu Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chi Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduardo Reategui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert Lee
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuan Yuan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hsiao-Chun Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kai Wang
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Andrew S Lee
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
- School of Chemical Biology and Biochemistry, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA.
| |
Collapse
|
23
|
Dong S, Liu X, Bi Y, Wang Y, Antony A, Lee D, Huntoon K, Jeong S, Ma Y, Li X, Deng W, Schrank BR, Grippin AJ, Ha J, Kang M, Chang M, Zhao Y, Sun R, Sun X, Yang J, Chen J, Tang SK, Lee LJ, Lee AS, Teng L, Wang S, Teng L, Kim BYS, Yang Z, Jiang W. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat Commun 2023; 14:6610. [PMID: 37857647 PMCID: PMC10587228 DOI: 10.1038/s41467-023-42365-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs). This is achieved by using a microfluidic electroporation approach in which a combination of nano- and milli-second pulses produces large amounts of IFN-γ mRNA-loaded sEVs with CD64 overexpressed on their surface. The CD64 molecule serves as an adaptor to dock targeting ligands, such as anti-CD71 and anti-programmed cell death-ligand 1 (PD-L1) antibodies. The resulting immunogenic sEVs (imsEV) preferentially target glioblastoma cells and generate potent antitumour activities in vivo, including against tumours intrinsically resistant to immunotherapy. Together, these results provide an adaptive approach to engineering mRNA-loaded sEVs with targeting functionality and pave the way for their adoption in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Shiyan Dong
- School of Life Science, Jilin University, Changchun, 130012, China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xuan Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seongdong Jeong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengyu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yarong Zhao
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Rongze Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Xiangshi Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jie Yang
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jiayi Chen
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Sarah K Tang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA
| | - Andrew S Lee
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Teng
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Shengnian Wang
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA.
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, 130012, China.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zhaogang Yang
- School of Life Science, Jilin University, Changchun, 130012, China.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Zhang J, Wu J, Wang G, He L, Zheng Z, Wu M, Zhang Y. Extracellular Vesicles: Techniques and Biomedical Applications Related to Single Vesicle Analysis. ACS NANO 2023; 17:17668-17698. [PMID: 37695614 DOI: 10.1021/acsnano.3c03172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Extracellular vesicles (EVs) are extensively dispersed lipid bilayer membrane vesicles involved in the delivery and transportation of molecular payloads to certain cell types to facilitate intercellular interactions. Their significant roles in physiological and pathological processes make EVs outstanding biomarkers for disease diagnosis and treatment monitoring as well as ideal candidates for drug delivery. Nevertheless, differences in the biogenesis processes among EV subpopulations have led to a diversity of biophysical characteristics and molecular cargos. Additionally, the prevalent heterogeneity of EVs has been found to substantially hamper the sensitivity and accuracy of disease diagnosis and therapeutic monitoring, thus impeding the advancement of clinical applications. In recent years, the evolution of single EV (SEV) analysis has enabled an in-depth comprehension of the physical properties, molecular composition, and biological roles of EVs at the individual vesicle level. This review examines the sample acquisition tactics prior to SEV analysis, i.e., EV isolation techniques, and outlines the current state-of-the-art label-free and label-based technologies for SEV identification. Furthermore, the challenges and prospects of biomedical applications based on SEV analysis are systematically discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiacheng Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Guanzhao Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Luxuan He
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ziwei Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Yuanqing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
25
|
Tostes K, Siqueira AP, Reis RM, Leal LF, Arantes LMRB. Biomarkers for Immune Checkpoint Inhibitor Response in NSCLC: Current Developments and Applicability. Int J Mol Sci 2023; 24:11887. [PMID: 37569262 PMCID: PMC10418476 DOI: 10.3390/ijms241511887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer has the highest mortality rate among all cancer types, resulting in over 1.8 million deaths annually. Immunotherapy utilizing immune checkpoint inhibitors (ICIs) has revolutionized the treatment of non-small cell lung cancer (NSCLC). ICIs, predominantly monoclonal antibodies, modulate co-stimulatory and co-inhibitory signals crucial for maintaining immune tolerance. Despite significant therapeutic advancements in NSCLC, patients still face challenges such as disease progression, recurrence, and high mortality rates. Therefore, there is a need for predictive biomarkers that can guide lung cancer treatment strategies. Currently, programmed death-ligand 1 (PD-L1) expression is the only established biomarker for predicting ICI response. However, its accuracy and robustness are not consistently reliable. This review provides an overview of potential biomarkers currently under development or in the validation stage that hold promise in improving the classification of responders and non-responders to ICI therapy in the near future.
