1
|
D'Antongiovanni V, Fornai M, Colucci R, Nericcio A, Benvenuti L, Di Salvo C, Segnani C, Pierucci C, Ippolito C, Nemeth ZH, Haskó G, Bernardini N, Antonioli L, Pellegrini C. Enteric glial NLRP3 inflammasome contributes to gut mucosal barrier alterations in a mouse model of diet-induced obesity. Acta Physiol (Oxf) 2025; 241:e14232. [PMID: 39287080 DOI: 10.1111/apha.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
AIM In the present study, we investigated the involvement of NLRP3 inflammasome in the intestinal epithelial barrier (IEB) changes associated with obesity, and its role in the interplay between enteric glia and intestinal epithelial cells (IECs). METHODS Wild-type C57BL/6J and NLRP3-KO (-/-) mice were fed with high-fat diet (HFD) or standard diet for 8 weeks. Colonic IEB integrity and inflammasome activation were assessed. Immunolocalization of colonic mucosal GFAP- and NLRP3-positive cells along with in vitro coculture experiments with enteric glial cells (EGCs) and IECs allowed to investigate the potential link between altered IEB, enteric gliosis, and NLRP3 activation. RESULTS HFD mice showed increased body weight, altered IEB integrity, increased GFAP-positive glial cells, and NLRP3 inflammasome hyperactivation. HFD-NLRP3-/- mice showed a lower increase in body weight, an improvement in IEB integrity and an absence of enteric gliosis. Coculture experiments showed that palmitate and lipopolysaccharide contribute to IEB damage and promote enteric gliosis with consequent hyperactivation of enteric glial NLRP3/caspase-1/IL-1β signaling. Enteric glial-derived IL-1β release exacerbates the IEB alterations. Such an effect was abrogated upon incubation with anakinra (IL-1β receptor antagonist) and with conditioned medium derived from silenced-NLRP3 glial cells. CONCLUSION HFD intake elicits mucosal enteric gliotic processes characterized by a hyperactivation of NLRP3/caspase-1/IL-1β signaling pathway, that contributes to further exacerbate the disruption of intestinal mucosal barrier integrity. However, we cannot rule out the contribution of NLRP3 inflammasome activation from other cells, such as immune cells, in IEB alterations associated with obesity. Overall, our results suggest that enteric glial NLRP3 inflammasome might represent an interesting molecular target for the development of novel pharmacological approaches aimed at managing the enteric inflammation and intestinal mucosal dysfunctions associated with obesity.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clarissa Pierucci
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Zoltan H Nemeth
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Liu X, Liang XQ, Lu TC, Feng Z, Zhang M, Liao NQ, Zhang FL, Wang B, Wang LS. Leech Poecilobdella manillensis protein extract ameliorated hyperuricemia by restoring gut microbiota dysregulation and affecting serum metabolites. World J Gastroenterol 2024; 30:3488-3510. [PMID: 39156502 PMCID: PMC11326090 DOI: 10.3748/wjg.v30.i29.3488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.
Collapse
Affiliation(s)
- Xia Liu
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
- Department of Traditional Chinese Medicine, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People’s Hospital of Nanning, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Xing-Qiu Liang
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Tian-Cai Lu
- General Manager’s Office, Guangxi Fuxinyi Biological Technology Co. Ltd., Pingnan 537300, Guangxi Zhuang Autonomous Region, China
| | - Zhe Feng
- Department of Joint and Sports Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Min Zhang
- Department of Gerontology, Nanning Social Welfare Hospital, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Nan-Qing Liao
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Feng-Lian Zhang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Bo Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Li-Sheng Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Sadeghabadi ZA, Samani KG, Yaghubi F, Mohseni R. Chicoric acid ameliorates palmitate-induced sphingosine 1-phosphate signaling pathway in the PBMCs of patients with newly diagnosed type 2 diabetes. J Diabetes Metab Disord 2023; 22:307-314. [PMID: 37255837 PMCID: PMC10225412 DOI: 10.1007/s40200-022-01134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2023]
Abstract
Objective Sphingosine 1-phosphate (S1P) signaling pathway is involved in the pathogenesis of type 2 diabetes (T2D). So, targeting S1P signaling pathway could be considered as potential therapeutic target for T2D. The aim of this study was to investigate the effects of palmitate and chicoric acid (CA) on S1P signaling pathway in peripheral blood mononuclear cells (PBMCs) from newly diagnosed patients with T2D. Materials and methods 20 newly diagnosed patients with T2D, aged 40-60 years, were enrolled in the study. PBMCs were isolated and then treated as follows: control groups (untreated, treated with BSA 1% for 12 h), CA groups (treated with 50 μM CA for 6 h), palmitate groups (treated with 500 μM palmitate for 12 h), palmitate + CA groups (treated with 500 μM palmitate for 12 h and then treated with 50 μM CA for 6 h). Finally, sphingosine kinase 1 (SPHK1) and sphingosine 1-phosphate receptor 1 (S1PR1) genes expression were evaluated by real-time PCR and S1PR1 protein levels were quantified using ELISA. Results Palmitate significantly increased SPHK1 and S1PR1 genes expression and S1PR1 protein levels in PBMCs of patients with diabetes. However, CA ameliorates palmitate-increased SPHK1 and S1PR1 genes expression and S1PR1 levels in these cells. Conclusion These data indicate that CA could be considered as a novel S1P signaling pathway inhibitor through down regulation of SPHK1 and S1PR1.
