1
|
Liao H, Liu M, Wang M, Zhang D, Hao Y, Xie F. Exploring the Potential of s-Triazine Derivatives as Novel Antifungal Agents: A Review. Pharmaceuticals (Basel) 2025; 18:690. [PMID: 40430509 PMCID: PMC12115033 DOI: 10.3390/ph18050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
The growing incidence and prevalence of invasive fungal infections (IFIs) and the emergence of antimicrobial resistance compound clinical antifungal therapies. Given the significant threat posed by IFIs and the limits of the current antifungal agents, the search for novel, effective therapeutic options remains a compelling area of antifungal drug discovery. The s-triazine (1,3,5-triazine) scaffold, renowned for its structural versatility, ease of functionalization, and diverse biological profiles, has been extensively studied in medical chemistry. Driven by this privileged structure, several s-triazine derivatives have been synthesized through molecular hybridization and screened for their antifungal activities. Some of them demonstrated potent efficacy against pathogenic fungi, including Candida, Cryptococcus, and Aspergillus species. Structure-activity relationship (SAR) studies are also discussed whenever possible, underlying the essential substituents for their antifungal effect. This review provides a summary of recent advancements (2014-2024) in the development of antifungal agents featuring the s-triazine scaffold and highlights the antifungal activity of s-triazine derivatives, aiming to prompt further progress in this field.
Collapse
Affiliation(s)
- Haoyan Liao
- Student Bridge, College of Basic Medical Sciences, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Menglu Liu
- Student Bridge, College of Basic Medical Sciences, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Mengyuan Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
2
|
Xiong F, Zhang Y, Jiao J, Zhu Y, Mo T, Li Y. Towards new bioactive fluorine-containing 1,3,4-oxadiazole-amide derivatives: synthesis, antibacterial activity, molecular docking and molecular dynamics simulation study. Mol Divers 2025; 29:1079-1089. [PMID: 38900333 DOI: 10.1007/s11030-024-10893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Through the approach of molecular hybridization, this study rationally designed and synthesized new trifluoromethyl-1,3,4-oxadiazole amide derivatives, denoted as 1a-1n. The findings reveal that these novel molecules exhibit potent inhibitory effects against various bacterial strains. Thereinto, compounds 1c, 1d, 1i, 1j and 1n, demonstrate relatively superior antimicrobial performance against B. cereus FM314, with a minimum inhibitory concentration (MIC) of 0.03907 μg/mL. Molecular docking analysis suggests the potential importance of the Ser57 and Thr125 amino acid residues (PDB ID: 4EI9) in contributing to the inhibitory activity against B. cereus. The consistency of these results was further corroborated through subsequent molecular dynamics simulations and MMPBSA validations. The insights gained from this study serve to facilitate the rational design and efficient development of novel eco-friendly antimicrobial inhibitors based on the trifluoromethyl-1,3,4-oxadiazole amide scaffold.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| | - Yanjun Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Jinlong Jiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yiren Zhu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| | - Yeji Li
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| |
Collapse
|
3
|
Canh Pham E, Thi Le BN, Ngo AM, Vong LB, Truong TN. Symmetrical di-substituted phenylamino- s-triazine derivatives as anticancer agents: in vitro and in silico approach. RSC Adv 2025; 15:9968-9984. [PMID: 40171287 PMCID: PMC11959361 DOI: 10.1039/d4ra08508f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/15/2025] [Indexed: 04/03/2025] Open
Abstract
A series of symmetrical tri-substituted s-triazine derivatives were designed and synthesized by two different methods (reflux and microwave-assisted methods). The structures of compounds were determined by infrared (IR), nuclear magnetic resonance (1H NMR and 13C NMR), and mass spectrometry. The yield of the microwave-assisted method (91-98%) was significantly higher (about 10%) than that of the reflux method (80-88%) meanwhile the reaction time was significantly shorter (15-30 min). Compound 3b showed good cytotoxic activity against the MCF7 (human breast cancer) cell line with an IC50 value of 6.19 μM. Compounds 3a and 2e showed strong cytotoxic activity against the C26 (colon carcinoma) cell line with IC50 values of 1.21 and 8.28 μM, respectively. Compound 3e showed good cytotoxic activity against both MCF7 and C26 cell lines with IC50 values of 13.74, and 14.66 μM respectively. In particular, compound 2d exhibited the best potent cytotoxic activity among the synthesized compounds against both MCF7 and C26 cell lines with IC50 values of 6.54 and 0.38 μM, respectively. Moreover, compounds 2e, 3a, and 3e showed higher selectivity on cancer cell lines and lower toxicity on BAEC (bovine aorta endothelial) normal cells compared to compounds 2d, 3a, paclitaxel, and doxorubicin. In silico studies revealed five potent compounds with good physicochemical and ADMET profiles and potent interactions with key anticancer targets (EGFR, DHFR, VEGFR2, CDK2, mTOR, and PI3K) compared to reference drugs. This work paved the way for the synthesis of more potent compounds based on the phenylamino-s-triazine scaffold and the exploration of their diverse and potential biological activities as well as their mechanisms of action.
Collapse
Affiliation(s)
- Em Canh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Bich-Ngoc Thi Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Anh Minh Ngo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Tuyen Ngoc Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| |
Collapse
|
4
|
Dubey P, Pathak DP, Chauhan G, Ali F. A Pharmacological Overview and Recent Patent of Triazine Scaffold in Drug Development: A Review. Curr Org Synth 2025; 22:310-327. [PMID: 40259585 DOI: 10.2174/0115701794272212240307092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 04/23/2025]
Abstract
The triazine moiety holds a special and very important position in the field of medicinal chemistry owing to its enormous biological and pharmacological potential. Over eras, triazine scaffolds have been investigated for synthesizing novel molecules that may be used for the treatment of different types of pathological conditions, such as infections, cancer, inflammation etc. A vast number of lead molecules have been established from the triazine moiety. The triazine fused with numerous heterocyclic rings, such as pyrrole, benzimidazole, indole, imidazole, carbazole, etc., have formed various bicyclic with pharmacological actions. The triazines display a wide range of activities, and synthesizing various marketable medicines that hold triazine moiety has made the attention of chemists worldwide grow over the years in the moiety. In this review article, the commercially available compound containing triazine has been presented, and an attempt has been made to collect the works reported, mostly in the past decade, by numerous scientists, related to the structural differences amongst the triazine analogues giving antitumor, and antimicrobial and other activities. The objective of this review article was to outline the current information on triazines and their derivatives with respect to their biological potential and various pharmacological activities. The summary of this review article would be helpful and describe the function and activity of the moiety to bring up-to-date the scientists working in the direction of designing and synthesising novel lead molecules for the treatment of different types of disease with the current molecules that have been synthesized from the triazine scaffold.
