1
|
Collins J, Farnsworth NL. Active targeting of type 1 diabetes therapies to pancreatic beta cells using nanocarriers. Diabetologia 2025; 68:692-703. [PMID: 39847085 DOI: 10.1007/s00125-024-06356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects. Targeted drug delivery using nanocarriers has demonstrated potential for overcoming these limitations. The critical bottleneck limiting the development of beta cell-targeted therapies is a lack of highly specific beta cell markers. This review provides an overview of the use of nanocarriers for cell-targeted delivery and the current state of the field of beta cell targeting. Technologies such as systematic evolution of ligands by exponential enrichment (SELEX) aptamer selection, phage display screening, and omics datasets from human samples are highlighted as tools to identify novel beta cell-specific targets that can be combined with nanocarriers for targeted delivery of therapeutics. Ultimately, beta cell-targeted therapies using nanocarriers present a unique opportunity to develop tailored treatments for each stage of type 1 diabetes with the goal of providing individuals with treatment options that prevent further progression or reverse the course of the disease.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
2
|
Loo FJJ, Lee MKS, Huang HL, Vu CKF, Kon YC. Insulinoma With Ambiguous Biochemistry, Positive 68Ga-DOTA-Exendin-4 PET-CT, and Effective Endoscopic Ablation. JCEM CASE REPORTS 2025; 3:luae232. [PMID: 39790938 PMCID: PMC11711475 DOI: 10.1210/jcemcr/luae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 01/12/2025]
Abstract
A 75-year-old female presented with fasting hypoglycemic episodes. A supervised fast ended at 72 hours fulfilling Whipple triad, with suppressed insulin and C-peptide levels, but discordantly suppressed serum β-hydroxybutyrate levels. After 21 months of recurring symptoms, a repeat fast ended at 48 hours with Whipple triad, suppressed serum β-hydroxybutyrate level, and borderline nonsuppressed C-peptide level, suggesting endogenous hyperinsulinism. Serum insulin levels were discordantly suppressed. Computed tomography (CT) of the abdomen demonstrated an enhancing 1.36 × 0.93-cm nodule in the head of the pancreas. Endoscopic ultrasound (EUS)-guided fine-needle aspirate of the lesion derived cytology consistent with a neuroendocrine tumor, but fine-needle core biopsy returned normal pancreatic tissue. Because the results were equivocal, functional imaging with 68Gallium-DOTA-exendin-4 positron emission tomography CT was performed, which confirmed the diagnosis of a single head-of-pancreas insulinoma. The patient declined surgical resection. Oral diazoxide therapy resulted in significant peripheral edema. Hence, EUS-guided radiofrequency ablation of the lesion was performed, and the patient remains symptom free 10 months postprocedure. This case illustrates that (1) exendin-4-based positron emission tomography may help one confidently diagnose and localize insulinoma when prior biochemical or endoscopic biopsy results are ambiguous; and (2) EUS-guided radiofrequency ablation is an efficacious alternative option to surgical resection in the frail, elderly patient with insulinoma.
Collapse
Affiliation(s)
| | | | - Hian Liang Huang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore 169608
| | - Charles Kien Fong Vu
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 308433
| | - Yin Chian Kon
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433
| |
Collapse
|
3
|
Ekmekcioglu O, Hughes S, Fendler WP, Verzijlbergen F, Kong G, Hofman MS. May the Nuclear Medicine be with you! Neuroendocrine tumours and the return of nuclear medicine. Eur J Nucl Med Mol Imaging 2024; 52:3-8. [PMID: 39158585 DOI: 10.1007/s00259-024-06877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Affiliation(s)
- Ozgul Ekmekcioglu
- Department of Nuclear Medicine, University of Health Sciences, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey.
