1
|
Jentoft IMA, Bäuerlein FJB, Welp LM, Cooper BH, Petrovic A, So C, Penir SM, Politi AZ, Horokhovskyi Y, Takala I, Eckel H, Moltrecht R, Lénárt P, Cavazza T, Liepe J, Brose N, Urlaub H, Fernández-Busnadiego R, Schuh M. Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell 2023; 186:5308-5327.e25. [PMID: 37922900 DOI: 10.1016/j.cell.2023.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.
Collapse
Affiliation(s)
- Ida M A Jentoft
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Felix J B Bäuerlein
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Arsen Petrovic
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Antonio Z Politi
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Iina Takala
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Heike Eckel
- Kinderwunschzentrum Göttingen, 37081 Göttingen, Germany
| | | | - Peter Lénárt
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tommaso Cavazza
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nils Brose
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Henning Urlaub
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Faculty of Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Jiang ZY, Fan HY. Five questions toward mRNA degradation in oocytes and preimplantation embryos: When, who, to whom, how, and why? Biol Reprod 2022; 107:62-75. [DOI: 10.1093/biolre/ioac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
RNA, the primary product of the genome, is subject to various biological events during its lifetime. During mammalian gametogenesis and early embryogenesis, germ cells and preimplantation embryos undergo marked changes in the transcriptome, including mRNA turnover. Various factors, including specialized proteins, RNAs, and organelles, function in an intricate degradation system, and the degradation selectivity is determined by effectors and their target mRNAs. RNA homeostasis regulators and surveillance factors function in the global transcriptome of oocytes and somatic cells. Other factors, including BTG4, PABPN1L, the CCR4-NOT subunits, CNOT6L and CNOT7, and TUTs, are responsible for two maternal mRNA avalanches: M- and Z-decay. In this review, we discuss recent advances in mRNA degradation mechanisms in mammalian oocytes and preimplantation embryos. We focused on the studies in mice, as a model mammalian species, and on RNA turnover effectors and the cis-elements in targeting RNAs.
Collapse
Affiliation(s)
- Zhi-Yan Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Rossi LF, Solari AJ. Large lamellar bodies and their role in the growing oocytes of the armadillo Chaetophractus villosus. J Morphol 2021; 282:1330-1338. [PMID: 34164851 DOI: 10.1002/jmor.21388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022]
Abstract
Oogenesis in the armadillo Chaetophractus villosus, a representative species of a mammalian basal clade, was investigated by light microscopy, transmission electron microscopy, and immunohistochemical localization of keratin. At the beginning of the growth phase, oocyte follicles showed one, and sometimes several, large bodies composed of lamellae (multilamellar bodies [MLBs]), which entrap other cytoplasmic organelles at more advanced stages. Lamellae diameter is described in cross-section (37 nm) and tangential sections (50 nm). The MLB of early oocytes is most frequently located close to the nucleus. In large oocytes, both, this body and the free organelles are relocated at the oocyte periphery. The MLB grows from the primary follicle up to its full development at the follicular phase characterized by tall granulosa cells. Mitochondria, smooth small vesicles, and lipofuscin granules are trapped between lamellae. MLBs engage in the formation of different sets of organelles, both trapped and free ones. When oocytes are well developed and the zona pellucida is formed, the MLB is reduced to small remnants detected only by transmission electron microscopy. The MLB disintegrates when an antrum develops. Immunohistochemical localization techniques showed the presence of cytokeratin in the MLBs. This cytokeratin pool may be involved in the filament and desmosome formation found in the periphery of late oocytes.
