1
|
Plasman M, Gonzalez-Voyer A, Bautista A, Díaz DE LA Vega-Pérez AH. Flexibility in thermal requirements: a comparative analysis of the wide-spread lizard genus Sceloporus. Integr Zool 2024. [PMID: 38880782 DOI: 10.1111/1749-4877.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Adaptation or acclimation of thermal requirements to environmental conditions can reduce thermoregulation costs and increase fitness, especially in ectotherms, which rely heavily on environmental temperatures for thermoregulation. Insight into how thermal niches have shaped thermal requirements across evolutionary history may help predict the survival of species during climate change. The lizard genus Sceloporus has a widespread distribution and inhabits an ample variety of habitats. We evaluated the effects of geographical gradients (i.e. elevation and latitude) and local environmental temperatures on thermal requirements (i.e. preferred body temperature, active body temperature in the field, and critical thermal limits) of Sceloporus species using published and field-collected data and performing phylogenetic comparative analyses. To contrast macro- and micro-evolutional patterns, we also performed intra-specific analyses when sufficient reports existed for a species. We found that preferred body temperature increased with elevation, whereas body temperature in the field decreased with elevation and increased with local environmental temperatures. Critical thermal limits were not related to the geographic gradient or environmental temperatures. The apparent lack of relation of thermal requirements to geographic gradient may increase vulnerability to extinction due to climate change. However, local and temporal variations in thermal landscape determine thermoregulation opportunities and may not be well represented by geographic gradient and mean environmental temperatures. Results showed that Sceloporus lizards are excellent thermoregulators, have wide thermal tolerance ranges, and the preferred temperature was labile. Our results suggest that Sceloporus lizards can adjust to different thermal landscapes, highlighting opportunities for continuous survival in changing thermal environments.
Collapse
Affiliation(s)
- Melissa Plasman
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Alejandro Gonzalez-Voyer
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Amando Bautista
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H Díaz DE LA Vega-Pérez
- Consejo Nacional de Humanidades, Ciencias, y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
2
|
Weaver SJ, McIntyre T, van Rossum T, Telemeco RS, Taylor EN. Hydration and evaporative water loss of lizards change in response to temperature and humidity acclimation. J Exp Biol 2023; 226:jeb246459. [PMID: 37767755 DOI: 10.1242/jeb.246459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Testing acclimation plasticity informs our understanding of organismal physiology and applies to conservation management amidst our rapidly changing climate. Although there is a wealth of research on the plasticity of thermal and hydric physiology in response to temperature acclimation, there is a comparative gap for research on acclimation to different hydric regimes, as well as the interaction between water and temperature. We sought to fill this gap by acclimating western fence lizards (Sceloporus occidentalis) to experimental climate conditions (crossed design of hot or cool, dry or humid) for 8 days, and measuring cutaneous evaporative water loss (CEWL), plasma osmolality, hematocrit and body mass before and after acclimation. CEWL changed plastically in response to the different climates, with lizards acclimated to hot humid conditions experiencing the greatest increase in CEWL. Change in CEWL among individuals was negatively related to treatment vapor pressure deficit and positively related to treatment water vapor pressure. Plasma osmolality, hematocrit and body mass all showed greater changes in response to temperature than to humidity or vapor pressure deficit. CEWL and plasma osmolality were positively related across treatment groups before acclimation and within treatment groups after acclimation, but the two variables showed different responses to acclimation, suggesting that they are interrelated but governed by different mechanisms. This study is among few that assess more than one metric of hydric physiology and that test the interactive effects of temperature and humidity. Such measurements will be essential for predictive models of activity and survival for animals under climate change.