| | - Simon Hughes
- Department of Nuclear Medicine, Queen Elizabeth Hospital, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Fred Verzijlbergen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Grace Kong
- Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre Melbourne, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre Melbourne, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Lacroix A, Bourdeau I, Chasseloup F, Kamenický P, Lopez AG, Louiset E, Lefebvre H. Aberrant hormone receptors regulate a wide spectrum of endocrine tumors. Lancet Diabetes Endocrinol 2024; 12:837-855. [PMID: 39326429 DOI: 10.1016/s2213-8587(24)00200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 09/28/2024]
Abstract
Aberrant G-protein coupled receptor (GPCR) expression is highly prevalent in cortisol-secreting primary bilateral macronodular adrenal hyperplasia (PBMAH) and unilateral adenomas. The aberrant expression of diverse GPCRs and their ligands play an important role in the over-function of various endocrine tumours. Examples include aberrant expression of MC2R, 5-HT4R, AVPR1A, LHCGR, and GnRHR in primary aldosteronism; GCGR, LHCGR, and 5-HT4R in phaeochromocytomas and paragangliomas; TRHR, GnRHR, GIPR, and GRP101 in pituitary somatotroph tumours; AVPR2, D2DR, and SSTR5 in pituitary corticotroph tumours; GLP1R, GIPR, and somatostatin receptors in medullary thyroid carcinoma; and SSTRs, GLP1R, and GIPR in other neuroendocrine tumours. The genetic mechanisms causing the ectopic expression of GIPR in cortisol-secreting PBMAHs and unilateral adenomas have been identified, but distinct mechanisms are implicated in other endocrine tumours. Development of functional imaging targeting aberrant GPCRs should be useful for identification and for specific therapies of this wide spectrum of tumours. The aim of this review is to show that the regulation of endocrine tumours by aberrant GPCR is not restricted to cortisol-secreting adrenal lesions, but also occurs in tumours of several other organs.
Collapse
Affiliation(s)
- André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l' Université de Montréal (CHUM), Montréal, QC, Canada.
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l' Université de Montréal (CHUM), Montréal, QC, Canada
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Antoine-Guy Lopez
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Estelle Louiset
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Hervé Lefebvre
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| |
Collapse
|
5
|
Collins J, Barra JM, Holcomb K, Ocampo A, Fremin A, Kratz A, Akolade J, Hays JK, Shilleh A, Sela A, Hodson DJ, Broichhagen J, Russ HA, Farnsworth NL. Peptide-Coated Polycaprolactone-Benzalkonium Chloride Nanocapsules for Targeted Drug Delivery to the Pancreatic β-Cell. ACS APPLIED BIO MATERIALS 2024; 7:6451-6466. [PMID: 39315885 PMCID: PMC11498138 DOI: 10.1021/acsabm.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Targeting current therapies to treat or prevent the loss of pancreatic islet β-cells in Type 1 Diabetes (T1D) may provide improved efficacy and reduce off-target effects. Current efforts to target the β-cell are limited by a lack of β-cell-specific targets and the inability to test multiple targeting moieties with the same delivery vehicle. Here, we fabricate a tailorable polycaprolactone nanocapsule (NC) in which multiple different targeting peptides can be interchangeably attached for β-cell-specific delivery. Incorporation of a cationic surfactant in the NC shell allows for the attachment of Exendin-4 and an antibody for ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3) for β-cell-specific targeting. The average NC size ranges from 250 to 300 nm with a polydispersity index under 0.2. The NCs are nontoxic, stable in media culture, and can be lyophilized and reconstituted. NCs coated with a targeting peptide were taken up by human cadaveric islet β-cells and human stem cell-derived β-like cells (sBC) in vitro with a high level of specificity. Furthermore, NCs successfully delivered both hydrophobic and hydrophilic cargo to human β-cells. Additionally, Exendin-4-coated NCs were stable and targeted the mouse pancreatic islet β-cell in vivo. Overall, our tailorable NCs have the potential to improve cell-targeted drug delivery and can be utilized as a screening platform to test the efficacy of cell-targeting peptides.