Collapse
Affiliation(s)
- Luis F Rossi
- Laboratorio de Biología Cromosómica, Facultad de Medicina (C1121ABG), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (C1425FQB), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alberto J Solari
- Consejo Nacional de Investigaciones Científicas y Técnicas (C1425FQB), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Segunda Unidad Académica de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina (C1121ABG), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Mahapatra S, Martin D, Gallicano GI. Re-Defining Stem Cell-Cardiomyocyte Interactions: Focusing on the Paracrine Effector Approach. J Stem Cells Regen Med 2018. [PMID: 30018469 PMCID: PMC6043659 DOI: 10.46582/jsrm.1401003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell research for treating or curing ischemic heart disease has, till date, culminated in three basic approaches: the use of induced pluripotent stem cell (iPSC) technology; reprogramming cardiac fibroblasts; and cardiovascular progenitor cell regeneration. As each approach has been shown to have its advantages and disadvantages, exploiting the advantages while minimizing the disadvantages has been a challenge. Using human germline pluripotent stem cells (hgPSCs) along with a modified version of a relatively novel cell-expansion culture methodology to induce quick, indefinite expansion of normally slow growing hgPSCs, it was possible to emphasize the advantages of all three approaches. We consistently found that unipotent germline stem cells, when removed from their niche and cultured in the correct medium, expressed endogenously, pluripotency genes, which induced them to become hgPSCs. These cells are then capable of producing cell types from all three germ layers. Upon differentiation into cardiac lineages, our data consistently showed that they not only expressed cardiac genes, but also expressed cardiac-promoting paracrine factors. Taking these data a step further, we found that hgPSC-derived cardiac cells could integrate into cardiac tissue in vivo. Note, while the work presented here was based on testes-derived hgPSCs, data from other laboratories have shown that ovaries contain very similar types of stem cells that can give rise to hgPSCs. As a result, hgPSCs should be considered a viable option for eventual use in patients, male or female, with ischemic heart disease
Collapse
Affiliation(s)
- Samiksha Mahapatra
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC, USA
| | - Dianna Martin
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC, USA
| | - G Ian Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC, USA
| |
Collapse
|
5
|
Liu X, Morency E, Li T, Qin H, Zhang X, Zhang X, Coonrod S. Role for PADI6 in securing the mRNA-MSY2 complex to the oocyte cytoplasmic lattices. Cell Cycle 2016; 16:360-366. [PMID: 27929740 DOI: 10.1080/15384101.2016.1261225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The oocyte cytoplasmic lattices (CPLs) have long been predicted to function as a storage form for the maternal contribution of ribosomes to the early embryo. Our previous studies have demonstrated that ribosomal component S6 is stored in the oocyte CPLs and peptidylarginine deiminase 6 (PADI6) is critical for CPLs formation. Additionally, we found that depletion of PADI6 reduced de novo protein synthesis prior to the maternal-to-embryonic transition, therefore causing embryos to arrest at the 2-cell stage. Here, we present evidence further supporting the association of ribosomes with the CPLs by demonstrating that rRNAs are dramatically decreased in Padi6 KO oocytes. We also show that the abundance and localization of mRNAs is affected upon PADI6 depletion, suggesting that mRNAs are very possibly associated with CPLs. Consistent with this observation, the amount of the major RNA binding protein, MSY2, that is associated with the insoluble fraction of the oocytes after Triton X-100 extraction is also markedly decreased in the Padi6 KO oocytes. Furthermore, treatment of the oocytes with RNase A followed by Triton X-100 extraction severely impairs the localization of PADI6 and MSY2 in oocytes. These results indicate that mRNAs, possibly in a complex with MSY2 and PADI6, are bound in the CPLs and may play a role in securing the mRNA-MSY2 complex to the CPLs.