Collapse
Affiliation(s)
- Pragya Dubey
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, 110017, India
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, 110017, India
| | - Garima Chauhan
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, 110017, India
| | - Faraat Ali
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika-Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic
| |
Collapse
|
5
|
Lim HY, Dolzhenko AV. 1,3,5-Triazine as a promising scaffold in the development of therapeutic agents against breast cancer. Eur J Med Chem 2024; 276:116680. [PMID: 39018924 DOI: 10.1016/j.ejmech.2024.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
1,3,5-Triazine scaffold has garnered considerable interest due to its wide-ranging pharmacological properties, particularly in the field of cancer research. Breast cancer is the most commonly diagnosed cancer among women. Approximately one in eight women will receive a diagnosis of invasive breast cancer during their lifetime. The five-year survival rate for invasive breast cancer is less than 30 %, indicating a need to develop a more effective therapeutic agent targeting breast cancer. This review discusses bioactive 1,3,5-triazines targeting breast cancer cells by the inhibition of different enzymes, which include PI3K, mTOR, EGFR, VEGFR, FAK, CDK, DHFR, DNA topoisomerase, ubiquitin-conjugating enzyme, carbonic anhydrase, and matrix metalloproteinase. The anticancer agent search in some drug discovery programs is based on compound screening for antiproliferative activity. Often, multiple targets contribute to the anticancer effect of 1,3,5-triazines and this approach allows identification of active molecules prior to identification of their targets.
Collapse
Affiliation(s)
- Han Yin Lim
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia.
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western, Bentley, 6845, Australia
| |
Collapse
|
6
|
Li Z, Yu H, Hussain SA, Yang R. Anticancer activity of Araguspongine C via inducing apoptosis, and inhibition of oxidative stress, inflammation, and EGFR-TK in human lung cancer cells: An in vitro and in vivo study. J Biochem Mol Toxicol 2024; 38:e23763. [PMID: 38984790 DOI: 10.1002/jbt.23763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
The advanced non-small cell lung cancer (NSCLC) that harbors epidermal growth factor receptor (EGFR) mutations has put a selective pressure on the discovery and development of newer EGFR inhibitors. Therefore, the present study intends to explore the pharmacological effect of Araguspongine C (Aragus-C) as anticancer agent against lung cancer. The effect of Aragus-C was evaluated on the viability of the A549 and H1975 cells. Further biochemical assays were performed to elaborate the effect of Aragus-C, on the apoptosis, cell-cycle analysis, and mitochondrial membrane potential in A549 cells. Western blot analysis was also conducted to determine the expression of EGFR in A549 cells. Tumor xenograft mice model from A549 cells was established to further elaborate the pharmacological activity of Aragus-C. Results suggest that Aragus C showed significant inhibitory activity against A549 cells as compared to H1975 cells. It has been found that Aragus-C causes the induction of apoptosis and promotes cell-cycle arrest at the G2/M phase of A549 cells. It also showed a reduction in the overexpression of EGFR in A549 cells. In tumor xenograft mice model, it showed a significant reduction of tumor volume in a dose-dependent manner, with maximum inhibitory activity was reported by the 8 mg/kg treated group. It also showed significant anti-inflammatory and antioxidant activity by reducing the level of TNF-α, IL-1β, IL-6, and MDA, with a simultaneous increase of superoxide dismutase and glutathione peroxidase. We have demonstrated the potent anti-lung cancer activity of Aragus-C, and it may be considered as a potential therapeutic choice for NSCLC treatment.
Collapse
Affiliation(s)
- Zhe Li
- Department of Oncology and Hematology, Yan'an People's Hospital, Yan'an, China
| | - Hongjiang Yu
- Department of Medical Oncology, Tongliao City Hospital, Tongliao, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rui Yang
- Department of Medical Oncology, Yan'an People's Hospital, Yan'an, China
| |
Collapse
|
7
|
Shehab WS, Elsayed DA, Abdel Hamid AM, Assy MG, Mouneir SM, Hamed EO, Mousa SM, El-Bassyouni GT. CuO nanoparticles for green synthesis of significant anti-Helicobacter pylori compounds with in silico studies. Sci Rep 2024; 14:1608. [PMID: 38238369 PMCID: PMC10796945 DOI: 10.1038/s41598-024-51708-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a universal health intimidation as mentioned by the World Health Organization. The primary causal agent linked to a number of illnesses, including inflammation and the development of stomach ulcers, is Helicobacter pylori. Since, H. pylori develops antibiotic resistance quickly, current H. pylori treatment approaches are becoming less effective. Our research aims to highlight novel formulation antibiotics using CuO-NPs as catalysts and studied their activity as anti-helicobacter pylori supported by computational studies (POM analysis and molecular docking) software. They were designed for anti-Helicobacter Pylori action. All compounds revealed a bactericidal effect better than the reference McFarland standards.
Collapse
Grants
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- Zagazig University
Collapse
Affiliation(s)
- Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Doaa A Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Eman O Hamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sahar M Mousa
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Gehan T El-Bassyouni
- Ceramics and Building Materials Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
8
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Agustar HK, Ismail N, Ling LY, Hassan NI. Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond. Eur J Med Chem 2024; 264:116043. [PMID: 38118392 DOI: 10.1016/j.ejmech.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/22/2023]
Abstract
Amongst heterocyclic compounds, quinoline and its derivatives are advantaged scaffolds that appear as a significant assembly motif for developing new drug entities. Aminoquinoline moiety has gained significant attention among researchers in the 21stcentury. Considering the biological and pharmaceutical importance of aminoquinoline derivatives, herein, we review the recent developments (since 2019) in various biological activities of the 4-aminoquinoline scaffold hybridized with diverse heterocyclic moieties such as quinoline, pyridine, pyrimidine, triazine, dioxine, piperazine, pyrazoline, piperidine, imidazole, indole, oxadiazole, carbazole, dioxole, thiazole, benzothiazole, pyrazole, phthalimide, adamantane, benzochromene, and pyridinone. Moreover, by gaining knowledge about SARs, structural insights, and molecular targets, this review may help medicinal chemists design cost-effective, selective, safe, and more potent 4-aminoquinoline hybrids for diverse biological activities.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, United Kingdom
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
9
|
Pavani TFA, Cirino ME, Teixeira TR, de Moraes J, Rando DGG. Targeting the Schistosoma mansoni nutritional mechanisms to design new antischistosomal compounds. Sci Rep 2023; 13:19735. [PMID: 37957227 PMCID: PMC10643403 DOI: 10.1038/s41598-023-46959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
The chemical classes of semicarbazones, thiosemicarbazones, and hydrazones are present in various compounds, each demonstrating diverse biological activities. Extensive studies have revealed their potential as schistosomicidal agents. Thiosemicarbazones, in particular, have shown inhibitory effects on Schistosoma mansoni's cathepsin B1 enzyme (SmCB1), which plays a crucial role in hemoglobin degradation within the worm's gut and its nutrition processes. Consequently, SmCB1 has emerged as a promising target for novel schistosomiasis therapies. Moreover, chloroquinoline exhibits characteristics in its aromatic structure that hold promise for developing SmCB1 inhibitors, along with its interaction with hemoglobin's heme group, potentially synergizing against the parasite's gut. In this context, we report the synthesis of 22 hybrid analogs combining hydrazones and quinolines, evaluated against S. mansoni. Five of these hybrids demonstrated schistosomicidal activity in vitro, with GPQF-8Q10 being the most effective, causing worm mortality within 24 h at a concentration of 25 µM. GPQF-8Q8 proved to be the most promising in vivo, significantly reducing egg presence in feces (by 52.8%) and immature eggs in intestines (by 45.8%). These compounds exhibited low cytotoxicity in Vero cells and an in in vivo animal model (Caenorhabditis elegans), indicating a favorable selectivity index. This suggests their potential for the development of new schistosomiasis therapies. Further studies are needed to uncover specific target mechanisms, but these findings offer a promising starting point.