Collapse
Affiliation(s)
- Zahra Arab Sadeghabadi
- Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Yaghubi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Lu Z, Li Y, Chowdhury N, Yu H, Syn WK, Lopes-Virella M, Yilmaz Ö, Huang Y. The Presence of Periodontitis Exacerbates Non-Alcoholic Fatty Liver Disease via Sphingolipid Metabolism-Associated Insulin Resistance and Hepatic Inflammation in Mice with Metabolic Syndrome. Int J Mol Sci 2023; 24:8322. [PMID: 37176029 PMCID: PMC10179436 DOI: 10.3390/ijms24098322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Clinical studies have shown that periodontitis is associated with non-alcoholic fatty liver disease (NAFLD). However, it remains unclear if periodontitis contributes to the progression of NAFLD. In this study, we generated a mouse model with high-fat diet (HFD)-induced metabolic syndrome (MetS) and NAFLD and oral P. gingivalis inoculation-induced periodontitis. Results showed that the presence of periodontitis increased insulin resistance and hepatic inflammation and exacerbated the progression of NAFLD. To determine the role of sphingolipid metabolism in the association between NAFLD and periodontitis, we also treated mice with imipramine, an inhibitor of acid sphingomyelinase (ASMase), and demonstrated that imipramine treatment significantly alleviated insulin resistance and hepatic inflammation, and improved NAFLD. Studies performed in vitro showed that lipopolysaccharide (LPS) and palmitic acid (PA), a major saturated fatty acid associated with MetS and NAFLD, synergistically increased the production of ceramide, a bioactive sphingolipid involved in NAFLD progression in macrophages but imipramine effectively reversed the ceramide production stimulated by LPS and PA. Taken together, this study showed for the first time that the presence of periodontitis contributed to the progression of NAFLD, likely due to alterations in sphingolipid metabolism that led to exacerbated insulin resistance and hepatic inflammation. This study also showed that targeting ASMase with imipramine improves NAFLD by reducing insulin resistance and hepatic inflammation.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hong Yu
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MI 63110, USA
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del Pa S Vasco/Euskal Herriko Univertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Maria Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
5
|
Martín-Hernández D, Martínez M, Robledo-Montaña J, Muñoz-López M, Virto L, Ambrosio N, Marín MJ, Montero E, Herrera D, Sanz M, Leza JC, Figuero E, García-Bueno B. Neuroinflammation related to the blood-brain barrier and sphingosine-1-phosphate in a pre-clinical model of periodontal diseases and depression in rats. J Clin Periodontol 2023; 50:642-656. [PMID: 36644813 DOI: 10.1111/jcpe.13780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
AIM To explore the potential mechanisms of neuroinflammation (microglia, blood-brain barrier [BBB] permeability, and the sphingosine-1-phosphate [S1P] pathways) resulting from the association between periodontitis and depression in rats. MATERIALS AND METHODS This pre-clinical in vivo experimental study used Wistar rats, in which experimental periodontitis (P) was induced by using oral gavages with Porphyromonas gingivalis and Fusobacterium nucleatum. Then, a chronic mild stress (CMS) model was implemented to induce a depressive-like behaviour, resulting in four groups: P with CMS (P+CMS+), P without CMS (P+CMS-), CMS without P (P-CMS+), and control (P-CMS-). After harvesting brain samples, protein/mRNA expression analyses and fluorescence immunohistochemistry were performed in the frontal cortex (FC). Results were analysed by ANOVA. RESULTS CMS exposure increased the number of microglia (an indicator of neuroinflammation) in the FC. In the combined model (P+CMS+), there was a decrease in the expression of tight junction proteins (zonula occludens-1 [ZO-1], occludin) and an increase in intercellular and vascular cell adhesion molecules (ICAM-1, VCAM-1) and matrix metalloproteinase 9 (MMP9), suggesting a more severe disruption of the BBB. The enzymes and receptors of S1P were also differentially regulated. CONCLUSIONS Microglia, BBB permeability, and S1P pathways could be relevant mechanisms explaining the association between periodontitis and depression.
Collapse
Affiliation(s)
- David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María Martínez
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Javier Robledo-Montaña
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Marina Muñoz-López
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain.,Department of Anatomy and Embryology, Faculty of Optics, UCM, Madrid, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Maria José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Kołakowski A, Dziemitko S, Chmielecka A, Żywno H, Bzdęga W, Charytoniuk T, Chabowski A, Konstantynowicz-Nowicka K. Molecular Advances in MAFLD—A Link between Sphingolipids and Extracellular Matrix in Development and Progression to Fibrosis. Int J Mol Sci 2022; 23:ijms231911380. [PMID: 36232681 PMCID: PMC9569877 DOI: 10.3390/ijms231911380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a major cause of liver diseases globally and its prevalence is expected to grow in the coming decades. The main cause of MAFLD development is changed in the composition of the extracellular matrix (ECM). Increased production of matrix molecules and inflammatory processes lead to progressive fibrosis, cirrhosis, and ultimately liver failure. In addition, increased accumulation of sphingolipids accompanied by increased expression of pro-inflammatory cytokines in the ECM is closely related to lipogenesis, MAFLD development, and its progression to fibrosis. In our work, we will summarize all information regarding the role of sphingolipids e.g., ceramide and S1P in MAFLD development. These sphingolipids seem to have the most significant effect on macrophages and, consequently, HSCs which trigger the entire cascade of overproduction matrix molecules, especially type I and III collagen, proteoglycans, elastin, and also tissue inhibitors of metalloproteinases, which as a result cause the development of liver fibrosis.