Collapse
Affiliation(s)
- Xiaoqiu Liu
- a Key Laboratory of Pathogen Biology of Jiangsu Province , Nanjing Medical University , Nanjing , China.,b Department of Microbiology , Nanjing Medical University , Nanjing , China
| | - Eric Morency
- c Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca , NY USA
| | - Tingting Li
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Hao Qin
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Xiaoqian Zhang
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Xuesen Zhang
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Scott Coonrod
- c Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca , NY USA
| |
Collapse
|
6
|
Larabee SM, Coia H, Jones S, Cheung E, Gallicano GI. miRNA-17 members that target Bmpr2 influence signaling mechanisms important for embryonic stem cell differentiation in vitro and gastrulation in embryos. Stem Cells Dev 2014; 24:354-71. [PMID: 25209090 DOI: 10.1089/scd.2014.0051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Body axes and germ layers evolve at gastrulation, and in mammals are driven by many genes; however, what orchestrates the genetic pathways during gastrulation remains elusive. Previously, we presented evidence that microRNA-17 (miRNA-17) family members, miR-17-5p, miR-20a, miR-93, and miR-106a were differentially expressed in mouse embryos and functioned to control differentiation of the stem cell population. Here, we identify function(s) that these miRNAs have during gastrulation. Fluorescent in situ hybridization miRNA probes reveal that these miRNAs are localized at the mid/posterior primitive streak (ps) in distinct populations of primitive ectoderm, mesendoderm, and mesoderm. Seven different miRNA prediction algorithms are identified in silico bone morphogenic protein receptor 2 (Bmpr2) as a target of these miRNAs. Bmpr2 is a member of the TGFβ pathway and invokes stage-specific changes during gastrulation. Recently, Bmpr2 was shown regulating cytoskeletal dynamics, cell movement, and invasion. Our previous and current data led to a hypothesis by which members of the miR-17 family influence gastrulation by suppressing Bmpr2 expression at the primitive streak. This suppression influences fate decisions of cells by affecting genes downstream of BMPR2 as well as mesoderm invasion through regulation of actin dynamics.
Collapse
Affiliation(s)
- Shannon M Larabee
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center , Washington, District of Columbia
| | | | | | | | | |
Collapse
|
7
|
Wendl J, Ebach K, Rodler D, Kenngott RAM. Immunocytochemical localization of cytoplasmic and nuclear intermediate filaments in the bovine ovary during folliculogenesis. Anat Histol Embryol 2012; 41:190-201. [PMID: 22250786 DOI: 10.1111/j.1439-0264.2011.01123.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/01/2011] [Indexed: 11/30/2022]
Abstract
The cellular cytoskeleton is composed of three fibrillar systems, namely actin microfilaments, microtubules and intermediate filaments (IFs). It not only is a structural system, which mediates functional compartmentalization, but also contributes to many cellular processes such as transport, mitosis, secretion, formation of cell extensions, intercellular communication and apoptosis. In this study, we have examined the distribution of four groups of IFs [cytokeratins (CKs), vimentin, desmin and lamins] in the somatic and germinal cells of the bovine ovary using RT-PCR and immunohistochemical techniques. Using RT-PCR, specific transcripts for all intermediate proteins studied (CK8, CK18, desmin, vimentin, lamin A/C and lamin B1) were detected. A characteristic immunohistochemical staining pattern was observed for the different IFs within the ovary. In this study, we used antibodies against type I CK (acidic CKs: CK14, CK18 and CK19) and type II CK (basic CKs: CK5 and CK8). Among these, only antibodies against CK18 gave a characteristic pattern of immunostaining in the ovary, which included the surface epithelium, the follicle cells, the endothelium of blood vessels and rete ovarii. Antibodies against all other CKs resulted in a weak staining of a limited number of cellular structures (CK5 and CK19) or were completely negative (CK8 and CK14, apart from the surface epithelium). Vimentin antibodies resulted occasionally in a weak staining of the granulosa cells of primary and secondary follicles. In late secondary follicles, the basal and the most apical follicle cells contacting the zona pellucida usually showed a marked immunostaining for vimentin. In antral follicles, three different immunostaining patterns for vimentin were observed. Desmin immunostaining was confined to the smooth muscle cells of blood vessels. Although mRNA for lamin A/C and lamin B1 could be demonstrated using RT-PCR, no immunostaining was found for lamins, neither in the follicle cells nor in the oocytes.