Collapse
Affiliation(s)
- Thaís F A Pavani
- Grupo de Pesquisas Químico-Farmacêuticas, GPQFfesp, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau, 210, 2° Andar, Centro, Diadema, São Paulo, 09913-030, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Curso de Pós-Graduação em Biologia Química da Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Maria E Cirino
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Thainá R Teixeira
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Daniela G G Rando
- Grupo de Pesquisas Químico-Farmacêuticas, GPQFfesp, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau, 210, 2° Andar, Centro, Diadema, São Paulo, 09913-030, Brazil.
| |
Collapse
|
10
|
Wu YC, Lu MT, Chu PC, Chang CS. Novel 4-aminoquinoline analogs targeting the HIF-1α signaling pathway. Future Med Chem 2023; 15:1569-1582. [PMID: 37728024 DOI: 10.4155/fmc-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Background: The aminoquinoline core exhibits versatile pharmacological properties, particularly in the area of anticancer activity. This study was designed to investigate the potential of the 4-aminoquinoline scaffold in the development of anticancer agents by targeting the HIF-1α signaling pathway. Methodology: The authors synthesized multiple derivatives of 4-aminoquinoline containing heterocyclic rings by a microwave reactor and assessed the cytotoxicity and inhibitory effects of these derivatives on the HIF-1α signaling pathway. Conclusion: Compound 3s was identified as the most promising HIF-1α inhibitor due to its exceptional antiproliferative effects, with IC50 values of 0.6 and 53.3 nM observed in MiaPaCa-2 and MDA-MB-231 cells, respectively. Furthermore, compound 3s was found to inhibit HIF-1α expression by decreasing the level of HIF-1α mRNA.
Collapse
Affiliation(s)
- Yu-Chieh Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, 40604, Taiwan
| | - Meng-Tien Lu
- Department of Cosmeceutics & Graduate Institute of Cosmeceutics, China Medical University, Taichung, 40604, Taiwan
- Drug Development Center, China Medical University, Taichung, 40604, Taiwan
| | - Po-Chen Chu
- Department of Cosmeceutics & Graduate Institute of Cosmeceutics, China Medical University, Taichung, 40604, Taiwan
- Drug Development Center, China Medical University, Taichung, 40604, Taiwan
| | - Chih-Shiang Chang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, 40604, Taiwan
- Drug Development Center, China Medical University, Taichung, 40604, Taiwan
| |
Collapse
|
11
|
Riyahi Z, Asadi P, Hassanzadeh F, Khodamoradi E, Gonzalez A, Karimi Abdolmaleki M. Synthesis of novel conjugated benzofuran-triazine derivatives: Antimicrobial and in-silico molecular docking studies. Heliyon 2023; 9:e18759. [PMID: 37576200 PMCID: PMC10412834 DOI: 10.1016/j.heliyon.2023.e18759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Two new developments of antibacterial agents, a series of benzofuran-triazine based compounds (8a-8h) were designed and synthesized. The derivatives were prepared through conventional chemical reactions and structurally characterized with FT-IR, 1H and 13C NMR techniques. The antibacterial activity of the synthesized derivatives was assessed against gram-positive bacterial strains (Bacillus subtilis, and Staphylococcus aureus) and gram-negative bacterial strains (Salmonella entritidis and Escherichia coli). Compound 8e, with the MIC value of 125-32 μg/μl against all the examined strains of bacteria, was the most active antibacterial compound. The synthesized derivatives were also studied for docking to the binding sites of dihydrofolate reductase (DHFR) receptor which has a key role in drug resistance associated with bacterial infections. The synthesized compounds showed good interaction with the targets through hydrogen bonding and hydrophobic interactions. According to antibacterial and docking studies, compound 8e could be introduced as a candidate for development of antibacterial compounds.
Collapse
Affiliation(s)
- Zahra Riyahi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Elahe Khodamoradi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexa Gonzalez
- Department of Nursing, Texas A&M International University, Laredo, TX 78041, USA
| | - Mahmood Karimi Abdolmaleki
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
12
|
Gupta S, Paul K. Membrane-active substituted triazines as antibacterial agents against Staphylococcus aureus with potential for low drug resistance and broad activity. Eur J Med Chem 2023; 258:115551. [PMID: 37348297 DOI: 10.1016/j.ejmech.2023.115551] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
A library of new naphthalimide-triazine analogues was synthesized as broad-spectrum antibacterial agents to overcome drug resistance. Bioactivity assay reveals that derivative 8e, with benzylamine in its structure, exhibits strong antibacterial properties against multi-drug resistance Staphylococcus aureus at a concentration of 1.56 μg/ml. It was also found to be better than chloromycin and amoxicillin. The active compound 8e efficiently inhibits the development of drug resistance within 11 passages. In addition, compound 8e inhibits the formation of biofilms in S. aureus and acts rapidly in bactericidal efficacy. Furthermore, mechanistic studies reveal that compound 8e effectively destroys the cytoplasmic membrane of bacteria, leading to leakage of intercellular protein content and loss in metabolic activity. Compound 8e binds to HSA readily with a binding constant of 1.32 × 105 M-1, indicating that the compound could be delivered to the target site effectively. Compound 8e can also form a supramolecular complex with DNA to obstruct DNA replications. These results suggest that analogue 8e could be further developed as a potential antibacterial agent. Furthermore, the cytotoxicity of all the synthesized compounds was evaluated against 60 human cancer cell lines to test their potential for anticancer agents.
Collapse
Affiliation(s)
- Saurabh Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| |
Collapse
|
13
|
Dai Q, Sun Q, Ouyang X, Liu J, Jin L, Liu A, He B, Fan T, Jiang Y. Antitumor Activity of s-Triazine Derivatives: A Systematic Review. Molecules 2023; 28:molecules28114278. [PMID: 37298753 DOI: 10.3390/molecules28114278] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
1,3,5-triazine derivatives, also called s-triazines, are a series of containing-nitrogen heterocyclic compounds that play an important role in anticancer drug design and development. To date, three s-triazine derivatives, including altretamine, gedatolisib, and enasidenib, have already been approved for refractory ovarian cancer, metastatic breast cancer, and leukemia therapy, respectively, demonstrating that the s-triazine core is a useful scaffold for the discovery of novel anticancer drugs. In this review, we mainly focus on s-triazines targeting topoisomerases, tyrosine kinases, phosphoinositide 3-kinases, NADP+-dependent isocitrate dehydrogenases, and cyclin-dependent kinases in diverse signaling pathways, which have been extensively studied. The medicinal chemistry of s-triazine derivatives as anticancer agents was summarized, including discovery, structure optimization, and biological applications. This review will provide a reference to inspire new and original discoveries.