Collapse
Affiliation(s)
- Savannah J Weaver
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Tess McIntyre
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Taylor van Rossum
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Rory S Telemeco
- Department of Conservation Science, Fresno Chaffee Zoo, Fresno, CA 93728, USA
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 93740, USA
| | - Emily N Taylor
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
3
|
Chabaud C, Berroneau M, Berroneau M, Dupoué A, Guillon M, Viton R, Gavira RSB, Clobert J, Lourdais O, Le Galliard JF. Climate aridity and habitat drive geographical variation in morphology and thermo-hydroregulation strategies of a widespread lizard species. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Thermo-hydroregulation strategies involve concurrent changes in functional traits related to energy, water balance and thermoregulation and play a key role in determining life-history traits and population demography of terrestrial ectotherms. Local thermal and hydric conditions should be important drivers of the geographical variation of thermo-hydroregulation strategies, but we lack studies that examine these changes across climatic gradients in different habitat types. Here, we investigated intraspecific variation of morphology and thermo-hydroregulation traits in the widespread European common lizard (Zootoca vivipara louislantzi) across a multidimensional environmental gradient involving independent variation in air temperature and rainfall and differences in habitat features (access to free-standing water and forest cover). We sampled adult males for morphology, resting metabolic rate, total and cutaneous evaporative water loss and thermal preferences in 15 populations from the rear to the leading edge of the distribution across an elevational gradient ranging from sea level to 1750 m. Besides a decrease in adult body size with increasing environmental temperatures, we found little effect of thermal conditions on thermo-hydroregulation strategies. In particular, relict lowland populations from the warm rear edge showed no specific ecophysiological adaptations. Instead, body mass, body condition and resting metabolic rate were positively associated with a rainfall gradient, while forest cover and water access in the habitat throughout the season also influenced cutaneous evaporative water loss. Our study emphasizes the importance of rainfall and habitat features rather than thermal conditions for geographical variation in lizard morphology and physiology.
Collapse
Affiliation(s)
- Chloé Chabaud
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
| | | | - Maud Berroneau
- Cistude Nature, Chemin du Moulinat , 33185 Le Haillan , France
| | - Andréaz Dupoué
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
| | - Michaël Guillon
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
- Cistude Nature, Chemin du Moulinat , 33185 Le Haillan , France
| | - Robin Viton
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Rodrigo S B Gavira
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale, CNRS , UMR 5321, Route du CNRS, Moulis , France
| | - Olivier Lourdais
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Jean-François Le Galliard
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance) , 78 rue du château, 77140 Saint-Pierre-lès-Nemours , France
| |
Collapse
|
4
|
Welman S, Ibarzabal I. Thermal physiology of Tropical House Geckos ( Hemidactylus mabouia) in a cool temperate region of South Africa. AFR J HERPETOL 2022. [DOI: 10.1080/21564574.2022.2098393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- S Welman
- Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| | - I Ibarzabal
- Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
5
|
Weiskopf SR, Shiklomanov AN, Thompson L, Wheedleton S, Campbell Grant EH. Winter severity affects occupancy of spring‐ and summer‐breeding anurans across the eastern United States. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sarah R. Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center Reston Virginia USA
| | | | - Laura Thompson
- U.S. Geological Survey National Climate Adaptation Science Center Reston Virginia USA
| | - Sarah Wheedleton