Collapse
Affiliation(s)
- Jillian Collins
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jessie M. Barra
- Depart
of Pharmacology and Therapeutics, Diabetes
Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Keifer Holcomb
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Andres Ocampo
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ashton Fremin
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Austin Kratz
- Depart
of Pharmacology and Therapeutics, Diabetes
Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Jubril Akolade
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Julianna K. Hays
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ali Shilleh
- Oxford
Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford
Biomedical Research Centre, Churchill Hospital, Radcliffe Department
of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Amit Sela
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David J. Hodson
- Oxford
Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford
Biomedical Research Centre, Churchill Hospital, Radcliffe Department
of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Roessle-Str. 10, Berlin 13125, Germany
| | - Holger A. Russ
- Depart
of Pharmacology and Therapeutics, Diabetes
Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Nikki L. Farnsworth
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Collins J, Barra JM, Holcomb K, Ocampo A, Fremin A, Akolade J, Kratz A, Hays JK, Shilleh A, Hodson DJ, Broichhagen J, Russ HA, Farnsworth NL. Peptide Coated Polycaprolactone-Benzalkonium Chloride Nanocapsules for Targeted Drug Delivery to the Pancreatic β-Cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603612. [PMID: 39071322 PMCID: PMC11275727 DOI: 10.1101/2024.07.15.603612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Targeting of current therapies to treat or prevent loss of pancreatic islet β-cells in Type 1 Diabetes (T1D) may provide improved efficacy and reduce off target effects. Current efforts to target the β-cell are limited by a lack of β-cell specific targets and the inability to test multiple targeting moieties with the same delivery vehicle. Here we fabricate a novel tailorable polycaprolactone nanocapsule (NC) where multiple different targeting peptides can be interchangeably attached for β-cell specific delivery. Incorporation of a cationic surfactant in the NC shell allows for the attachment of Exendin-4 and an antibody for ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3) for β-cell specific targeting. The average NC size ranges from 250-300nm with a polydispersity index under 0.2. The NCs are non-toxic, stable in media culture, and can be lyophilized and reconstituted. NCs coated with targeting peptide were taken up by human cadaveric islet β-cells and human stem cell-derived β-like cells (sBC) in vitro with a high level of specificity. Furthermore, NCs successfully delivered both hydrophobic and hydrophilic cargo to human β-cells. Finally, Exendin-4 coated NCs were stable and targeted the mouse pancreatic islet β-cell in vivo . Our unique NC design allows for the interchangeable coating of targeting peptides for future screening of targets with improved cell specificity. The ability to target and deliver thera-peutics to human pancreatic β-cells opens avenues for improved therapies and treatments to help the delay onset, prevent, or reverse T1D.
Collapse
|
7
|
Ambrosini V, Fortunati E, Fanti S, Ursprung S, Asmundo L, O'Shea A, Kako B, Lee S, Furtado FS, Blake M, Goiffon RJ, Najmi Z, Hesami M, Murakami T, Domachevsky L, Catalano OA. State-of-the-Art Hybrid Imaging of Neuroendocrine Neoplasms. J Comput Assist Tomogr 2024; 48:510-520. [PMID: 38518197 DOI: 10.1097/rct.0000000000001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
ABSTRACT Neuroendocrine neoplasms (NENs) may be challenging to diagnose due to their small size and diverse anatomical locations. Hybrid imaging techniques, specifically positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI), represent the current state-of-the-art for evaluating NENs. The preferred radiopharmaceuticals for NEN PET imaging are gallium-68 (68Ga) DOTA-peptides, which target somatostatin receptors (SSTR) overexpressed on NEN cells. Clinical applications of [68Ga]Ga-DOTA-peptides PET/CT include diagnosis, staging, prognosis assessment, treatment selection, and response evaluation. Fluorodeoxyglucose-18 (18F-FDG) PET/CT aids in detecting low-SSTR-expressing lesions and helps in patient stratification and treatment planning, particularly in grade 3 neuroendocrine tumors (NETs). New radiopharmaceuticals such as fluorine-labeled SSTR agonists and SSTR antagonists are emerging as alternatives to 68Ga-labeled peptides, offering improved detection rates and favorable biodistribution. The maturing of PET/MRI brings advantages to NEN imaging, including simultaneous acquisition of PET and MRI images, superior soft tissue contrast resolution, and motion correction capabilities. The PET/MRI with [68Ga]Ga-DOTA-peptides has demonstrated higher lesion detection rates and more accurate lesion classification compared to PET/CT. Overall, hybrid imaging offers valuable insights in the diagnosis, staging, and treatment planning of NENs. Further research is needed to refine response assessment criteria and standardize reporting guidelines.