Collapse
Affiliation(s)
- Qiuzi Dai
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Qinsheng Sun
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Xiaorong Ouyang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Jinyang Liu
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Liye Jin
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Ahao Liu
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Binsheng He
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Alelaimat M, Al-Sha’er MA, Basheer HA. Novel Sulfonamide-Triazine Hybrid Derivatives: Docking, Synthesis, and Biological Evaluation as Anticancer Agents. ACS OMEGA 2023; 8:14247-14263. [PMID: 37091406 PMCID: PMC10116527 DOI: 10.1021/acsomega.3c01273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
The biological benefits of trisubstituted 1,3,5-triazine derivatives include their ability to reduce inflammation and fight cancer. A unique series of sulfonamide-triazine hybrid molecules were produced chemically by synthesizing triazine derivatives utilizing the usual nucleophilic aromatic substitution of cyanuric chloride via the solvent-free/neat fusion method. Fourier-transform infrared spectroscopy (FTIR), 1H NMR, and 13C NMR spectroscopic analyses were used to identify novel trisubstituted synthetic compounds. The synthesized compounds have a moderate inhibition percentage when tested at 100 μM against the phosphoinositol 3-kinases (PI3Kα) enzyme; compounds 20 and 34 showed 46 and 68% anti-PI3Kα activity, respectively. To comprehend the anticipated interactions, the most successful compounds were subsequently docked into a PI3Kα protein's binding site (PDB code: 6OAC, resolution: 3.15 Å). The final synthetic compounds' anticancer activity was tested on the breast (MCF-7) and lung (A549) cancer cell lines at doses of 100 and 50 μM for additional evaluation of anticancer characteristics. The IC50 values for the sulfaguanidine-triazine derivatives 27, 28, 29, 31, and 35 ranged from 14.8 to 33.2 μM, showing that compounds containing sulfaguanidine and diethylamine in their structures significantly inhibited the activity. Compound 34 could be a promising lead compound for developing new target-selected anticancer compounds with low toxicity and high selectivity.
Collapse
Affiliation(s)
- Mahmoud
A. Alelaimat
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Zarqa University, Zarqa 13132, Jordan
| | - Mahmoud A. Al-Sha’er
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Zarqa University, Zarqa 13132, Jordan
- . Tel: 0096253821100 ext.
1998. Fax: 0096253821120
| | - Haneen A. Basheer
- Clinical
Pharmacy Department, Faculty of Pharmacy, Zarqa University, Zarqa 13132, Jordan
| |
Collapse
|
15
|
Dong G, Jiang Y, Zhang F, Zhu F, Liu J, Xu Z. Recent updates on 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids (2017-present): The anticancer activity, structure-activity relationships, and mechanisms of action. Arch Pharm (Weinheim) 2023; 356:e2200479. [PMID: 36372519 DOI: 10.1002/ardp.202200479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
Cancer is one of the leading causes of death across the world, and the prevalence and mortality rates of cancer will continue to grow. Chemotherapeutics play a critical role in cancer therapy, but drug resistance and side effects are major hurdles to effective treatment, evoking an immediate need for the discovery of new anticancer agents. Triazines including 1,2,3-, 1,2,4-, and 1,3,5-triazine have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Mechanistically, triazine derivatives could interfere with various signaling pathways to induce cancer cell death. Hence, triazine derivatives possess potential in vitro and in vivo efficacy against diverse cancers. In particular, triazine hybrids are able to overcome drug resistance and reduce side effects. Moreover, several triazine hybrids such as brivanib (indole-containing pyrrolo[2,1-f][1,2,4]triazine), gedatolisib (1,3,5-triazine-urea hybrid), and enasidenib (1,3,5-triazine-pyridine hybrid) have already been available in the market. Accordingly, triazine hybrids are useful scaffolds for the discovery of novel anticancer chemotherapeutics. This review focuses on the anticancer activity of 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids, together with the structure-activity relationships and mechanisms of action developed from 2017 to the present. The enriched structure-activity relationships may be useful for further rational drug development of triazine hybrids as potential clinical candidates.
Collapse
Affiliation(s)
- Gaoli Dong
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Yingchun Jiang
- College of Medicine, Huanghuai University, Zhumadian, China
| | - Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Fengyun Zhu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Junna Liu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| | - Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| |
Collapse
|
16
|
Asadi P, Khodamoradi E, Khodarahmi G, Jahanian-Najafabadi A, Marvi H, Dehghan Khalili S. Novel N-α-amino acid spacer-conjugated phthalimide-triazine derivatives: synthesis, antimicrobial and molecular docking studies. Amino Acids 2023; 55:337-348. [PMID: 36617370 DOI: 10.1007/s00726-023-03232-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
To design and develop novel antimicrobial agents, a series of phthalimide-triazine-based derivatives (6a-6e) were synthesized, characterized and evaluated for their potential antibacterial activities. The compounds were prepared through reaction of 6-phenyl-1,3,5-triazine-2,4-diamine with phthalimide moiety containing aliphatic amino acid. Structural analysis of the synthesized compounds was carried out by various characterization techniques such as FT-IR, 1H and 13C-NMR and mass spectroscopy. After the confirmation of the structure, the antibacterial screening of the synthesized compounds was performed against two strains of Gram-positive (Staphylococcus aureus, and Bacillus subtilis) and two strains of Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria. The results of antimicrobial activity showed that compound 6d was the most active against all the tested strains of microorganisms with the MIC value 1.25 µg/µl. The synthesized compounds were docked into the binding sites of E. coli-DNA gyrase B and S. aureus-DNA gyrase complex to explore their theoretically binding mode and possible interactions of these ligands with these two targets. Docking study showed the importance of both hydrogen bonding and hydrophobic interactions as a key interaction with the targets. Based on the obtained results, the hybrid derivatives of triazine and phthalimide could be regarded as efficient candidates for further molecular developments of antimicrobial agents.
Collapse
Affiliation(s)
- Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Islamic Republic of Iran.
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Elahe Khodamoradi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Islamic Republic of Iran
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Marvi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Islamic Republic of Iran
| | - Shiva Dehghan Khalili
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Zakharov VN, Lemport PS, Chernyshev VV, Tafeenko VA, Yatsenko AV, Ustynyuk YA, Dunaev SF, Nenajdenko VG, Aslanov LA. A Promising 1,3,5-Triazine-Based Anion Exchanger for Perrhenate Binding: Crystal Structures of Its Chloride, Nitrate and Perrhenate Salts. Molecules 2023; 28:1941. [PMID: 36838929 PMCID: PMC9966240 DOI: 10.3390/molecules28041941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The reaction of pyridine with cyanuric chloride was studied under microwave activation as well as in the presence of silver nitrate. The product of hydrolysis containing two pyridinium rings and chloride anion was isolated. The structures of these anion exchanger salts with chloride, nitrate and perrhenate anions are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valentine G. Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Leonid A. Aslanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| |
Collapse
|
18
|
Shawish I, Nafie MS, Barakat A, Aldalbahi A, Al-Rasheed HH, Ali M, Alshaer W, Al Zoubi M, Al Ayoubi S, De la Torre BG, Albericio F, El-Faham A. Pyrazolyl-s-triazine with indole motif as a novel of epidermal growth factor receptor/cyclin-dependent kinase 2 dual inhibitors. Front Chem 2022; 10:1078163. [PMID: 36505739 PMCID: PMC9732672 DOI: 10.3389/fchem.2022.1078163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
A series of pyrazolyl-s-triazine compounds with an indole motif was designed, synthesized, and evaluated for anticancer activity targeting dual EGFR and CDK-2 inhibitors. The compounds were tested for cytotoxicity using the MTT assay. Compounds 3h, 3i, and 3j showed promising cytotoxic activity against two cancer cell lines, namely A549, MCF-7, and HDFs (non-cancerous human dermal fibroblasts). Compound 3j was the most active candidate against A549, with an IC50 of 2.32 ± 0.21 μM. Compounds 3h and 3i were found to be the most active hybrids against MCF-7 and HDFs, with an IC50 of 2.66 ± 0.26 μM and 3.78 ± 0.55 μM, respectively. Interestingly, 3i showed potent EGFR inhibition, with an IC50 of 34.1 nM compared to Erlotinib (IC50 = 67.3 nM). At 10 μM, this candidate caused 93.6% and 91.4% of EGFR and CDK-2 inhibition, respectively. Furthermore, 3i enhanced total lung cancer cell apoptosis 71.6-fold (43.7% compared to 0.61% for the control). Given the potent cytotoxicity exerted by 3i through apoptosis-mediated activity, this compound emerges as a promising target-oriented anticancer agent.