Collapse
Affiliation(s)
- J Wendl
- Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Sciences, LMU München, Munich, Germany
| | | | | | | |
Collapse
|
8
|
Kan R, Yurttas P, Kim B, Jin M, Wo L, Lee B, Gosden R, Coonrod SA. Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. Dev Biol 2010; 350:311-22. [PMID: 21147087 DOI: 10.1016/j.ydbio.2010.11.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/22/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022]
Abstract
Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement.
Collapse
Affiliation(s)
- Rui Kan
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tashiro F, Kanai-Azuma M, Miyazaki S, Kato M, Tanaka T, Toyoda S, Yamato E, Kawakami H, Miyazaki T, Miyazaki JI. Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition. Genes Cells 2010; 15:813-28. [DOI: 10.1111/j.1365-2443.2010.01420.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Abstract
Embryonic development is initiated after the fertilizing spermatozoon enters the egg and triggers a series of events known as egg activation. Activation results in an increase in intracellular calcium concentration, cortical granule exocytosis (CGE), cell cycle resumption and recruitment of maternal mRNA. CGE is an evolutionary developed mechanism that causes modification of the zona pellucida to prevent penetration of additional spermatozoa, ensuring successful egg activation and embryo development. The egg CGE is a unique and convenient mammalian model for studying the different proteins participating at the membrane fusion cascade, which, unlike other secretory cells, occurs only once in the egg's lifespan. This article highlights a number of proteins, ascribed to participate in CGE and thus the block to polyspermy. CGE can be triggered either by a calcium dependent pathway, or via protein kinase C (PKC) activation that requires a very low calcium concentration. In a recent study, we suggested that the filamentous actin (F-actin) at the egg's cortex is a dynamic network. It can be maneuvered towards allowing CGE by activated actin associated proteins and/or by activated PKC and its down stream proteins, such as myristoylated alanine-rich C kinase substrate (MARCKS). MARCKS, a protein known to cross-link F-actin in other cell types, was found to be expressed and colocalized with actin in non-activated MII eggs. We further demonstrated MARCKS dissociation from actin after activation by ionomycin, a process that can lead to the breakdown of the actin network, thus allowing CGE. The more we know of the intricate process of CGE and of the proteins participating in it, the more the assisted reproductive procedures might benefit from that knowledge.
Collapse
Affiliation(s)
- Alina Tsaadon
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
11
|
Gallicano GI, Foshay K, Pengetnze Y, Zhou X. Dynamics and unexpected localization of the plakin binding protein, kazrin, in mouse eggs and early embryos. Dev Dyn 2005; 234:201-14. [PMID: 16086310 DOI: 10.1002/dvdy.20519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cell uses the cytoskeleton in virtually every aspect of cell survival and function. One primary function of the cytoskeleton is to connect to and stabilize intercellular junctions. To accomplish this task, microtubules, actin filaments, and intermediate filaments utilize cytolinker proteins, which physically bind the cytoskeletal filament to the core proteins of the adhesion junction. The plakin family of linker proteins have been in the spotlight recently as critical components for embryo survival and, when mutated, the cause of diseases such as muscular dystrophy and cardiomyopathies. Here, we reveal the dynamics of a recently discovered plakin binding protein, kazrin (kaz), during early mouse development. Kaz was originally found in adult tissues, primarily epidermis, linking periplakin to the plasma membrane and colocalizing with desmoplakin in desmosomes. Using reverse transcriptase-polymerase chain reaction, Western blots, and confocal microscopy, we found kaz in unfertilized eggs associated with the spindle apparatus and cytoskeletal sheets. As quickly as 5 min after egg activation, kaz relocates to a diffuse peri-spindle position, followed 20-30 min later by clear localization to the presumptive cytokinetic ring. Before the blastocyst stage of development, kaz associates with the nuclear matrix in a cell cycle-dependent manner, and also associates with the cytoplasmic actin cytoskeleton. After blastocyst formation, kaz localization and potential function(s) become highly complex as it is found associating with cell-cell junctions, the cytoskeleton, and nucleus. Postimplantation stages of development reveal that kaz retains a multifunctional, tissue-specific role as it is detected at diverse locations in various embryonic tissue types.