- Smithsonian Conservation Commons Washington District of Columbia USA
| | - Evan H. Campbell Grant
- U.S. Geological Survey Eastern, Ecological Science Center Turners Falls Massachusetts USA
| |
Collapse
|
6
|
Clifton IT, Refsnider JM. Temporal climatic variability predicts thermal tolerance in two sympatric lizard species. J Therm Biol 2022; 108:103291. [DOI: 10.1016/j.jtherbio.2022.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
7
|
Atkins RL, Clancy KM, Ellis WT, Osenberg CW. Thermal Traits Vary with Mass and across Populations of the Marsh Periwinkle, Littoraria irrorata. THE BIOLOGICAL BULLETIN 2022; 242:173-196. [PMID: 35767414 DOI: 10.1086/719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractPhysiological processes influence how individuals perform in various environmental contexts. The basis of such processes, metabolism, scales allometrically with body mass and nonlinearly with temperature, as described by a thermal performance curve. Past studies of thermal performance curves tend to focus on effects of temperature on a single body size or population, rather than variation in the thermal performance curve across sizes and populations. Here, we estimate intraspecific variation in parameters of the thermal performance curve in the salt marsh gastropod Littoraria irrorata. First, we quantify the thermal performance curve for respiration rate as a function of both temperature and body size in Littoraria and evaluate whether the thermal parameters and body size scaling are interdependent. Next, we quantify how parameters in the thermal performance curve for feeding rate vary between three Littoraria populations that occur along a latitudinal gradient. Our work suggests that the thermal traits describing Littoraria respiration are dependent on body mass and that both the thermal traits and the mass scaling of feeding vary across sites. We found limited evidence to suggest that mass scaling of Littoraria feeding or respiration rates depends on temperature. Variation in the thermal performance curves interacts with the size structure of the Littoraria population to generate divergent population-level responses to temperature. These results highlight the importance of considering variation in population size structure and physiological allometry when attempting to predict how temperature change will affect physiological responses and consumer-resource interactions.
Collapse
|
8
|
Gómez-Cruz A, Santos-Hernández NG, Cruz JA, Ariano-Sánchez D, Ruiz-Castillejos C, Espinoza-Medinilla EE, Fuentes-Vicente JAD. Effect of climate change on the potential distribution of Helodermaalvarezi (Squamata, Helodermatidae). Zookeys 2021; 1070:1-12. [PMID: 34819767 PMCID: PMC8599303 DOI: 10.3897/zookeys.1070.69186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/03/2021] [Indexed: 11/12/2022] Open
Abstract
Climate change represents a real threat to biodiversity conservation worldwide. Although the effects on several species of conservation priority are known, comprehensive information about the impact of climate change on reptile populations is lacking. In the present study, we analyze outcomes on the potential distribution of the black beaded lizard (Helodermaalvarezi Bogert & Martin del Campo, 1956) under global warming scenarios. Its potential distribution, at present and in projections for the years 2050 and 2070, under both optimistic and pessimistic climate change forecasts, were computed using current data records and seven bioclimatic variables. General results predict a shift in the future potential distribution of H.alvarezi due to temperature increase. The optimistic scenario (4.5 W/m2) for 2070 suggests an enlargement in the species' distribution as a response to the availability of new areas of suitable habitat. On the contrary, the worst-case scenario (7 W/m2) shows a distribution decrease by 65%. Moreover, the range distribution of H.alvarezi is directly related to the human footprint, which consequently could magnify negative outcomes for this species. Our research elucidates the importance of conservation strategies to prevent the extinction of the black beaded lizard, especially considering that this species is highly threatened by aversive hunting.