Collapse
Affiliation(s)
- Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismaïlia, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hessa H. Al-Rasheed
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mazhar Al Zoubi
- Department of Basic Medical Sciences, Faculty of Sciences, Yarmouk University, Irbid, Jordan
| | - Samha Al Ayoubi
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Beatriz G. De la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP) School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Ayman El-Faham
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Hamed EO, Elsayed DA, Assy MG, Shehab WS. Design, Synthesis, Docking, 2D‐QSAR Modelling, Anticancer and Antioxidant Evaluation of Some New Azo‐Compounds Derivatives and Investigation of Their Fluorescence Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202202534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eman O. Hamed
- Department of Chemistry Faculty of Science Zagazig University Zagazig 44519 Egypt
| | - Doaa A. Elsayed
- Department of Chemistry Faculty of Science Zagazig University Zagazig 44519 Egypt
| | - Mohamed G. Assy
- Department of Chemistry Faculty of Science Zagazig University Zagazig 44519 Egypt
| | - Wesam S. Shehab
- Department of Chemistry Faculty of Science Zagazig University Zagazig 44519 Egypt
| |
Collapse
|
20
|
Chawla G, Pradhan T, Gupta O, Manaithiya A, Jha DK. An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: Insight into structure activity relationship. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Gholivand K, Koupaei MHH, Mohammadpanah F, Roohzadeh R, Fallah N, Pooyan M, Satari M, Pirastehfar F. A novel phospho triazine compound serving as an anticancer and antibacterial agent: An experimental-computational investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Shawish I, Barakat A, Aldalbahi A, Alshaer W, Daoud F, Alqudah DA, Al Zoubi M, Hatmal MM, Nafie MS, Haukka M, Sharma A, de la Torre BG, Albericio F, El-Faham A. Acetic Acid Mediated for One-Pot Synthesis of Novel Pyrazolyl s-Triazine Derivatives for the Targeted Therapy of Triple-Negative Breast Tumor Cells (MDA-MB-231) via EGFR/PI3K/AKT/mTOR Signaling Cascades. Pharmaceutics 2022; 14:1558. [PMID: 36015186 PMCID: PMC9414415 DOI: 10.3390/pharmaceutics14081558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we described the synthesis of novel pyrazole-s-triazine derivatives via an easy one-pot procedure for the reaction of β-dicarbonyl compounds (ethylacetoacetate, 5,5-dimethyl-1,3-cyclohexadione or 1,3-cyclohexadionone) with N,N-dimethylformamide dimethylacetal, followed by addition of 2-hydrazinyl-4,6-disubstituted-s-triazine either in ethanol-acetic acid or neat acetic acid to afford a novel pyrazole and pyrazole-fused cycloalkanone systems. The synthetic protocol proved to be efficient, with a shorter reaction time and high chemical yield with broad substrates. The new pyrazolyl-s-triazine derivatives were tested against the following cell lines: MCF-7 (breast cancer); MDA-MB-231 (triple-negative breast cancer); U-87 MG (glioblastoma); A549 (non-small cell lung cancer); PANC-1 (pancreatic cancer); and human dermal fibroblasts (HDFs). The cell viability assay revealed that most of the s-triazine compounds induced cytotoxicity in all the cell lines tested. However, compounds 7d, 7f and 7c, which all have a piperidine or morpholine moiety with one aniline ring or two aniline rings in their structures, were the most effective. Compounds 7f and 7d showed potent EGFR inhibitory activity with IC50 values of 59.24 and 70.3 nM, respectively, compared to Tamoxifen (IC50 value of 69.1 nM). Compound 7c exhibited moderate activity, with IC50 values of 81.6 nM. Interestingly, hybrids 7d and 7f exerted remarkable PI3K/AKT/mTOR inhibitory activity with 0.66/0.82/0.80 and 0.35/0.56/0.66-fold, respectively, by inhibiting their concentrations to 4.39, 37.3, and 69.3 ng/mL in the 7d-treatment, and to 2.39, 25.34 and 57.6 ng/mL in the 7f-treatment compared to the untreated control.
Collapse
Affiliation(s)
- Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Mazhar Al Zoubi
- Department of Basic Medical Sciences, Faculty of Sciences, Yarmouk University, Irbid 21163, Jordan;
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Anamika Sharma
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (A.S.); (B.G.d.l.T.)
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (A.S.); (B.G.d.l.T.)
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Ayman El-Faham
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt
| |
Collapse
|
23
|
Shawish I, Barakat A, Aldalbahi A, Malebari AM, Nafie MS, Bekhit AA, Albohy A, Khan A, Ul-Haq Z, Haukka M, de la Torre BG, Albericio F, El-Faham A. Synthesis and Antiproliferative Activity of a New Series of Mono- and Bis(dimethylpyrazolyl)- s-triazine Derivatives Targeting EGFR/PI3K/AKT/mTOR Signaling Cascades. ACS OMEGA 2022; 7:24858-24870. [PMID: 35874229 PMCID: PMC9301957 DOI: 10.1021/acsomega.2c03079] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Here, we synthesized a newseries of mono- and bis(dimethylpyrazolyl)-s-triazine derivatives. The synthetic methodology involved the reaction of different mono- and dihydrazinyl-s-triazine derivatives with acetylacetone in the presence of triethylamine to produce the corresponding target products in high yield and purity. The antiproliferative activity of the novel mono- and bis(dimethylpyrazolyl)-s-triazine derivatives was studied against three cancer cell lines, namely, MCF-7, HCT-116, and HepG2. N-(4-Bromophenyl)-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-morpholino-1,3,5-triazin-2-amine 4f, N-(4-chlorophenyl)-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-amine 5c, and 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxyphenyl)-1,3,5-triazin-2-amine 5d showed promising activity against these cancer cells: 4f [(IC50 = 4.53 ± 0.30 μM (MCF-7); 0.50 ± 0.080 μM (HCT-116); and 3.01 ± 0.49 μM (HepG2)]; 5d [(IC50 = 3.66 ± 0.96 μM (HCT-116); and 5.42 ± 0.82 μM (HepG2)]; and 5c [(IC50 = 2.29 ± 0.92 μM (MCF-7)]. Molecular docking studies revealed good binding affinity with the receptor targeting EGFR/PI3K/AKT/mTOR signaling cascades. Compound 4f exhibited potent EGFR inhibitory activity with an IC50 value of 61 nM compared to that of Tamoxifen (IC50 value of 69 nM), with EGFR inhibition of 83 and 84%, respectively, at a concentration of 10 μM. Interestingly, 4f showed remarkable PI3K/AKT/mTOR inhibitory activity with 0.18-, 0.27-, and 0.39-fold decrease in their concentration (reduction in controls from 6.64, 45.39, and 86.39 ng/mL to 1.24, 12.35, and 34.36 ng/mL, respectively). Hence, the synthetic 1,3,5-triazine derivative 4f exhibited promising antiproliferative activity in HCT-116 cells through apoptosis induction by targeting the EGFR and its downstream pathway.