Collapse
Affiliation(s)
- Adrian Kołakowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Sylwia Dziemitko
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Hubert Żywno
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Wiktor Bzdęga
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
- Department of Ophthalmology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
7
|
Gan PR, Wang RH, Deng R, Wu H, Bu YH, Chen FY, Dong XT, Ke JT. Geniposide inhibits SphK1 membrane targeting to restore macrophage polarization balance in collagen-induced arthritis mice. Eur J Pharmacol 2022; 933:175271. [PMID: 36108735 DOI: 10.1016/j.ejphar.2022.175271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
Imbalance of macrophage polarization plays a critical role in the progression of rheumatoid arthritis (RA). Geniposide (GE) has been shown to exert anti-inflammatory effects. However, the effect of GE on macrophage polarization remains unclear. Here, we investigated the regulation of GE on the imbalance of macrophage polarization in RA and how it functions. We established a mouse model of collagen-induced arthritis (CIA) and isolated bone marrow-derived macrophages (BMDMs). The results confirmed that pro-inflammatory M1 macrophages were dominant in CIA mice, but the polarization imbalance of macrophages was restored to a certain extent after GE treatment. Furthermore, the membrane targeting of sphingosine kinase 1 (SphK1) was increased in BMDMs of CIA mice, as manifested by increased membrane and cytoplasmic expression of p-SphK1 and high secretion level of sphingosine-1-phosphate (S1P). RAW264.7 cells were stimulated with lipopolysaccharide (LPS)-interferon (IFN)-γ or interleukin (IL)-4 to induce M1 or M2 phenotype, respectively, to revalidate the results obtained in BMDMs. The results again observed SphK1 membrane targeting in LPS-IFN-γ-stimulated RAW264.7 cells. Selective inhibition of SphK1 by PF543 or inhibition of the S1P receptors by FTY720 both restored the proportion of M1 and M2 macrophages in LPS-IFN-γ-stimulated RAW264.7 cells, confirming that SphK1 membrane targeting mediated a proportional imbalance in M1 and M2 macrophage polarization. In addition, GE inhibited SphK1 membrane targeting and kinase activity. Taken together, results confirmed that the inhibition of SphK1 membrane targeting by GE was responsible for restoring the polarization balance of macrophages in CIA mice.
Collapse
Affiliation(s)
- Pei-Rong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Rong-Hui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China; School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Yan-Hong Bu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Fang-Yuan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Xin-Tong Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Jiang-Tao Ke
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
8
|
Tanaka S, Zheng S, Kharel Y, Fritzemeier RG, Huang T, Foster D, Poudel N, Goggins E, Yamaoka Y, Rudnicka KP, Lipsey JE, Radel HV, Ryuh SM, Inoue T, Yao J, Rosin DL, Schwab SR, Santos WL, Lynch KR, Okusa MD. Sphingosine 1-phosphate signaling in perivascular cells enhances inflammation and fibrosis in the kidney. Sci Transl Med 2022; 14:eabj2681. [PMID: 35976996 PMCID: PMC9873476 DOI: 10.1126/scitranslmed.abj2681] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shuqiu Zheng
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Russell G. Fritzemeier
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Daniel Foster
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yusuke Yamaoka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kinga P. Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jonathan E. Lipsey
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Hope V. Radel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Sophia M. Ryuh
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Susan R. Schwab
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, NY, New York 10016, USA
| | - Webster L. Santos
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Corresponding author.
| |
Collapse
|
9
|
Domínguez-López I, Arancibia-Riveros C, Casas R, Tresserra-Rimbau A, Razquin C, Martínez-González MÁ, Hu FB, Ros E, Fitó M, Estruch R, López-Sabater MC, Lamuela-Raventós RM. Changes in plasma total saturated fatty acids and palmitic acid are related to pro-inflammatory molecule IL-6 concentrations after nutritional intervention for one year. Biomed Pharmacother 2022; 150:113028. [PMID: 35483198 DOI: 10.1016/j.biopha.2022.113028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Systemic inflammation is associated with an increased risk of non-communicable diseases, such as cardiovascular diseases and diabetes. Circulating fatty acids (FA) are known to be related to these conditions, possibly through their role in inflammation, although different types of FAs can have opposite effects on inflammatory mediators. The aim of the present study was to analyze the association of plasma FAs with inflammatory biomarkers in a PREDIMED trial subsample after one year of intervention. In a one-year longitudinal study of 91 participants of the PREDIMED trial (Barcelona-Clinic center), plasma FAs and inflammatory biomarkers were analyzed using gas chromatography and ELISA, respectively. In baseline plasma, a multivariable-adjusted ordinary least squares regression model showed that n-3 polyunsaturated FAs concentrations were inversely associated with concentrations of soluble intercellular adhesion molecule-1 (sICAM-1) and E-selectin, whereas the level of the most abundant saturated FA, palmitic acid, was directly associated with concentrations of interleukin-6 (IL-6) (β = 0.48 pg/mL, 95% CI: 0.03, 0.93 per 1-SD increase, p-value = 0.037). After one year of nutritional intervention, changes of plasma diet-derived total saturated FAs and palmitic acid were directly associated with changes in IL-6 (β = 0.59 pg/mL [95% CI: 0.28, 0.89] per 1-SD, p-value = 0.001; β = 0.64 pg/mL, 95% CI: 0.31, 0.98, p-value = 0.001), respectively, after correction for multiple testing. Our findings suggest that saturated FAs of dietary origin, especially palmitic acid, are directly involved in the increase of IL-6 in plasma.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Camila Arancibia-Riveros
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain.
| | - Rosa Casas
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - Anna Tresserra-Rimbau
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Cristina Razquin
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31008 Pamplona, Spain.
| | - Miguel Á Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31008 Pamplona, Spain.