Collapse
Affiliation(s)
- G Ian Gallicano
- Department of Cell Biology, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
12
|
Hwang KC, Lee HY, Cui XS, Kim JH, Kim NH. Identification of maternal mRNAs in porcine parthenotes at the 2-cell stage: a comparison with the blastocyst stage. Mol Reprod Dev 2005; 70:314-23. [PMID: 15625692 DOI: 10.1002/mrd.20204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful embryonic development is dependent on the temporal and stage-specific expression of appropriate genes. Currently, information on specific gene expression during early cleavage-stage embryos before zygotic gene activation (ZGA) is limited. In the present study, we compare gene expression between porcine 2-cell and blastocyst stage parthenotes to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based GeneFishing PCR. Using 60 ACPs, we identified and sequenced nine differentially expressed genes (DEGs). A BLAST search revealed that cloned genes or ESTs (GDI-2, MTMR3, MKLN1, NUP88, ePAD, CIRHIM, UPF3B, ITGA2, and CGI-140) had significant sequence similarities with known genes (78-95%) of other species in the GenBank/EMBL database. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) data disclosed that these genes were regulated upstream in metaphase II (MII) oocyte, 1-cell, and 2-cell stage embryos during early pre-implantation. Similarly, upregulation was observed in MII mouse oocytes and 1-cell stage embryos before ZGA, suggesting that these nine differentially expressed orthologous genes play important roles during early cleavage before ZGA. Further analysis of the differentially expressed genes identified in this report should provide the basis for research on early cleavage and activation of the embryonic genome.
Collapse
Affiliation(s)
- Kyu-Chan Hwang
- Department of Animal Sciences, Chungbuk National University, Gaesin-dong, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | |
Collapse
|
13
|
Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, Hao Z, Jayes FC, Bush LA, Shetty J, Shore AN, Reddi PP, Tung KS, Samy E, Allietta MM, Sherman NE, Herr JC, Coonrod SA. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 2003; 256:73-88. [PMID: 12654293 DOI: 10.1016/s0012-1606(02)00126-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selected for its high relative abundance, a protein spot of MW approximately 75 kDa, pI 5.5 was cored from a Coomassie-stained two-dimensional gel of proteins from 2850 zona-free metaphase II mouse eggs and analyzed by tandem mass spectrometry (TMS), and novel microsequences were identified that indicated a previously uncharacterized egg protein. A 2.4-kb cDNA was then amplified from a mouse ovarian adapter-ligated cDNA library by RACE-PCR, and a unique 2043-bp open reading frame was defined encoding a 681-amino-acid protein. Comparison of the deduced amino acid sequence with the nonredundant database demonstrated that the protein was approximately 40% identical to the calcium-dependent peptidylarginine deiminase (PAD) enzyme family. Northern blotting, RT-PCR, and in situ hybridization analyses indicated that the protein was abundantly expressed in the ovary, weakly expressed in the testis, and absent from other tissues. Based on the homology with PADs and its oocyte-abundant expression pattern, the protein was designated ePAD, for egg and embryo-abundant peptidylarginine deiminase-like protein. Anti-recombinant ePAD monospecific antibodies localized the molecule to the cytoplasm of oocytes in primordial, primary, secondary, and Graafian follicles in ovarian sections, while no other ovarian cell type was stained. ePAD was also expressed in the immature oocyte, mature egg, and through the blastocyst stage of embryonic development, where expression levels began to decrease. Immunoelectron microscopy localized ePAD to egg cytoplasmic sheets, a unique keratin-containing intermediate filament structure found only in mammalian eggs and in early embryos, and known to undergo reorganization at critical stages of development. Previous reports that PAD-mediated deimination of epithelial cell keratin results in cytoskeletal remodeling suggest a possible role for ePAD in cytoskeletal reorganization in the egg and early embryo.