Collapse
Affiliation(s)
- Aarón Gómez-Cruz
- Laboratorio de Investigación y Diagnóstico Molecular (LIDiaM), Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México Universidad de Ciencias y Artes de Chiapas Tuxtla Gutiérrez Mexico.,Red Mesoamericana y del Caribe para la Conservación de Anfibios y Reptiles, Tuxtla Gutierrez, Mexico Red Mesoamericana y del Caribe para la Conservación de Anfibios y Reptiles Tuxtla Gutiérrez Mexico
| | - Nancy G Santos-Hernández
- Laboratorio de Investigación y Diagnóstico Molecular (LIDiaM), Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México Universidad de Ciencias y Artes de Chiapas Tuxtla Gutiérrez Mexico
| | - José Alberto Cruz
- Centro Universitario Tenancingo, Universidad Autónoma del Estado de México, México Universidad Autónoma del Estado de México Toluca Mexico
| | - Daniel Ariano-Sánchez
- Centro de Estudios Ambientales y Biodiversidad, Universidad Del Valle de Guatemala, Guatemala Universidad Del Valle de Guatemala Guatemala Guatemala
| | - Christian Ruiz-Castillejos
- Laboratorio de Investigación y Diagnóstico Molecular (LIDiaM), Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México Universidad de Ciencias y Artes de Chiapas Tuxtla Gutiérrez Mexico
| | - Eduardo E Espinoza-Medinilla
- Laboratorio de Investigación y Diagnóstico Molecular (LIDiaM), Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México Universidad de Ciencias y Artes de Chiapas Tuxtla Gutiérrez Mexico
| | - José A De Fuentes-Vicente
- Laboratorio de Investigación y Diagnóstico Molecular (LIDiaM), Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México Universidad de Ciencias y Artes de Chiapas Tuxtla Gutiérrez Mexico
| |
Collapse
|
9
|
Muñoz MM, Feeley KJ, Martin PH, Farallo VR. The multidimensional (and contrasting) effects of environmental warming on a group of montane tropical lizards. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | | | - Patrick H. Martin
- Department of Biological Sciences University of Denver Denver CO USA
| | - Vincent R. Farallo
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
- Biology Department University of Scranton Scranton PA USA
| |
Collapse
|
10
|
Duffy GA, Kuyucu AC, Hoskins JL, Hay EM, Chown SL. Adequate sample sizes for improved accuracy of thermal trait estimates. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Grant A. Duffy
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Arda C. Kuyucu
- Department of Biology Hacettepe University Ankara Turkey
| | | | - Eleanor M. Hay
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Steven L. Chown
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
11
|
Spatial-Temporal Activity Patterns of the Mexican Plateau Horned Lizard in a Natural Protected Area. J HERPETOL 2021. [DOI: 10.1670/20-037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Telemeco RS, Gangloff EJ. Introduction to the special issue-Beyond CT MAX and CT MIN : Advances in studying the thermal limits of reptiles and amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:5-12. [PMID: 33544981 DOI: 10.1002/jez.2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/27/2023]
Abstract
Two themes emerging from the special issue "Beyond CTMAX and CTMIN : Advances in Studying the Thermal Limits of Reptiles and Amphibians" are: (1) the need to identify mechanisms that determine the shape of thermal performance curves and (2) how these curves can be best used predictively.
Collapse
Affiliation(s)
- Rory S Telemeco
- Department of Biology, California State University Fresno, Fresno, California, USA
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
13
|
McMahon EK, Cavigelli SA. Gaps to Address in Ecological Studies of Temperament and Physiology. Integr Comp Biol 2021; 61:1917-1932. [PMID: 34097030 DOI: 10.1093/icb/icab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ecology is a diverse field with many researchers interested in drivers and consequences of variability within populations. Two aspects of variability that have been addressed are behavioral and physiological. While these have been shown to separately influence ecological outcomes such as survival, reproductive success and fitness, combined they could better predict within-population variability in survival and fitness. Recently there has been a focus on potential fitness outcomes of consistent behavioral traits that are referred to as personality or temperament (e.g. boldness, sociability, exploration, etc.). Given this recent focus, it is an optimal time to identify areas to supplement in this field, particularly in determining the relationship between temperament and physiological traits. To maximize progress, in this perspective paper we propose that the following two areas be addressed: (1) increased diversity of species, and (2) increased number of physiological processes studied, with an eye toward using more representative and relatively consistent measures across studies. We first highlight information that has been gleaned from species that are frequently studied to determine how animal personality relates to physiology and/or survival/fitness. We then shine a spotlight on important taxa that have been understudied and that can contribute meaningful, complementary information to this area of research. And last, we propose a brief array of physiological processes to relate to temperament, and that can significantly impact fitness, and that may be accessible in field studies.
Collapse
Affiliation(s)
- Elyse K McMahon
- Ecology Graduate Program, Pennsylvania State University, University Park, PA 16802, USA.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Sonia A Cavigelli
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|