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology, Hospital Clinic, IDIBAPS, Barcelona, Spain.
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08007 Barcelona, Spain.
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - M Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
10
|
Xu YN, Wang Z, Zhang SK, Xu JR, Pan ZX, Wei X, Wen HH, Luo YS, Guo MJ, Zhu Q. Low-grade elevation of palmitate and lipopolysaccharide synergistically induced β-cell damage via inhibition of neutral ceramidase. Mol Cell Endocrinol 2022; 539:111473. [PMID: 34610358 DOI: 10.1016/j.mce.2021.111473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
High concentrations of free fatty acids (FFAs) or lipopolysaccharide (LPS) could lead to β-cell apoptosis and dysfunction, while low-grade elevation of FFAs or LPS, which are more common in people with type 2 diabetes mellitus (T2DM) or obesity, have no obvious toxic effect on β-cells. Palmitate is a component closely related to metabolic disorders in FFAs. Recent studies have found that low-grade elevation of palmitate and LPS synergistically affects the sphingolipid signaling pathway by activating Toll-like receptor 4 (TLR4) and further enhances the expression of inflammatory cytokines in immune cells. Previous studies demonstrated that sphingolipids also played an important role in the occurrence and development of T2DM. This study aimed to investigate the synergistic effects of low-grade elevation of palmitate and LPS on viability, apoptosis and insulin secretion in the rat pancreatic β-cell line INS-1 or islets and the role of sphingolipids in this process. We showed that low-grade elevation of palmitate or LPS alone did not affect the viability, apoptosis, glucose-stimulated insulin secretion (GSIS) or intracellular insulin content of INS-1 cells or islets, while the combination of the two synergistically inhibited cell viability, induced apoptosis and decreased basal insulin secretion in INS-1 cells or islets. Treatment with palmitate and LPS markedly upregulated TLR4 protein expression and downregulated neutral ceramidase (NCDase) activity and protein expression. Additionally, low-grade elevation of palmitate and LPS synergistically induced a significant increase in ceramide and a decrease in sphingosine-1-phosphate. Blocking TLR4 signaling or overexpressing NCDase remarkably attenuated INS-1 cell injury induced by the combination of palmitate and LPS. However, inhibition of ceramide synthase did not ameliorate injury induced by palmitate and LPS. Overall, we show for the first time that low-grade elevation of palmitate and LPS synergistically induced β-cell damage by activating TLR4 signaling, inhibiting NCDase activity, and further modulating sphingolipid metabolism, which was different from a high concentration of palmitate-induced β-cell injury by promoting ceramide synthesis.
Collapse
Affiliation(s)
- Ya-Nan Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zheng Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China; Department of Nephrology, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, China
| | - Shao-Kun Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jia-Rong Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhi-Xiong Pan
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Hong-Hua Wen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yan-Shi Luo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mao-Jun Guo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Qun Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
11
|
Chatzikonstantinou S, Poulidou V, Arnaoutoglou M, Kazis D, Heliopoulos I, Grigoriadis N, Boziki M. Signaling through the S1P-S1PR Axis in the Gut, the Immune and the Central Nervous System in Multiple Sclerosis: Implication for Pathogenesis and Treatment. Cells 2021; 10:cells10113217. [PMID: 34831439 PMCID: PMC8626013 DOI: 10.3390/cells10113217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a signaling molecule with complex biological functions that are exerted through the activation of sphingosine 1-phosphate receptors 1–5 (S1PR1–5). S1PR expression is necessary for cell proliferation, angiogenesis, neurogenesis and, importantly, for the egress of lymphocytes from secondary lymphoid organs. Since the inflammatory process is a key element of immune-mediated diseases, including multiple sclerosis (MS), S1PR modulators are currently used to ameliorate systemic immune responses. The ubiquitous expression of S1PRs by immune, intestinal and neural cells has significant implications for the regulation of the gut–brain axis. The dysfunction of this bidirectional communication system may be a significant factor contributing to MS pathogenesis, since an impaired intestinal barrier could lead to interaction between immune cells and microbiota with a potential to initiate abnormal local and systemic immune responses towards the central nervous system (CNS). It appears that the secondary mechanisms of S1PR modulators affecting the gut immune system, the intestinal barrier and directly the CNS, are coordinated to promote therapeutic effects. The scope of this review is to focus on S1P−S1PR functions in the cells of the CNS, the gut and the immune system with particular emphasis on the immunologic effects of S1PR modulation and its implication in MS.