Collapse
Affiliation(s)
| | - Emilia Fortunati
- From the Nuclear Medicine, Alma Mater Studiorum, University of Bologna
| | | | | | | | - Aileen O'Shea
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Bashar Kako
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Susanna Lee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael Blake
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zahra Najmi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mina Hesami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Liran Domachevsky
- Department of Nuclear Medicine, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Юкина МЮ, Трошина ЕА, Урусова ЛС, Нуралиева НФ, Никанкина ЛВ, Иоутси ВА, Реброва ОЮ, Мокрышева НГ. [Search for new immunohistochemical and circulating markers of insulinoma]. PROBLEMY ENDOKRINOLOGII 2024; 70:15-26. [PMID: 39868444 PMCID: PMC11775719 DOI: 10.14341/probl13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Insulinoma is a neuroendocrine tumor, the main manifestation of which is hypoglycemia. However, the symptoms of hypoglycemia can be non-specific for a long time, especially outside provocative conditions, and quite often the tumor manifests from a life-threatening condition - hypoglycemic coma. In this regard, timely laboratory diagnosis of insulinoma and determination of its aggressive course is one of the priorities in modern researches. AIM Search for new immunohistochemical (IHC) and circulating markers (CM) of insulinoma, including its aggressive course. MATERIALS AND METHODS The patients examined at the Endocrinology Research Centre in the period 2017-2022 and operated on for an insulin-producing tumor were included. Before surgery and 2-12 months after it, blood sampling was performed with the determination of targeted marker proteins. Some patients underwent an extended IHC examination of the tumor, surrounding tissue and islets of Langerhans with primary antibodies to target marker proteins with an assessment of the degree of their expression. To determine the aggressive course of the tumor, the degree of malignancy (Grade), the number of tumors and signs of recurrence were characterized. RESULTS Based on the analysis of literature and pathogenetic characteristics of insulinoma, the following candidates for targeted marker proteins were selected: cocaine and amphetamine-regulated transcript (CART), chromogranin B (CrB), neuroendocrine secretory protein 55 (NESP55), glucagon-like peptide 1 (GLP1), arylalkylamine-N-acetyltransferase (AA-NAT), melatonin, and, exclusively for IHC research, protein D52 (TPD52), as well as receptors for glucagon-like peptide-1 (rGLP1) and melatonin (MTNR1b). 41 patients were included in the study, of which 10 patients underwent an extended IHC study. In patients with both aggressive and non-aggressive insulinoma after surgical treatment, CM levels did not change significantly and in individual patients they could both increase and decrease, including those patients with the expression of the corresponding marker in tumor tissue. It was shown that CART was expressed only in the tumor (in 4/10 of cases), while MTNR1b and rGLP1 were expressed in the tumor (in 6/10 and 10/10, respectively) and the islets of Langerhans (in 5/9 and 9/9, respectively). The association of marker expression with the aggressiveness of the course of insulinoma has not been revealed. CONCLUSION The markers CART, MTNR1b and rGLP1 are of primary interest for further study in a larger sample of patients with insulinoma. Other markers (TPD52, XgB, NESP55, melatonin, AA-NAT) have not been shown to be associated with an insulin-producing tumor, therefore they are not promising for future researches. At the same time, it is necessary to continue research aimed at finding new both circulating and IHC markers in order to early diagnose the manifestation of the disease and its recurrence, and more accurately determine the malignant and proliferative potential of the tumor.
Collapse
Affiliation(s)
- М. Ю. Юкина
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. А. Трошина
- Национальный медицинский исследовательский центр эндокринологии
| | - Л. С. Урусова
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. Ф. Нуралиева
- Национальный медицинский исследовательский центр эндокринологии
| | - Л. В. Никанкина
- Национальный медицинский исследовательский центр эндокринологии
| | - В. А. Иоутси
- Национальный медицинский исследовательский центр эндокринологии
| | - О. Ю. Реброва
- Национальный медицинский исследовательский центр эндокринологии;
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
9
|
Friebe L, Freitag MT, Braun M, Nicolas G, Bauman A, Bushnell D, Christ E, Wild D. Peptide Receptor Radionuclide Therapy Is Effective for Clinical Control of Symptomatic Metastatic Insulinoma: A Long-Term Retrospective Analysis. J Nucl Med 2024; 65:228-235. [PMID: 38164592 DOI: 10.2967/jnumed.123.265894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Indexed: 01/03/2024] Open
Abstract
Metastatic insulinoma is a rare malignant neuroendocrine tumor characterized by inappropriate insulin secretion, resulting in life-threatening hypoglycemia, which is often difficult to treat. There is currently very limited information about the efficacy of peptide receptor radionuclide therapy (PRRT) for clinical control of hypoglycemia. The aim of this long-term retrospective study was to evaluate the therapeutic efficacy of PRRT for improving hypoglycemia, to evaluate the change of medication after PRRT, and to calculate progression-free survival (PFS) and overall survival (OS). Methods: Inclusion criteria were histologically proven somatostatin receptor-positive metastatic malignant insulinoma and at least 2 cycles of [90Y]Y-DOTATOC or [177Lu]Lu-DOTATOC therapy from early 2000 to early 2022. A semiquantitative scoring system was used to quantify the severity and frequency of hypoglycemic episodes under background antihypoglycemic therapy (somatostatin analog, diazoxide, everolimus, corticosteroids): score 0, no hypoglycemic episodes; score 1, hypoglycemic events requiring additional