Collapse
Affiliation(s)
- Katiane Tostes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
| | - Aléxia Polo Siqueira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos 14785-002, São Paulo, Brazil
| | | |
Collapse
|
26
|
Peng W, Sun D, Lu W, Yin S, Ye B, Wang X, Ren Y, Hong Z, Zhu W, Yu P, Xi JJ, Yao B. Comprehensive Detection of PD-L1 Protein and mRNA in Tumor Cells and Extracellular Vesicles through a Real-Time qPCR Assay. Anal Chem 2023; 95:10625-10633. [PMID: 37424077 DOI: 10.1021/acs.analchem.3c00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A growing number of studies have shown that tumor cells secrete extracellular vesicles (EVs) containing programmed death-ligand 1 (PD-L1) protein. These vesicles can travel to lymph nodes and remotely inactivate T cells, thereby evading immune system attack. Therefore, the simultaneous detection of PD-L1 protein expression in cells and EVs is of great significance in guiding immunotherapy. Herein, we developed a method based on qPCR for the simultaneous detection of PD-L1 protein and mRNA in EVs and their parental cells (PREC-qPCR assay). Lipid probes immobilized on magnetic beads were used to capture EVs directly from samples. For RNA assay, EVs were directly broken by heating and quantified with qPCR. As to protein assay, EVs were recognized and bound with specific probes (such as aptamers), which were used as templates in subsequent qPCR analysis. This method was used to analyze EVs of patient-derived tumor clusters (PTCs) and plasma samples from patients and healthy volunteers. The results revealed that the expression of exosomal PD-L1 in PTCs was correlated with tumor types and significantly higher in plasma-derived EVs from tumor patients than that of healthy individuals. When extended to cells and PD-L1 mRNAs, the results showed that the expression of PD-L1 protein was consistent with mRNA in cancer cell lines, while PTCs demonstrated significant heterogeneity. This comprehensive detection of PD-L1 at four levels (cell, EVs, protein, and mRNA) is believed to enhance our understanding of the relationship among PD-L1, tumors, and the immune system and to provide a promising tool for predicting the benefits of immunotherapy.
Collapse
Affiliation(s)
- Wenbo Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Danyang Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wei Lu
- GeneX (Zhejiang) Precision Medicine Co., Ltd, Hangzhou 311100, China
| | - Shenyi Yin
- College of Future Technology, Peking University, Beijing 100871, China
| | - Buqing Ye
- College of Future Technology, Peking University, Beijing 100871, China
| | - Xiaoqi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yongan Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zichen Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wenyu Zhu
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Pengfei Yu
- Department of Gastric Surgery, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jianzhong Jeff Xi
- College of Future Technology, Peking University, Beijing 100871, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Bo B, Li W, Li J, Han C, Fang Q, Yang M, Ni J, Zhou C. Programmable DNA Circuit-Facilitated Determination of Circulating Extracellular Vesicle PD-L1 for Lung Cancer Diagnosis and Immunotherapy Response Prediction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17696-17704. [PMID: 36978260 DOI: 10.1021/acsami.3c01607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Circulating extracellular vesicle (EV) PD-L1 is correlated with the occurrence and progression of lung cancer and has great potential as a valuable diagnostic and immunotherapy predictive biomarker. In this work, we propose a fluorescent biosensing method for the sensitive and accurate determination of circulating EV PD-L1. Specifically, after the phosphatidylserine-targeting peptide-assisted magnetic enrichment, a programmable DNA circuit is designed to translate the presence of PD-L1 to the appearance of numerous duplex DNA probes on the circulating EV surface. Upon fructose treatment, these newly formed duplex DNA probes are released from the EV surface to activate the trans-cleavage activity of CRISPR/Cas12a system, which finally produces a significant fluorescence signal. Experimental results reveal that the method not only enables sensitive determination of EV PD-L1 with a detection limit of 67 particles/mL but also demonstrates the potential use in the diagnosis and immunotherapy response prediction of lung cancer in a principle-of-proof study. Therefore, the method may provide a useful tool for EV PD-L1 determination, which may provide valuable information for the precise diagnosis and personalized treatment of lung cancer patients.
Collapse
Affiliation(s)
- Bing Bo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chaonan Han
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qiyu Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Menghang Yang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jian Ni
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
28
|
Extracellular Vesicles as Biomarkers in Head and Neck Squamous Cell Carcinoma: From Diagnosis to Disease-Free Survival. Cancers (Basel) 2023; 15:cancers15061826. [PMID: 36980712 PMCID: PMC10046514 DOI: 10.3390/cancers15061826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising from different anatomical sites present with different incidences and characteristics, which requires a personalized treatment strategy. Despite the extensive research that has conducted on this malignancy, HNSCC still has a poor overall survival rate. Many attempts have been made to improve the outcomes, but one of the bottlenecks is thought to be the lack of an effective biomarker with high sensitivity and specificity. Extracellular vesicles (EVs) are secreted by various cells and participate in a great number of intercellular communications. Based on liquid biopsy, EV detection in several biofluids, such as blood, saliva, and urine, has been applied to identify the existence and progression of a variety of cancers. In HNSCC, tumor-derived EVs exhibit many functionalities by transporting diverse cargoes, which highlights their importance in tumor screening, the determination of multidisciplinary therapy, prediction of prognosis, and evaluation of therapeutic effects. This review illustrates the classification and formation of EV subtypes, the cargoes conveyed by these vesicles, and their respective functions in HNSCC cancer biology, and discloses their potential as biomarkers during the whole process of tumor diagnosis, treatment, and follow-up.
Collapse
|
29
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Ortega-Sanchez FG, Teresa V, Widmann T, Regiart M, Jerez-Salcedo MT, Fernández-Baldo MA, de Miguel-Perez D. Microfluidic systems in extracellular vesicles single analysis. A systematic review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|