Collapse
Affiliation(s)
- Simela Chatzikonstantinou
- 3rd Department of Neurology, Aristotle University of Thessaloniki, “G.Papanikolaou” Hospital, Leoforos Papanikolaou, Exohi, 57010 Thessaloniki, Greece; (S.C.); (D.K.)
| | - Vasiliki Poulidou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece; (V.P.); (M.A.)
| | - Marianthi Arnaoutoglou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece; (V.P.); (M.A.)
| | - Dimitrios Kazis
- 3rd Department of Neurology, Aristotle University of Thessaloniki, “G.Papanikolaou” Hospital, Leoforos Papanikolaou, Exohi, 57010 Thessaloniki, Greece; (S.C.); (D.K.)
| | - Ioannis Heliopoulos
- Department of Neurology, University General Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupoli, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece;
| | - Marina Boziki
- Multiple Sclerosis Center, Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece;
- Correspondence:
| |
Collapse
|
12
|
Zhou J, Que Y, Pan L, Li X, Zhu C, Jin L, Li S. Supervillin Contributes to LPS-induced Inflammatory Response in THP-1 Cell-derived Macrophages. Inflammation 2021; 45:356-371. [PMID: 34480249 DOI: 10.1007/s10753-021-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Supervillin (SVIL) is an actin-binding and membrane-associated protein, which belongs to villin/gelsolin family. It has been reported that SVIL was involved in the regulation of macrophages' movement and lipopolysaccharide (LPS) increased the SVIL mRNA expression in neutrophils, but the underlying mechanisms remain unknown. This work investigated the underlying molecular mechanisms of LPS regulating SVIL expression in macrophages and hence the possible role of SVIL in LPS-induced inflammation. We found that in THP-1-derived macrophages, LPS obviously increased SVIL mRNA and protein expression. Inhibition of TLR4 by Resatorvid (Res) remarkably reversed the LPS-induced SVIL expression. Additionally, inhibition of ERK1/2 signaling pathway (by U0126 or GDC-0994) and NF-κB (by BAY) significantly reduced the LPS-induced SVIL expression. Interestingly, down-regulation of SVIL by SVIL-specific shRNAs significantly attenuated the expression of IL-6, IL-1β & TNF-α induced by LPS at both mRNA and protein levels. Furthermore, we also observed that SVIL knockdown decreased the proportion of cells in G2/M phase and increased the proportion of cells in S & G0-1 phase of THP-1 derived macrophages, but did not influence the cell viability. Taken together, we demonstrated that LPS induced the expression of SVIL via activating TLR4/NF-κB and ERK1/2 MAPK pathways, and SVIL participated in the inflammatory response of LPS-induced IL-6, IL-1β and TNF-α upregulation in macrophages.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China.
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China.
| |
Collapse
|
13
|
Cyr A, Zhong Y, Reis SE, Namas RA, Amoscato A, Zuckerbraun B, Sperry J, Zamora R, Vodovotz Y, Billiar TR. Analysis of the Plasma Metabolome after Trauma, Novel Circulating Sphingolipid Signatures, and In-Hospital Outcomes. J Am Coll Surg 2021; 232:276-287.e1. [PMID: 33453380 PMCID: PMC11875205 DOI: 10.1016/j.jamcollsurg.2020.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Trauma is the leading cause of death and disability for individuals under age 55. Many severely injured trauma patients experience complicated clinical courses despite appropriate initial therapy. We sought to identify novel circulating metabolomic signatures associated with clinical outcomes following trauma. STUDY DESIGN Untargeted metabolomics and circulating plasma immune mediator analysis was performed on plasma collected during 3 post-injury time periods (<6 hours [h], 6 h-24h, day 2-day 5) in critically ill trauma patients enrolled between April 2004 and May 2013 at UPMC Presbyterian Hospital in Pittsburgh, PA. Inclusion criteria were age ≥ 18 years, blunt mechanism, ICU admission, and expected survival ≥ 24 h. Exclusion criteria were isolated head injury, spinal cord injury, and pregnancy. Exploratory endpoints included length of stay (overall and ICU), ventilator requirements, nosocomial infection, and Marshall organ dysfunction (MOD) score. The top 50 metabolites were isolated using repeated measures ANOVA and multivariate empirical Bayesian analysis for further study. RESULTS Eighty-six patients were included for analysis. Sphingolipids were enriched significantly (chi-square, p < 10-6) among the top 50 metabolites. Clustering of sphingolipid patterns identified 3 patient subclasses: nonresponders (no time-dependent change in sphingolipids, n = 41), sphingosine/sphinganine-enhanced (n = 24), and glycosphingolipid-enhanced (n = 21). Compared with the sphingolipid-enhanced subclasses, nonresponders had longer mean length of stay, more ventilator days, higher MOD scores, and higher circulating levels of proinflammatory immune mediators IL-6, IL-8, IL-10, MCP1/CCL2, IP10/CXCL10, and MIG/CXCL9 (all p < 0.05), despite similar Injury Severity Scores (p = 0.12). CONCLUSIONS Metabolomic analysis identified broad alterations in circulating plasma sphingolipids after blunt trauma. Circulating sphingolipid signatures and their association with both clinical outcomes and circulating inflammatory mediators suggest a possible link between sphingolipid metabolism and the immune response to trauma.