Collapse
Affiliation(s)
- Ihab Shawish
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali Aldalbahi
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Azizah M. Malebari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed S. Nafie
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Adnan A. Bekhit
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy
Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq, Kingdom of Bahrain
| | - Amgad Albohy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt
- The Center
for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Alamgir Khan
- H.E.J. Research
Institute of Chemistry, International Center for Chemical and Biological
Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research
Institute of Chemistry, International Center for Chemical and Biological
Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani
Center for Molecular Medicine and Drug Research, International Center
for Chemical and Biological Sciences, University
of Karachi, Karachi 75270, Pakistan
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Beatriz G. de la Torre
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South
Africa
| | - Fernando Albericio
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South
Africa
- Institute
for Advanced Chemistry of Catalonia (IQAC−CSIC), 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
and Department of Organic Chemistry, University
of Barcelona, 08028 Barcelona, Spain
| | - Ayman El-Faham
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426,
Ibrahimia, Alexandria 21321, Egypt
| |
Collapse
|
24
|
Mondal J, Sivaramakrishna A. Functionalized Triazines and Tetrazines: Synthesis and Applications. Top Curr Chem (Cham) 2022; 380:34. [PMID: 35737142 DOI: 10.1007/s41061-022-00385-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022]
Abstract
The molecules possessing triazine and tetrazine moieties belong to a special class of heterocyclic compounds. Both triazines and tetrazines are building blocks and have provided a new dimension to the design of biologically important organic molecules. Several of their derivatives with fine-tuned electronic properties have been identified as multifunctional, adaptable, switchable, remarkably antifungal, anticancer, antiviral, antitumor, cardiotonic, anti-HIV, analgesic, anti-protozoal, etc. The objective of this review is to comprehensively describe the recent developments in synthesis, coordination properties, and various applications of triazine and tetrazine molecules. The rich literature demonstrates various synthetic routes for a variety of triazines and tetrazines through microwave-assisted, solid-phase, metal-based, [4+2] cycloaddition, and multicomponent one-pot reactions. Synthetic approaches contain linear, angular, and fused triazine and tetrazine heterocycles through a combinatorial method. Notably, the triazines and tetrazines undergo a variety of organic transformations, including electrophilic addition, coupling, nucleophilic displacement, and intramolecular cyclization. The mechanistic aspects of these heterocycles are discussed in a detailed way. The bioorthogonal application of these polyazines with various strained alkenes and alkynes provides a new prospect for investigations in chemical biology. This review systematically encapsulates the recent developments and challenges in the synthesis and possible potential applications of various triazine and tetrazine systems.
Collapse
Affiliation(s)
- Joydip Mondal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
25
|
Gangasani JK, Yarasi S, Naidu VGM, Vaidya JR. Triazine based chemical entities for anticancer activity. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Triazine is a six-membered aromatic nitrogen heterocyclic moiety that was extensively investigated because of its biological properties and, in particular anticancer potentials. Kinases play a crucial role in cancer cell proliferation and metabolism. Triazine derivatives show anticancer activity by inhibiting the lipid kinases like phosphoinositide 3-kinases, mammalian target of rapamycin, receptor tyrosine kinases, like focal adhesion kinase, cyclin-dependent kinases, Rho-associated protein kinases, p21-activated kinases, carbonic anhydrases, enolase inhibitors, microtubules inhibitors, and histone deacetylases. The present chapter highlights the synthesis of triazine-based derivatives, their characterization, evaluation of anticancer properties, and their journey towards possible medicine for cancer.
Collapse
Affiliation(s)
- Jagadees Kumar Gangasani
- Department of Pharmacology & Toxicology , National Institute of Pharmaceutical Education and Research (NIPER) , Guwahati , 781101 , Assam , India
| | - Siwaswarup Yarasi
- Department of Pharmacology & Toxicology , National Institute of Pharmaceutical Education and Research (NIPER) , Guwahati , 781101 , Assam , India
| | - Vegi Ganga Modi Naidu
- Department of Pharmacology & Toxicology , National Institute of Pharmaceutical Education and Research (NIPER) , Guwahati , 781101 , Assam , India
| | - Jayathirtha Rao Vaidya
- Fluoro Agro Chemicals Department and AcSIR-Ghaziabad , CSIR-Indian Institute of Chemical Technology , Uppal Road Tarnaka , Hyderabad , 500007 , Telangana , India
| |
Collapse
|
26
|
Kireeva DR, Sadretdinov SS, Musina AI, Ishmetova DV, Vakhitov VA, Murinov YI, Dokichev VA. Synthesis and Cytotoxic Activity of 1,3,5-Triazinane Derivatives Based on Primary Amines and Amino Acids Esters. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Maliszewski D, Drozdowska D. Recent Advances in the Biological Activity of s-Triazine Core Compounds. Pharmaceuticals (Basel) 2022; 15:221. [PMID: 35215333 PMCID: PMC8875733 DOI: 10.3390/ph15020221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
An effective strategy for successful chemotherapy relies on creating compounds with high selectivity against cancer cells compared to normal cells and relatively low cytotoxicity. One such approach is the discovery of critical points in cancer cells, i.e., where specific enzymes that are potential therapeutic targets are generated. Triazine is a six-membered heterocyclic ring compound with three nitrogen replacing carbon-hydrogen units in the benzene ring structure. The subject of this review is the symmetrical 1,3,5-triazine, known as s-triazine. 1,3,5-triazine is one of the oldest heterocyclic compounds available. Because of its low cost and high availability, it has attracted researcher attention for novel synthesis. s-Triazine has a weak base, it has much weaker resonance energy than benzene, therefore, nucleophilic substitution is preferred to electrophilic substitution. Heterocyclic bearing a symmetrical s-triazine core represents an interesting class of compounds possessing a wide spectrum of biological properties such as anti-cancer, antiviral, fungicidal, insecticidal, bactericidal, herbicidal and antimicrobial, antimalarial agents. They also have applications as dyes, lubricants, and analytical reagents. Hence, the group of 1,3,5-triazine derivatives has developed over the years. Triazine is not only the core amongst them, but is also a factor increasing the kinetic potential of the entire derivatives. Modifying the structure and introducing new substituents makes it possible to obtain compounds with broad inhibitory activity on processes such as proliferation. In some cases, s-triazine derivatives induce cell apoptosis. In this review we will present currently investigated 1,3,5-triazine derivatives with anti-cancer activities, with particular emphasis on their inhibition of enzymes involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| |