conservative treatment with optimization of nutrition; score 2, severe hypoglycemia necessitating hospitalization and combined medication or history of hypoglycemic coma. Hypoglycemic score before and after PRRT was analyzed. Time of benefit was defined as a time range of fewer hypoglycemic episodes in the observation period than at baseline. Information on antihypoglycemic medication before and after therapy, PFS, and OS was recorded. Results: Twenty-six of 32 patients with a total of 106 [90Y]Y-DOTATOC/[177Lu]Lu-DOTATOC cycles were included. The average observation period was 21.5 mo (range, 2.3-107.4 mo). Before therapy, 81% (n = 21) of the patients had a hypoglycemia score of 2 and 19% (n = 5) had a score of 1. After PRRT, 81% of patients (n = 21) had a decreased score, and the remaining 5 patients showed a stable situation. There was temporary worsening of hypoglycemia just after injection of [90Y]Y-DOTATOC/[177Lu]Lu-DOTATOC in 19% of patients. The average time of benefit in the observation period was 17.2 mo (range, 0-70.2 mo). Antihypoglycemic medication reduction was achieved in 58% (n = 15) of patients. The median OS and PFS after the start of PRRT were 19.7 mo (95% CI, 6.5-32.9 mo) and 11.7 mo (95% CI, 4.9-18.5 mo), respectively. Conclusion: To our knowledge, our study included the largest cohort of patients with malignant insulinoma to be evaluated. Long-lasting symptom control and reduction of antihypoglycemic medications were shown in most patients after late-line PRRT.
Collapse
Affiliation(s)
- Liene Friebe
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Martin T Freitag
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Clinic of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Martin Braun
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Guillaume Nicolas
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
| | - Andreas Bauman
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - David Bushnell
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa; and
| | - Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Department of Endocrinology, Diabetology, and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Damian Wild
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland;
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
10
|
Cai J, Zang L, Wu X, Liang Z, Zheng K, Zhao L, Li H. The construction of long-acting exendin-4 analog and its hypoglycemic effect in diabetic mice. Protein Expr Purif 2024; 213:106373. [PMID: 37730142 DOI: 10.1016/j.pep.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Exendin-4 is a glucagon-like polypeptide-1 (GLP-1) analog derived from lizard venom, but its short half-life affects drug administration compliance. An anti-HSA nanobody with a smaller size to guide the peptide coupling to Human Serum Albumin(HSA) in vivo may be a feasible strategy for constructing inexpensive, long-acting exendin-4 analogs. For this purpose, a fusion protein (exendin-4-(G4S)3-sdAbHSA), in which a humanized anti-HSA nanobody to the C-terminal of exendin-4 through the (Gly4Ser)3 flexible joint, was constructed. The target gene was designed according to the preferred codons and cloned into expression vector pET21b of Escherichia coli. The fusion protein could be efficiently expressed as a soluble protein, and purified to a purity over 98% by two steps of chromatography columns. In the streptozotocin-induced mouse diabetes model, the purified product had similar hypoglycemic activity as exendin-4, but dropped to the lowest value from 1 to 2 h to more than 8-10 h. The results show that this construction form does not interfere with the binding of exendin-4 to GLP-1 receptor, and can significantly prolong its half-life in vivo. This study has important reference value for constructing long-acting exendin-4 analogs and establishing efficient and green production process.
Collapse
Affiliation(s)
- Jingmin Cai
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Linquan Zang
- Department of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xueman Wu
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiwen Liang
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ke Zheng
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin Zhao
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huangjin Li
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Ono M. [Radiotheranostics Based on Chemical Control of Radioactivity Pharmacokinetics]. YAKUGAKU ZASSHI 2024; 144:291-297. [PMID: 38432939 DOI: 10.1248/yakushi.23-00168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Recently, radiotheranostics, which systematically combines diagnosis by nuclear medicine imaging and treatment by internal radiotherapy, constitutes a new modality in cancer treatment, with some clinical reports showing marked effects on cancer. We have been developing multifunctional chelates containing a target recognition unit, a radiation release unit, and a radioactivity pharmacokinetics control unit in the same molecule to develop efficient agents for cancer radiotheranostics based on chemical control of radioactivity pharmacokinetics. Using these compounds, we have achieved improved cancer accumulation and reduced renal accumulation in tumor-bearing mice, and have developed novel hybrid radiotheranostic agents that can be applied to simultaneously perform target-specific molecular imaging using γ-ray emitting radionuclides and internal radiotherapy using α-particle-emitting radionuclides. For example, 111In/225Ac-labeled PSMA-DA1, which targets prostate-specific membrane antigen (PSMA) for radiotheranostics, achieved clear in vivo imaging of PSMA in tumor-bearing mice and showed marked tumor growth inhibition. In addition to PSMA, this platform for radiotheranostics has also shown efficacy against various cancer target molecules, including carbonic anhydrase IX (CA-IX), which is highly expressed in hypoxic regions of cancer, and glucagon-like peptide-1 receptor (GLP-1R), which is highly expressed in insulinomas. This review presents these recent results of our studies on radiotheranostics for cancer.