Collapse
Affiliation(s)
- Anthony Cyr
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Yanjun Zhong
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Critical Care, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Steven E Reis
- Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Andrew Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
14
|
Liu H, Li L, Chen Z, Song Y, Liu W, Gao G, Li L, Jiang J, Xu C, Yan G, Cui H. S1PR2 Inhibition Attenuates Allergic Asthma Possibly by Regulating Autophagy. Front Pharmacol 2021; 11:598007. [PMID: 33643037 PMCID: PMC7902893 DOI: 10.3389/fphar.2020.598007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
This study is to investigate the role of Sphingosine-1-phosphate (S1P) in the asthma progression, and the involvement of autophagy. Airway remodeling mice were subjected to the HE, PAS, and Masson staining. Protein expression levels in the tissues, samples and model cells were detected with ELISA, Western blot analysis, and immunohistochemical/immunofluorescent analysis. The S1P2 receptor antagonist JTE-013 decreased the inflammatory cell infiltration and goblet cell production in asthmatic mice tissues. The IL-1, IL-4, IL-5 and serum IgE contents were decreased in bronchoalveolar lavage fluid, while the Beclin1 expression in lung tissues was decreased. The LC3B1 to LC-3B2 conversion was decreased, with increased P62 accumulation and decreased p-P62 expression. In airway remodeling mice, JTE-013 significantly decreased collagen deposition in lung tissues and decreased smooth muscle cell smooth muscle activating protein expression. In lung tissue, the expression levels of Beclin1 were decreased, with decreased LC3B1 to LC-3B2 conversion, as well as the increased P62 accumulation and decreased p-P62 expression. However, these effects were reversed by the RAC1 inhibitor EHT 1864. Similar results were observed for the silencing of S1P2 receptor in the cells, as shown by the decreased Beclin1 expression, decreased LC3B1 to LC-3B2 conversion, increased P62 accumulation, and decreased p-P62 expression. The smooth muscle activators were significantly decreased in the JTE-013 and EHT1864 groups, and the EHT 1864 + S1P2-SiRNA expression level was increased. S1P is involved in the progression of asthma and airway remodeling, which may be related to the activation of S1PR2 receptor and inhibition of autophagy through RAC1.
Collapse
Affiliation(s)
- Hanye Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Pharmacology, Yanbian University College of Medicine, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Zhengai Chen
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Pharmacology, Yanbian University College of Medicine, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Weidong Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Ge Gao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| |
Collapse
|
15
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
16
|
Zhu C, Zhou J, Li T, Mu J, Jin L, Li S. Urocortin participates in LPS-induced apoptosis of THP-1 macrophages via S1P-cPLA2 signaling pathway. Eur J Pharmacol 2020; 887:173559. [PMID: 32949605 DOI: 10.1016/j.ejphar.2020.173559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
There is little literature showing the effect of urocortin (UCN) on macrophage apoptosis. The underlying mechanism is also unclear. This work was to investigate the involvement of UCN in the regulation of LPS-induced macrophage apoptosis and hence in the prevention from the atherosclerotic lesion development through targeting PLA2. Flow cytometry analysis showed that cell apoptosis was increased by more than 50% after LPS treatment in human THP-1 macrophage. Lp-PLA2 and cPLA2 were found to mediate LPS-induced macrophage apoptosis and NF-κB differentially influenced the expression of Lp-PLA2 and cPLA2. However, the reverse regulation of the expression of Lp-PLA2 and cPLA2 by NF-κB suggested that NF-κB may not be a key target for regulating macrophage apoptosis. Interestingly, we found that the approximate three folds upregulation of cPLA2 was in line with the induction of S1P formation and cell apoptosis by LPS. Inversely, LPS obviously decreased UCN expression by about 50% and secretion by about 25%. Both the enzyme inhibitor and knockdown expression of cPLA2 could completely abolish LPS-induced cell apoptosis. In addition, suppression of S1P synthesis by Sphk1 inhibitor PF-543 reduced the expression of cPLA2 and cell apoptosis but at the same time restored the normal level of UCN in cell culture supernatant. Furthermore, addition of exogenous UCN also reversed LPS-induced expression of cPLA2 and apoptosis. Taken together, UCN may be the reverse regulator of LPS-S1P-cPLA2-apoptosis pathway, thereby contributing to the prevention from the formation of unstable plaques.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Junyu Mu
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
17
|
de Araujo Junior RF, Eich C, Jorquera C, Schomann T, Baldazzi F, Chan AB, Cruz LJ. Ceramide and palmitic acid inhibit macrophage-mediated epithelial-mesenchymal transition in colorectal cancer. Mol Cell Biochem 2020; 468:153-168. [PMID: 32222879 PMCID: PMC7145792 DOI: 10.1007/s11010-020-03719-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Accumulating evidence indicates that ceramide (Cer) and palmitic acid (PA) possess the ability to modulate switching of macrophage phenotypes and possess anti-tumorigenic effects; however, the underlying molecular mechanisms are largely unknown. The aim of the present study was to investigate whether Cer and PA could induce switching of macrophage polarization from the tumorigenic M2- towards the pro-inflammatory M1-phenotype, and whether this consequently altered the potential of colorectal cancer cells to undergo epithelial–mesenchymal transition (EMT), a hallmark of tumor progression. Our study showed that Cer- and PA-treated macrophages increased expression of the macrophage 1 (M1)-marker CD68 and secretion of IL-12 and attenuated expression of the macrophage 2 (M2)-marker CD163 and IL-10 secretion. Moreover, Cer and PA abolished M2 macrophage-induced EMT and migration of colorectal cancer cells. At the molecular level, this coincided with inhibition of SNAI1 and vimentin expression and upregulation of E-cadherin. Furthermore, Cer and PA attenuated expression levels of IL-10 in colorectal cancer cells co-cultured with M2 macrophages and downregulated STAT3 and NF-κB expression. For the first time, our findings suggest the presence of an IL-10-STAT3-NF-κB signaling axis in colorectal cancer cells co-cultured with M2 macrophages, mimicking the tumor microenvironment. Importantly, PA and Cer were powerful inhibitors of this signaling axis and, consequently, EMT of colorectal cancer cells. These results contribute to our understanding of the immunological mechanisms that underlie the anti-tumorigenic effects of lipids for future combination with drugs in the therapy of colorectal carcinoma.