Collapse
|
28
|
Duraisamy R, Palanisamy UM, Sheriffa Begum KMM, Dharmar P. Facile induction and stabilization of intramolecular antiparallel G-quadruplex of d(TTAGGG)n on interaction with triazine-2-imidazole ethyl amine compound and its Cu(II), Zn(II) complexes under no-salt conditions. J CHEM SCI 2022. [DOI: 10.1007/s12039-021-01996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Su Q, Xu B, Tian Z, Gong Z. Novel 1,3,5-triazine-nicotinohydrazide derivatives induce cell arrest and apoptosis in osteosarcoma cancer cells and inhibit osteosarcoma in a patient-derived orthotopic xenograft mouse model. Chem Biol Drug Des 2021; 99:320-330. [PMID: 34811888 DOI: 10.1111/cbdd.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 01/02/2023]
Abstract
The present study deals with developing novel 1,3,5-triazine-nicotinohydrazide derivatives as potent CDK9 inhibitors in a straightforward synthetic route with potent anti-osteosarcoma activity. The most potent CDK9 inhibitor compound 5k inhibits proliferation of MG-63 cells via induction of apoptosis and G2/M cell cycle arrest. It reduces tumor progression in the patient-derived orthotopic xenograft (PDOX) mouse model with significant antioxidant and anti-inflammatory activity. In tumor tissue homogenates, it caused significant inhibition of CDK9 and inhibited the phosphorylation of RNAPII ser2 and reduced MCL-1 expression in Western blot analysis. Compound 5k also showed considerable bioavailability in SD mice. Our results demonstrated that compound 5k inhibits growth of OS in vitro and in vivo via inhibition of CDK9 which attenuated the downstream phosphorylation of RNAPII ser2 and represses expression of the anti-apoptotic protein, MCL-1 for the induction of apoptosis in OS.
Collapse
Affiliation(s)
- Qing Su
- Department of Orthopedic Oncology, Yantai Shan Hospital, Yantai, China
| | - Baolin Xu
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zhoubin Tian
- Departments of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziling Gong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
30
|
Shaldam M, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Supuran CT, Eldehna WM. Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors. Int J Mol Sci 2021; 22:11119. [PMID: 34681794 PMCID: PMC8541628 DOI: 10.3390/ijms222011119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
A new series of quinoline-based benzenesulfonamides (QBS) were developed as potential carbonic anhydrase inhibitors (CAIs). The target QBS CAIs is based on the 4-anilinoquinoline scaffold where the primary sulphonamide functionality was grafted at C4 of the anilino moiety as a zinc anchoring group (QBS 13a-c); thereafter, the sulphonamide group was switched to ortho- and meta-positions to afford regioisomers 9a-d and 11a-g. Moreover, a linker elongation approach was adopted where the amino linker was replaced by a hydrazide one to afford QBS 16. All the described QBS have been synthesized and investigated for their CA inhibitory action against hCA I, II, IX and XII. In general, para-sulphonamide derivatives 13a-c displayed the best inhibitory activity against both cancer-related isoforms hCA IX (KIs = 25.8, 5.5 and 18.6 nM, respectively) and hCA XII (KIs = 9.8, 13.2 and 8.7 nM, respectively), beside the excellent hCA IX inhibitory activity exerted by meta-sulphonamide derivative 11c (KI = 8.4 nM). The most promising QBS were further evaluated for their anticancer and pro-apoptotic activities on two cancer cell lines (MDA-MB-231 and MCF-7). In addition, molecular docking simulation studies were applied to justify the acquired CA inhibitory action of the target QBS.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, Italian National Research Council (CNR)CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
31
|
Kashyap A, Choudhury AAK, Saha A, Adhikari N, Ghosh SK, Shakya A, Patgiri SJ, Bhattacharyya DR, Singh UP, Bhat HR. Microwave-assisted synthesis of hybrid PABA-1,3,5-triazine derivatives as an antimalarial agent. J Biochem Mol Toxicol 2021; 35:e22860. [PMID: 34313355 DOI: 10.1002/jbt.22860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022]
Abstract
The present manuscript deals with the development of novel p-aminobenzoic acid (PABA) associated 1,3,5-triazine derivatives as antimalarial agents. The molecules were developed via microwave-assisted synthesis and structures of compounds were ascertained via numerous analytical and spectroscopic techniques. The synthesized compounds were also subjected to ADMET analysis. In a docking analysis, the title compounds showed high and diverse binding affinities towards wild (-162.45 to -369.38 kcal/mol) and quadruple mutant (-165.36 to -209.47 kcal/mol) Pf-DHFR-TS via interacting with Phe58, Arg59, Ser111, Ile112, Phe116. The in vitro antimalarial activity suggested that compounds 4e, 4b, and 4h showed IC50 ranging from 4.18 to 8.66 μg/ml against the chloroquine-sensitive (3D7) strain of Plasmodium falciparum. Moreover, compounds 4g, 4b, 4e, and 4c showed IC50 ranging from 8.12 to 12.09 μg/ml against chloroquine-resistant (Dd2) strain. In conclusion, our study demonstrated the development of hybrid PABA substituted 1,3,5-triazines as a novel class of Pf-DHFR inhibitor for antimalarial drug discovery.
Collapse
Affiliation(s)
- Ankita Kashyap
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ayesha A K Choudhury
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Nayana Adhikari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Saurav J Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| | - Dibya R Bhattacharyya
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| | - Udaya P Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
32
|
Singh S, Mandal MK, Masih A, Saha A, Ghosh SK, Bhat HR, Singh UP. 1,3,5-Triazine: A versatile pharmacophore with diverse biological activities. Arch Pharm (Weinheim) 2021; 354:e2000363. [PMID: 33760298 DOI: 10.1002/ardp.202000363] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
1,3,5-Triazine and its derivatives have been the epicenter of chemotherapeutic molecules due to their effective biological activities, such as antibacterial, fungicidal, antimalarial, anticancer, antiviral, antimicrobial, anti-inflammatory, antiamoebic, and antitubercular activities. The present review represents a summarized report of the crucial biological activities possessed by substituted 1,3,5-triazine derivatives, with special attention to the most potent compounds.