Collapse
Affiliation(s)
- Paul W Wright
- Department of Cell Biology and Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gardner RL. The initial phase of embryonic patterning in mammals. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:233-90. [PMID: 11131518 DOI: 10.1016/s0074-7696(01)03009-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Although specification of the antero-posterior axis is a critical intial step in development of the fetus, it is not known either how, or at what stage in development, this process begins. Such information is vital for understanding not only normal development in mammals but also monozygotic twinning, which, at least in man, is associated with a significantly increased incidence of birth defects. According to recent studies in the mouse, specification of the fetal anteroposterior axis begins well before gastrulation, and probably even before the conceptus implants. Moreover, evidence is accruing that the origin of relevant asymmetries depends on information that is already present in the zygote before it embarks on cleavage. Hence, early development in mammals does not differ as markedly from that in other animals as has generally been assumed. Consequently, at present, the possibility of adverse effects of techniques used to assist human reproduction cannot be disregarded.
Collapse
|
15
|
Capco DG. Molecular and biochemical regulation of early mammalian development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 207:195-235. [PMID: 11352267 DOI: 10.1016/s0074-7696(01)07006-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fertilization initiates a rapid series of changes that restructures the egg into the zygote and initiates the program of early development. These changes in the cell occur while the genetic complement of the egg and sperm are in a highly condensed state and unable to participate in transcription. The egg cytoplasm, formed by the maternal genome, contains the necessary components that mediate the early restructuring of egg into zygote. These changes are mediated by a series of cytoplasmic signal transduction events initiated by the rise in [Ca2+]i caused when the sperm penetrates the egg. The structural changes that the egg undergoes are rapid and result in the extensive remodeling of this specialized cell. Protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaM KII) are two pivotal signaling agents that mediate several of these rapid modifications in cell structure. Studies indicate the meiotic spindle serves as an architectural element in the egg that acts to colocalize elements from several of the key signaling pathways and may provide a means for these pathways to interact. In mammals, transcription begins earlier than in zygotes from other classes of organisms, starting several hours after fertilization in the male and female pronuclei and continuing in the embryonic nuclei. Studies indicate that nuclei undergo an initial state that is permissive for transcription, and then in Gap 2 of the two-cell embryo, enter a transcriptionally repressive state. These changes have been linked to the times during the cell cycle when the DNA is replicated, and also have been proposed as a requirement for proper initiation of the program of early development.
Collapse
Affiliation(s)
- D G Capco
- Department of Biology, Molecular and Cellular Biology Program, Arizona State University, Tempe 85287, USA
| |
Collapse
|
16
|
Gallicano GI, Capco DG. Remodeling of the specialized intermediate filament network in mammalian eggs and embryos during development: regulation by protein kinase C and protein kinase M. Curr Top Dev Biol 1996; 31:277-320. [PMID: 8746668 DOI: 10.1016/s0070-2153(08)60231-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sheets serve as an maternal supply of assembled, cytokeratin, intermediate filaments. They are remodeled at each major developmental transition in mammalian early development, that is fertilization, embryonic compaction, blastocyst formation, and formation of the primitive ectoderm and primitive endoderm during implantation into the uterine wall. Our results indicate that the sheets exist as specialization for placental development as they have a major role in the maintenance of epithelial integrity at the time the embryo is implanting into the uterine wall. They also contribute intermediate filaments to the junctional complexes required for embryonic compaction. Our analyses demonstrate the they are regulated at the time of fertilization by the action of PKC/PKM, a kinase that acts as a cellular chronometer with both temporal and spatial precision that remodels the egg into the zygote.