Collapse
Affiliation(s)
- Raimundo Fernandes de Araujo Junior
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil. .,Post-Graduation Programme in Structural and Functional Biology, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil. .,Post-Graduation Programme in Health Science, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil. .,Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Carla Jorquera
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Timo Schomann
- Percuros B.V., 2333 CL, Leiden, The Netherlands.,Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Fabio Baldazzi
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Alan B Chan
- Percuros B.V., 2333 CL, Leiden, The Netherlands.,Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
18
|
Lu Z, Li Y, Syn WK, Wang Z, Lopes-Virella MF, Lyons TJ, Huang Y. Amitriptyline inhibits nonalcoholic steatohepatitis and atherosclerosis induced by high-fat diet and LPS through modulation of sphingolipid metabolism. Am J Physiol Endocrinol Metab 2020; 318:E131-E144. [PMID: 31821039 PMCID: PMC7052581 DOI: 10.1152/ajpendo.00181.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We reported previously that increased acid sphingomyelinase (ASMase)-catalyzed hydrolysis of sphingomyelin, which leads to increases in ceramide and sphingosine 1 phosphate (S1P), played a key role in the synergistic upregulation of proinflammatory cytokines by palmitic acid (PA), a major saturated fatty acid, and lipopolysaccharide (LPS) in macrophages. Since macrophages are vital players in nonalcoholic steatohepatitis (NASH) and atherosclerosis, we assessed the effect of ASMase inhibition on NASH and atherosclerosis cooperatively induced by high-PA-containing high-fat diet (HP-HFD) and LPS in LDL receptor-deficient (LDLR-/-) mice. LDLR-/- mice were fed HP-HFD, injected with low dose of LPS and treated with or without the ASMase inhibitor amitriptyline. The neutral sphingomyelinase inhibitor GW4869 was used as control. Metabolic study showed that both amitriptyline and GW4869 reduced glucose, lipids, and insulin resistance. Histological analysis and Oil Red O staining showed that amitriptyline robustly reduced hepatic steatosis while GW4869 had modest effects. Interestingly, immunohistochemical study showed that amitriptyline, but not GW4869, strongly reduced hepatic inflammation. Furthermore, results showed that both amitriptyline and GW4869 attenuated atherosclerosis. To elucidate the underlying mechanisms whereby amitriptyline inhibited both NASH and atherosclerosis, but GW4869 only inhibited atherosclerosis, we found that amitriptyline, but not GW4869, downregulated proinflammatory cytokines in macrophages. Finally, we found that inhibition of sphingosine 1 phosphate production is a potential mechanism whereby amitriptyline inhibited proinflammatory cytokines. Collectively, this study showed that amitriptyline inhibited NASH and atherosclerosis through modulation of sphingolipid metabolism in LDLR-/- mice, indicating that sphingolipid metabolism in macrophages plays a crucial role in the linkage of NASH and atherosclerosis.
Collapse
Affiliation(s)
- Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Wing-Kin Syn
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Leioa, Spain
| | - Zhewu Wang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Timothy J Lyons
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
19
|
Igarashi N, Honjo M, Fujishiro T, Toyono T, Ono T, Mori Y, Miyata K, Obinata H, Aihara M. Activation of the Sphingosine 1 Phosphate-Rho Pathway in Pterygium and in Ultraviolet-Irradiated Normal Conjunctiva. Int J Mol Sci 2019; 20:ijms20194670. [PMID: 31547113 PMCID: PMC6801701 DOI: 10.3390/ijms20194670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Sphingosine 1 phosphate (S1P) is a bioactive lipid that regulates cellular activity, including proliferation, cytoskeletal organization, migration, and fibrosis. In this study, the potential relevance of S1P–Rho signaling in pterygium formation and the effects of ultraviolet (UV) irradiation on activation of the S1P/S1P receptor axis and fibrotic responses were investigated in vitro. Expressions of the S1P2, S1P4, and S1P5 receptors were significantly higher in pterygium tissue than in normal conjunctiva, and the concentration of S1P was significantly elevated in the lysate of normal conjunctival fibroblast cell (NCFC) irradiated with UV (UV-NCFCs). RhoA activity was significantly upregulated in pterygium fibroblast cells (PFCs) and UV-NCFCs, and myosin phosphatase–Rho interacting protein (MRIP) was upregulated, and myosin phosphatase target subunit 1 (MYPT1) was downregulated in PFCs. Fibrogenic changes were significantly upregulated in both PFCs and UV-NCFCs compared to NCFCs. We found that the activation of the S1P receptor–Rho cascade was observed in pterygium tissue. Additionally, in vitro examination showed S1P–rho activation and fibrogenic changes in PFCs and UV-NCFCs. S1P elevation and the resulting upregulation of the downstream Rho signaling pathway may be important in pterygium formation; this pathway offers a potential therapeutic target for suppressing pterygium generation.
