1
|
Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59:1114-1131. [PMID: 29720388 DOI: 10.1194/jlr.r083121] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
2
|
Shen WJ, Azhar S, Kraemer FB. SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annu Rev Physiol 2017; 80:95-116. [PMID: 29125794 DOI: 10.1146/annurev-physiol-021317-121550] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scavenger receptor, class B type 1 (SR-B1), is a multiligand membrane receptor protein that functions as a physiologically relevant high-density lipoprotein (HDL) receptor whose primary role is to mediate selective uptake or influx of HDL-derived cholesteryl esters into cells and tissues. SR-B1 also facilitates the efflux of cholesterol from peripheral tissues, including macrophages, back to liver. As a regulator of plasma membrane cholesterol content, SR-B1 promotes the uptake of lipid soluble vitamins as well as viral entry into host cells. These collective functions of SR-B1 ultimately affect programmed cell death, female fertility, platelet function, vasculature inflammation, and diet-induced atherosclerosis and myocardial infarction. SR-B1 has also been identified as a potential marker for cancer diagnosis and prognosis. Finally, the SR-B1-linked selective HDL-cholesteryl ester uptake pathway is now being evaluated as a gateway for the delivery of therapeutic and diagnostic agents. In this review, we focus on the regulation and functional significance of SR-B1 in mediating cholesterol movement into and out of cells.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
3
|
Abstract
The adrenal gland is one of the prominent sites for steroid hormone synthesis. Lipoprotein-derived cholesterol esters (CEs) delivered via SR-B1 constitute the dominant source of cholesterol for steroidogenesis, particularly in rodents. Adrenocorticotropic hormone (ACTH) stimulates steroidogenesis through downstream actions on multiple components involved in steroidogenesis. Both acute and chronic ACTH treatments can modulate SR-B1 function, including its transcription, posttranscriptional stability, phosphorylation and dimerization status, as well as the interaction with other protein partners, all of which result in changes in the ability of SR-B1 to mediate HDL-CE uptake and the supply of cholesterol for conversion to steroids. Here, we provide a review of the recent findings on the regulation of adrenal SR-B1 function by ACTH.
Collapse
Affiliation(s)
- Wen-Jun Shen
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Salman Azhar
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fredric B. Kraemer
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- *Correspondence: Fredric B. Kraemer,
| |
Collapse
|
4
|
Thomas DB, McGraw KJ, Butler MW, Carrano MT, Madden O, James HF. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc Biol Sci 2015; 281:20140806. [PMID: 24966316 DOI: 10.1098/rspb.2014.0806] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The broad palette of feather colours displayed by birds serves diverse biological functions, including communication and camouflage. Fossil feathers provide evidence that some avian colours, like black and brown melanins, have existed for at least 160 million years (Myr), but no traces of bright carotenoid pigments in ancient feathers have been reported. Insight into the evolutionary history of plumage carotenoids may instead be gained from living species. We visually surveyed modern birds for carotenoid-consistent plumage colours (present in 2956 of 9993 species). We then used high-performance liquid chromatography and Raman spectroscopy to chemically assess the family-level distribution of plumage carotenoids, confirming their presence in 95 of 236 extant bird families (only 36 family-level occurrences had been confirmed previously). Using our data for all modern birds, we modelled the evolutionary history of carotenoid-consistent plumage colours on recent supertrees. Results support multiple independent origins of carotenoid plumage pigmentation in 13 orders, including six orders without previous reports of plumage carotenoids. Based on time calibrations from the supertree, the number of avian families displaying plumage carotenoids increased throughout the Cenozoic, and most plumage carotenoid originations occurred after the Miocene Epoch (23 Myr). The earliest origination of plumage carotenoids was reconstructed within Passeriformes, during the Palaeocene Epoch (66-56 Myr), and not at the base of crown-lineage birds.