Collapse
Affiliation(s)
- G I Gallicano
- Molecular and Cellular Biology Program, Arizona State University, Tempe 85287, USA
| | | |
Collapse
|
17
|
Schwarz SM, Gallicano GI, McGaughey RW, Capco DG. A role for intermediate filaments in the establishment of the primitive epithelia during mammalian embryogenesis. Mech Dev 1995; 53:305-21. [PMID: 8645598 DOI: 10.1016/0925-4773(95)00440-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Investigations of the cytoskeleton in mammalian eggs and embryos have revealed the existence of an unusual array of crosslinked intermediate filaments composed of cytokeratins 5, 6, 16, and 'Z' that are referred to as cytoskeletal sheets. We have been investigating the function of these cytoskeletal sheets during embryogenesis. In this investigation we report the rapid appearance of extensive arrays of tonofilaments extending across blastomeres and in association with intercellular desmosomal junctions appearing at the time the embryo hatches from its zona pellucida, through the time of implantation of the embryo into the uterine wall. Just prior to the time of gastrulation these tonofilaments disappear. Electron microscopy and immunoconfocal microscopy demonstrate that the tonofilaments are composed of cytokeratins characteristic of the type found earlier in development, that is types 5 and 6; whereas, cytokeratin type 8 which has been shown to be synthesized in blastocysts is localized primarily at perinuclear regions. Cytokeratins 8 and 18 are synthesized to about the same extent as actin at the time the tonofilaments appear whereas the synthesis of cytokeratins 5 and 6 is greatly reduced. Our results suggest that cytokeratins 5 and 6 in the tonofilaments may arise from the stored form of cytokeratins in the cytoskeletal sheets. Consequently, our results suggest that the sheets may serve as a maternal reserve of cytokeratin employed by the embryo at the time of implantation to form extensive arrays of tonofilaments in the embryo that likely provide structural integrity to the embryo as it is subjected to mechanical stress during invasion and implantation into the uterine wall.
Collapse
|
18
|
Gallicano GI, Larabell CA, McGaughey RW, Capco DG. Novel cytoskeletal elements in mammalian eggs are composed of a unique arrangement of intermediate filaments. Mech Dev 1994; 45:211-26. [PMID: 8011554 DOI: 10.1016/0925-4773(94)90009-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mammalian eggs and embryos contain a major network of specialized cytoskeletal components known as 'sheets' that have not been identified in any other cell type. Although eggs from at least seven different mammalian species have been shown to contain these cytoskeletal structures, embedment-free electron microscopic analysis of these eggs revealed that two basic forms of cytoskeletal sheets exist, a solid, planar type of sheet typical of hamster and rat eggs and a fibrous sheet typical of mouse, porcine, bovine, canine, and human eggs. In this study we have investigated the structural composition of the fibrous type of sheet in mouse eggs by employing biochemical approaches as well as two forms of ultrastructural analyses including: (1) analysis of thick, resin-embedded specimens using an intermediate voltage electron microscope (IVEM); (2) analysis of replicas from quick-frozen, deep-etched specimens. Our results indicate that the sheets of mouse eggs and preimplantation embryos are composed of cylindrical bundles of 10-11 nm filaments, with each of these filaments held in register by periodically arranged crossbridges spaced 23-25 nm apart. This sheet substructure of filaments and crossbridges is covered by a particulate material which can be removed by non-ionic detergent. Immunoelectron microscopic analysis of mouse eggs demonstrates that sheets bind antibodies to keratin and to a small extent, actin, but do not bind antibodies to vimentin or tubulin. Confirmation that keratin exists in these eggs was obtained by electrophoretic separation and one- and two-dimensional Western blot analysis demonstrating the existence of keratin types 5, 6, 8, 16, and type Z. The low abundancy of keratin type 8 compared to other keratin types explains the difficulties other investigators have had identifying intermediate filaments in mammalian embryos since most investigators have used antibodies directed specifically against keratin type 8 or its pair keratin type 18. Examination of compacted mouse embryos reveals that the filamentous framework of sheets disassembled and established close contact with the basolateral plasma membrane and the nucleus. However, sheets at the apical plasma membrane of blastomeres attach to the membrane but remain intact. Based on our biochemical and ultrastructural data, the fibrous sheets of mouse eggs appear to be cytoskeletal structures comparable to the solid, planar sheets of the Syrian hamster egg and probably serve similar function(s) in eggs and embryos of several mammalian species.