Collapse
Affiliation(s)
- Saumya Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Milan K Mandal
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Anup Masih
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya P Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
33
|
Khwaza V, Oyedeji OO, Aderibigbe BA, Morifi E, Fonkui YT, Ndinteh DT, Steenkamp V. Synthesis, antibacterial, and cytotoxicity evaluation of oleanolic acid-4-aminoquinoline based hybrid compounds. ACTA ACUST UNITED AC 2021; 16:122-136. [PMID: 33568035 DOI: 10.2174/1574891x16666210210165547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
AIM To prepare a class of oleanolic-based compounds. BACKGROUND Conventional drugs used to treat infectious diseases suffer from limitations such as drug toxicity and drug resistance. The resistance of microbes to antimicrobial agents is a significant challenge in treating microbial infections. Combining two or more drugs with different modes of action to treat microbial infections results in a delay in developing drug resistance by the microbes. However, it is challenging to select the appropriate choice of drugs for combination therapy due to the differences in stability and pharmacokinetic profile of the drugs.Therefore, developing hybrid compounds using the existing drugs is a promising approach to design effective antimicrobial agents. OBJECTIVES To prepare oleanolic-based hybrid compounds followed by characterization, in vitro antibacterial, and cytotoxicity evaluation. METHODS Oleanolic acid-4-aminoquinoline-based hybrid compounds weresynthesized via esterification and amidation. The compounds werecharacterized using FTIR, NMR, and UHPLC-HRMS. Oleanolic acid was isolated from the flower buds of Syszygium aromaticum (L.) Merr. & L.M.Perry, a specie from Kingdom Plantae, order Mytales in Myrtaceae family. Their antibacterial and cytotoxicity activity was determined against selected strains of bacteria assessed using the microdilution assay and sulforhodamine B assay against selected cancer cell lines. RESULTS The synthesized hybrid compounds exhibited significant antibacterial activity against the Gram-positive bacteria Enterococcus faecalis (ATCC13047), Bacillus subtilis (ATCC19659), Staphylococcus aureus as well as Gram-negative bacteria,Klebsiella oxytoca (ATCC8724), Escherischia coli (ATCC25922), and Proteus vulgaris (ATCC6380)with minimum inhibitory concentrations of 1.25 mg/mLcompared to oleanolic acid (2.5 mg/mL). Compounds 13 and 14 displayed significant cytotoxic effectsin vitro against the cancer cell lines (MCF-7 and DU 145) compared to the oleanolic acid (IC50 ˃ 200 µM). CONCLUSION The present study revealed that the modification of C28 of OA enhanced its biological properties.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Opeoluwa O Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry division, University of Witwatersrand, Johannesburg. South Africa
| | - Y T Fonkui
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Johannesburg. South Africa
| | - D T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg. South Africa
| | - V Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria. South Africa
| |
Collapse
|
34
|
Hu J, Zhang Y, Tang N, Lu Y, Guo P, Huang Z. Discovery of novel 1,3,5-triazine derivatives as potent inhibitor of cervical cancer via dual inhibition of PI3K/mTOR. Bioorg Med Chem 2021; 32:115997. [PMID: 33440319 DOI: 10.1016/j.bmc.2021.115997] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
This study describes the synthesis of novel 1,3,5-triazine derivatives as potent inhibitors of cervical cancer. The compounds were initially tested for inhibition of PI3K/mTOR, where they showed significant inhibitory activity. The top-ranking molecule (compound 6 h) was further tested against class I PI3K isoforms, such as PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ, where it showed the most significant activity against PI3Kα. Compound 6 h was then tested for anti-cancer activity against triple-negative breast cancer cells (MDA-MB321), human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human liver cancer cells (HepG2), and it showed the greatest potency against HeLa cells. The effects of compound 6 h were further evaluated against the HeLa cells, where it showed significant attenuation of cell viability by inducing cell cycle arrest in the G1 phase. Compound 6 h induced apoptosis and reduced migration and invasion of HeLa cells. Western blotting analysis showed that 6 h inhibited PI3K and mTOR with positive modulation of Bcl-2 and Bax levels in HeLa cells. The effects of compound 6 h were also investigated in a tumour xenograft mouse model, where it showed reduction of tumour volume and weight. It also inhibited the PI3K/Akt/mTOR signalling cascade in xenograft tumour tissues, as evidenced by western blotting analysis. The results of the present study suggest the possible utility of the designed 1,3,5-triazine derivative as a potent inhibitor of cervical cancer.
Collapse
Affiliation(s)
- Junbo Hu
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Yanli Zhang
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Na Tang
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Yanju Lu
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Peng Guo
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Ziming Huang
- Department of Thyroid Breast Surgery, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China.
| |
Collapse
|
35
|
Jain S, Jain PK, Sain S, Kishore D, Dwivedi J. Anticancer s-Triazine Derivatives: A Synthetic Attribute. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x17666200131111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1, 3, 5-Triazine (s-Triazine) is a versatile nucleus to design and develop potent bioactive
molecules for drug discovery, particularly in cancer therapy. The aim of this review is to present the
most recent trends in the field of synthetic strategies made for functionalized triazine derivatives active
against cell proliferation. This review article covers the synthesis of aryl methylamino, morpholino,
triamino substituted triazines, antimitotic agents coupled triazines and many more. Many 1,3,5-
triazine derivatives, both hetero-fused and uncondensed, have shown remarkable antitumor activities.
We have highlighted various derivatives with 1, 3, 5-triazine core targeting different kinases with an
aim to help researchers for developing new 1, 3, 5-triazine derived compounds for antitumor activity.
Collapse
Affiliation(s)
- Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Pankaj Kumar Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, India
| | - Shalu Sain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
36
|
Masih A, Agnihotri AK, Srivastava JK, Pandey N, Bhat HR, Singh UP. Discovery of novel 1,3,5-triazine as adenosine A 2A receptor antagonist for benefit in Parkinson's disease. J Biochem Mol Toxicol 2020; 35:e22659. [PMID: 33156955 DOI: 10.1002/jbt.22659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/13/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is a chronic neuro-degenerative ailment characterized by impairment in various motor and nonmotor functions of the body. In the past few years, adenosine A2 A receptor (A2 AR) antagonists have attracted much attention due to significant relief in PD. Therefore, in the current study, we intend to disclose the development of novel 1,3,5-triazines as A2 AR antagonist. The radioligand binding and selectivity of analogs were tested in HEK293 (human embryonic kidney) and the cells were transfected with pcDNA 3.1(+) containing full-length human A2 AR cDNA and pcDNA 3.1(+) containing full-length human A1 R cDNA, where they exhibit selective affinity for A2 AR. Molecular docking analysis was also conducted to rationalize the probable mode of action, binding affinity, and orientation of the most potent molecule (7c) at the active site of A2 AR. It has been shown that compound 7c form numerous nonbonded interactions in the active site of A2 AR by interacting with Ala59, Ala63, Ile80, Val84 Glu169, Phe168, Met270, and Ile274. The study revealed 1,3,5-triazines as a novel class of A2 AR antagonists.
Collapse
Affiliation(s)
- Anup Masih
- Department of Pharmaceutical Sciences, Drug Design & Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Amol K Agnihotri
- Department of Pharmaceutical Sciences, Drug Design & Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Jitendra K Srivastava
- Department of Pharmaceutical Sciences, Drug Design & Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Nidhi Pandey
- Department of Medicine and Health Sciences, University Rovira i Virgili, Tarragona, Spain
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya P Singh
- Department of Pharmaceutical Sciences, Drug Design & Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
37
|
Panda P, Chakroborty S. Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002790] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pravati Panda
- Department of Chemistry Rama Devi Women's University Bhubaneswar, Odisha 751004 India
| | | |
Collapse
|