Collapse
Affiliation(s)
- Daniel B Thomas
- Department of Vertebrate Zoology, MRC-116, Smithsonian Institution, Washington, DC 20013-7012, USA Museum Conservation Institute, Smithsonian Institution, Suitland, MD 20746, USA Institute of Natural and Mathematical Sciences, Massey University, Auckland 0632, New Zealand
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Michael W Butler
- Department of Biology, Lafayette College, Easton, PA 18042-1778, USA
| | - Matthew T Carrano
- Department of Paleobiology, MRC-121, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Odile Madden
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD 20746, USA
| | - Helen F James
- Department of Vertebrate Zoology, MRC-116, Smithsonian Institution, Washington, DC 20013-7012, USA
| |
Collapse
|
5
|
Shen WJ, Hu J, Hu Z, Kraemer FB, Azhar S. Scavenger receptor class B type I (SR-BI): a versatile receptor with multiple functions and actions. Metabolism 2014; 63:875-86. [PMID: 24854385 PMCID: PMC8078058 DOI: 10.1016/j.metabol.2014.03.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 11/16/2022]
Abstract
Scavenger receptor class B type I (SR-BI), is a physiologically relevant HDL receptor that mediates selective uptake of lipoprotein (HDL)-derived cholesteryl ester (CE) in vitro and in vivo. Mammalian SR-BI is a 509-amino acid, ~82 kDa glycoprotein that contains N- and C-terminal cytoplasmic domains, two-transmembrane domains, as well as a large extracellular domain containing 5-6 cysteine residues and multiple sites for N-linked glycosylation. The size and structural characteristics of SR-BI, however, vary considerably among lower vertebrates and insects. Recently, significant progress has been made in understanding the molecular mechanisms involved in the posttranscriptional/posttranslational regulation of SR-BI in a tissue specific manner. The purpose of this review is to summarize the current body of knowledge about the events and molecules connected with the posttranscriptional/posttranslational regulation of SR-BI and to update the molecular and functional characteristics of the insect SR-BI orthologs.
Collapse
MESH Headings
- Animals
- Biological Transport
- Gene Expression Regulation
- Glycosylation
- Humans
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/genetics
- Lipoproteins, HDL/metabolism
- Liver/metabolism
- Organ Specificity
- Protein Conformation
- Protein Processing, Post-Translational
- Receptors, Lipoprotein/chemistry
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/metabolism
- Scavenger Receptors, Class B/chemistry
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304; Division of Endocrinology, Stanford University, Stanford, California 94305
| | - Jie Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Zhigang Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304; Division of Endocrinology, Stanford University, Stanford, California 94305
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304; Division of Endocrinology, Stanford University, Stanford, California 94305
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304; Division of Gastroenterology and Hepatology, Stanford University, Stanford, California 94305.
| |
Collapse
|
6
|
Zhang M, Xu Y, Li L, Wei S, Zhang S, Liu Z. Identification, evolution and expression of a CD36 homolog in the basal chordate amphioxus Branchiostoma japonicum. FISH & SHELLFISH IMMUNOLOGY 2013; 34:546-555. [PMID: 23261503 DOI: 10.1016/j.fsi.2012.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
CD36, as one member of scavenger receptor class B (SRB) family, is a transmembrane glycoprotein and has been associated with diverse normal physiological processes and pathological conditions. However, little is known about it in amphioxus, a model organism for insights into the origin and evolution of vertebrates. In this paper, CD36 homologs in amphioxus were identified. Evolutionary analysis suggested that amphioxus BfCD36F-a/b, which were more similar to vertebrate CD36, might represent the primitive form before the splitting of CD36, SRB1 and SRB2 genes during evolution. Then the BjCD36F-a cDNA was cloned from Branchiostoma japonicum using RACE technology. Real-time PCR and in situ hybridization revealed the expression of BjCD36F-a in all the tissues detected with the highest expression in the hepatic caecum. The BjCD36F-a expression was obviously up-regulated after feeding and down-regulated during fasting, indicating a role of BjCD36F-a in feeding regulation. Besides, the up-regulation expression of BjCD36F-a transcripts was also found after either Lipoteichoic acid (LTA) treatment in the BjCD36F-a-transfected FG cells or Escherichia coli (E. coli) challenge in vivo, implying an immune-related function for BjCD36F-a. Collectively, we identify and characterize a conserved gene that is important in the fundamental process of immune and nutritional regulation. These are the first such data in amphioxus, laying a foundation for further study of their physiological functions.