Collapse
Affiliation(s)
- Nozomi Igarashi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Takashi Fujishiro
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Tetsuya Toyono
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Takashi Ono
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Miyata eye hospital, Miyazaki 885-0051, Japan.
| | - Yosai Mori
- Miyata eye hospital, Miyazaki 885-0051, Japan.
| | | | - Hideru Obinata
- Gunma University Initiative for Advanced Research (GIAR), Gunma 371-8511, Japan.
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
20
|
Puig N, Estruch M, Jin L, Sanchez-Quesada JL, Benitez S. The Role of Distinctive Sphingolipids in the Inflammatory and Apoptotic Effects of Electronegative LDL on Monocytes. Biomolecules 2019; 9:biom9080300. [PMID: 31344975 PMCID: PMC6722802 DOI: 10.3390/biom9080300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 01/18/2023] Open
Abstract
Electronegative low-density lipoprotein (LDL(-)) is a minor LDL subfraction that is present in blood with inflammatory and apoptotic effects. We aimed to evaluate the role of sphingolipids ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) in the LDL(-)-induced effect on monocytes. Total LDL was subfractioned into native LDL and LDL(-) by anion-exchange chromatography and their sphingolipid content evaluated by mass spectrometry. LDL subfractions were incubated with monocytes in the presence or absence of enzyme inhibitors: chlorpromazine (CPZ), d-erythro-2-(N-myristoyl amino)-1-phenyl-1-propanol (MAPP), and N,N-dimethylsphingosine (DMS), which inhibit Cer, Sph, and S1P generation, respectively. After incubation, we evaluated cytokine release by enzyme-linked immunosorbent assay (ELISA) and apoptosis by flow cytometry. LDL(-) had an increased content in Cer and Sph compared to LDL(+). LDL(-)-induced cytokine release from cultured monocytes was inhibited by CPZ and MAPP, whereas DMS had no effect. LDL(-) promoted monocyte apoptosis, which was inhibited by CPZ, but increased with the addition of DMS. LDL enriched with Sph increased cytokine release in monocytes, and when enriched with Cer, reproduced both the apoptotic and inflammatory effects of LDL(-). These observations indicate that Cer content contributes to the inflammatory and apoptotic effects of LDL(-) on monocytes, whereas Sph plays a more important role in LDL(-)-induced inflammation, and S1P counteracts apoptosis.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
- Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine. Building M. Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Montserrat Estruch
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
| | - Lei Jin
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
| | - Jose Luis Sanchez-Quesada
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain.
| |
Collapse
|
21
|
Weigert A, Olesch C, Brüne B. Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater. Front Immunol 2019; 10:1706. [PMID: 31379883 PMCID: PMC6658986 DOI: 10.3389/fimmu.2019.01706] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) is produced by sphingosine kinases to either signal through intracellular targets or to activate a family of specific G-protein-coupled receptors (S1PR). S1P levels are usually low in peripheral tissues compared to the vasculature, forming a gradient that mediates lymphocyte trafficking. However, S1P levels rise during inflammation in peripheral tissues, thereby affecting resident or recruited immune cells, including macrophages. As macrophages orchestrate initiation and resolution of inflammation, the sphingosine kinase/S1P/S1P-receptor axis emerges as an important determinant of macrophage function in the pathogenesis of inflammatory diseases such as cancer, atherosclerosis, and infection. In this review, we therefore summarize the current knowledge how S1P affects macrophage biology.
Collapse
Affiliation(s)
- Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
22
|
Heo JY, Im DS. Pro-Inflammatory Role of S1P 3 in Macrophages. Biomol Ther (Seoul) 2019; 27:373-380. [PMID: 30917625 PMCID: PMC6609111 DOI: 10.4062/biomolther.2018.215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 11/30/2022] Open
Abstract
Sphingosine kinase 1 and its product, sphingosine 1-phosphate (S1P), as well as their receptors, have been implicated in inflammatory responses. The functions of receptors S1P1 and S1P2 on cell motility have been investigated. However, the function of S1P3 has been poorly investigated. In this study, the roles of S1P3 on inflammatory response were investigated in primary perito-neal macrophages. S1P3 receptor was induced along with sphingosine kinase 1 by stimulation of lipopolysaccharide (LPS). LPS treatment induced inflammatory genes, such iNOS, COX-2, IL-1β, IL-6 and TNF-α. TY52156, an antagonist of S1P3 suppressed the induction of inflammatory genes in a concentration dependent manner. Suppression of iNOS and COX-2 induction was further confirmed by western blotting and NO measurement. Suppression of IL-1β induction was also confirmed by western blotting and ELISA. Caspase 1, which is responsible for IL-1β production, was similarly induced by LPS and suppressed by TY52156. Therefore, we have shown S1P3 induction in the inflammatory conditions and its pro-inflammatory roles. Targeting S1P3 might be a strategy for regulating inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Yeong Heo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
23
|
Alí A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol 2019; 9:1866. [PMID: 30666212 PMCID: PMC6330352 DOI: 10.3389/fphys.2018.01866] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.
Collapse
Affiliation(s)
- Alessandra Alí
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|