Collapse
Affiliation(s)
- G I Gallicano
- Department of Zoology, Arizona State University, Tempe 85287-1501
| | | | | | | |
Collapse
|
19
|
Gallicano GI, McGaughey RW, Capco DG. Ontogeny of the cytoskeleton during mammalian oogenesis. Microsc Res Tech 1994; 27:134-44. [PMID: 8123906 DOI: 10.1002/jemt.1070270207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mammalian oogenesis is a process which requires a variety of changes in the structure and function of the specialized female germ cell. Evidence suggests that the cytoskeleton may mediate several of these structural and functional changes. In this review we evaluate what is known of cytoskeletal function during oogenesis, with emphasis on specialized cytoskeletal features in mammals. Existing investigations suggest that the oocyte, as a highly specialized cell, contains unique cytoskeletal elements which exhibit functions restricted to the process of early development.
Collapse
Affiliation(s)
- G I Gallicano
- Department of Zoology, Arizona State University, Tempe 85287-1501
| | | | | |
Collapse
|
20
|
Capco DG, Gallicano GI, McGaughey RW, Downing KH, Larabell CA. Cytoskeletal sheets of mammalian eggs and embryos: a lattice-like network of intermediate filaments. CELL MOTILITY AND THE CYTOSKELETON 1993; 24:85-99. [PMID: 8440027 DOI: 10.1002/cm.970240202] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mammalian eggs and embryos possess a major cytoskeletal network composed of large planar "sheets" distributed throughout the cytoplasm. Cytoskeletal sheets are found neither in mammalian somatic cells nor in eggs or embryos of non-mammals. In this study, we have investigated the structural composition of the sheets in eggs and embryos of the golden Syrian hamster by (1) analysis of replicas from quick-frozen, deep-etched specimens, (2) analysis of thick, resin-embedded specimens using an intermediate voltage electron microscope (IVEM), (3) laser diffraction of EM images, (4) differential extraction with detergents, and (5) immunocytochemistry. Our results indicate that each sheet is composed of two closely apposed arrays of 10-nm filaments. Each filament within an array is held in register with its neighbor by lateral cross-bridges and the two parallel arrays of filaments are interconnected by periodic cross-bridges about 20 nm in length. Laser diffraction of negatives from IVEM images indicates that each array is composed of fibers that form a square lattice, and the two arrays are positioned in register by cross-bridges forming a single sheet. This lattice forms the skeleton of the sheets which is covered with a tightly packed layer of particulate material. By incubation in media containing different ratios of mixed-micelle detergents, it is possible to remove components sequentially from the sheets and to extract the particulate material. Immunocytochemical localization demonstrates that the sheets bind antibodies to keratin, and to a small extent actin, but do not bind antibodies to vimentin or tubulin. Examination of sheets within embryos at the time of embryonic compaction demonstrates that the sheets begin to fragment and disassemble in regions of blastomeres where desmosomes form, but undergo no structural alterations in interior and basal surfaces of the blastomeres. In regions of blastomere-blastomere contact the sheets fragment and associate with granules resembling keratohyalin granules found in keratinocytes.
Collapse
Affiliation(s)
- D G Capco
- Department of Zoology, Arizona State University, Tempe 85287-1501
| | | | | | | | | |
Collapse
|