Collapse
Affiliation(s)
- Min Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
7
|
Fujimoto VY, Kane JP, Ishida BY, Bloom MS, Browne RW. High-density lipoprotein metabolism and the human embryo. Hum Reprod Update 2010; 16:20-38. [PMID: 19700490 DOI: 10.1093/humupd/dmp029] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High-density lipoprotein (HDL) appears to be the dominant lipoprotein particle in human follicular fluid (FF). The reported anti-atherogenic properties of HDL have been attributed in part to reverse cholesterol transport. The discoveries of the scavenger receptor class B type I (SR-BI) and the ATP-binding cassette A1 lipid (ABCA1) transporter have generated studies aimed at unraveling the pathways of HDL biogenesis, remodeling and catabolism. The production of SR-BI and ABCA1 knockout mice as well as other lipoprotein metabolism-associated mutants has resulted in reduced or absent fertility, leading us to postulate the existence of a human hepatic-ovarian HDL-associated axis of fertility. Here, we review an evolving literature on the role of HDL metabolism on mammalian fertility and oocyte development. METHODS An extensive online search was conducted of published articles relevant to the section topics discussed. All relevant English language articles contained in Pubmed/Medline, with no specific time frame for publication, were considered for this narrative review. Cardiovascular literature was highly cited due to the wealth of relevant knowledge on HDL metabolism, and the dearth thereof in the reproductive field. RESULTS Various vertebrate models demonstrate a role for HDL in embryo development and fertility. In our clinical studies, FF levels of HDL cholesterol and apolipoprotein AI levels were negatively associated with embryo fragmentation, but not with embryo cell cleavage rate. However, the HDL component, paraoxonase 1 arylesterase activity, was positively associated with embryo cell cleavage rate. CONCLUSIONS HDL contributes to intra-follicular cholesterol homeostasis which appears to be important for successful oocyte and embryo development.
Collapse
Affiliation(s)
- Victor Y Fujimoto
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94115-0916, USA.
| | | | | | | | | |
Collapse
|
8
|
Kleveland EJ, Syvertsen BL, Ruyter B, Vegusdal A, Jørgensen SM, Gjøen T. Characterization of scavenger receptor class B, type I in Atlantic salmon (Salmo salar L.). Lipids 2006; 41:1017-27. [PMID: 17263301 DOI: 10.1007/s11745-006-5052-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The scavenger receptor class B, type I (SR-BI) is an important player in regulation of mammalian lipid homeostasis. We therefore wanted to study this receptor in Atlantic salmon (Salmo salar L.), which requires a diet with particular high lipid content. We have for the first time cloned and characterized SR-BI from a salmonid fish. The predicted 494 amino acid protein contained two transmembrane domains, several putative N-glycosylation sites, and showed 72% sequence identity with the predicted homolog from zebrafish. SR-BI expression was analyzed by reverse transcription Real-Time PCR in several tissues, and a high relative expression in salmon midgut was detected, which may suggest that SR-BI has a role in uptake of lipids from the diet. We also expressed a construct of salmon myc-tagged SR-BI in salmon TO cells and HeLa cells, which gave a protein of approximately 80 kDa on reducing SDS-PAGE using an antibody against the myc-epitope. Immunofluorescence microscopy analyses of the salmon SR-BI protein in transiently transfected HeLa cells revealed staining in the cell periphery and in some intracellular membranes, but not in the nucleus, which indicated that the salmon protein may be a functional membrane protein. We also observed a high degree of co-localization using an anti-peptide SR-BI antiserum. We found that 20 microg mL(-1) insulin up-regulated the SR-BI mRNA levels in primary cultures of salmon hepatocytes relative to untreated cells. Oleic acid, EPA, DHA, or dexamethasone did not affect the relative expression of SR-BI in this liver model system. In conclusion, the salmon SR-BI cDNA encoded a protein with several features common to those of mammalian species. SR-BI gene expression was high in the intestine, which leads us to propose that SR-BI may contribute to the uptake of lipids from the diet.
Collapse
Affiliation(s)
- E J Kleveland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
9
|
Mattingly C, Parton A, Dowell L, Rafferty J, Barnes D. Cell and Molecular Biology of Marine Elasmobranchs: Squalus acanthias and Raja erinacea. Zebrafish 2004; 1:111-20. [DOI: 10.1089/zeb.2004.1.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Angela Parton
- Mount Desert Island Biological Laboratories, Salsbury Cove, Maine
| | - Lori Dowell
- Mount Desert Island Biological Laboratories, Salsbury Cove, Maine
| | - Jason Rafferty
- Mount Desert Island Biological Laboratories, Salsbury Cove, Maine
| | - David Barnes
- Mount Desert Island Biological Laboratories, Salsbury Cove, Maine
| |
Collapse
|