Collapse
Affiliation(s)
- Masahiro Ono
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
12
|
Xie Y, Wang Y, Pei W, Chen Y. Theranostic in GLP-1R molecular imaging: challenges and emerging opportunities. Front Mol Biosci 2023; 10:1210347. [PMID: 37780209 PMCID: PMC10540701 DOI: 10.3389/fmolb.2023.1210347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Theranostic in nuclear medicine combines diagnostic imaging and internal irradiation therapy using different therapeutic nuclear probes for visual diagnosis and precise treatment. GLP-1R is a popular receptor target in endocrine diseases, non-alcoholic steatohepatitis, tumors, and other areas. Likewise, it has also made breakthroughs in the development of molecular imaging. It was recognized that GLP-1R imaging originated from the study of insulinoma and afterwards was expanded in application including islet transplantation, pancreatic β-cell mass measurement, and ATP-dependent potassium channel-related endocrine diseases. Fortunately, GLP-1R molecular imaging has been involved in ischemic cardiomyocytes and neurodegenerative diseases. These signs illustrate the power of GLP-1R molecular imaging in the development of medicine. However, it is still limited to imaging diagnosis research in the current molecular imaging environment. The lack of molecular-targeted therapeutics related report hinders its radiology theranostic. In this article, the current research status, challenges, and emerging opportunities for GLP-1R molecular imaging are discussed in order to open a new path for theranostics and to promote the evolution of molecular medicine.
Collapse
Affiliation(s)
- Yang Xie
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yudi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Wenjie Pei
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Mo S, Wang Y, Wu W, Zhao H, Jiang H, Qin S. Identifying target ion channel-related genes to construct a diagnosis model for insulinoma. Front Genet 2023; 14:1181307. [PMID: 37772258 PMCID: PMC10523017 DOI: 10.3389/fgene.2023.1181307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Insulinoma is the most common functional pancreatic neuroendocrine tumor (PNET) with abnormal insulin hypersecretion. The etiopathogenesis of insulinoma remains indefinable. Based on multiple bioinformatics methods and machine learning algorithms, this study proposed exploring the molecular mechanism from ion channel-related genes to establish a genetic diagnosis model for insulinoma. Methods: The mRNA expression profile dataset of GSE73338 was applied to the analysis, which contains 17 insulinoma samples, 63 nonfunctional PNET (NFPNET) samples, and four normal islet samples. Differently expressed ion channel-related genes (DEICRGs) enrichment analyses were performed. We utilized the protein-protein interaction (PPI) analysis and machine learning of LASSO and support vector machine-recursive feature elimination (SVM-RFE) to identify the target genes. Based on these target genes, a nomogram diagnostic model was constructed and verified by a receiver operating characteristic (ROC) curve. Moreover, immune infiltration analysis, single-gene gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were executed. Finally, a drug-gene interaction network was constructed. Results: We identified 29 DEICRGs, and enrichment analyses indicated they were primarily enriched in ion transport, cellular ion homeostasis, pancreatic secretion, and lysosome. Moreover, the PPI network and machine learning recognized three target genes (MCOLN1, ATP6V0E1, and ATP4A). Based on these target genes, we constructed an efficiently predictable diagnosis model for identifying insulinomas with a nomogram and validated it with the ROC curve (AUC = 0.801, 95% CI 0.674-0.898). Then, single-gene GSEA analysis revealed that these target genes had a significantly positive correlation with insulin secretion and lysosome. In contrast, the TGF-beta signaling pathway was negatively associated with them. Furthermore, statistically significant discrepancies in immune infiltration were revealed. Conclusion: We identified three ion channel-related genes and constructed an efficiently predictable diagnosis model to offer a novel approach for diagnosing insulinoma.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaying Zhao
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haixing Jiang
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanyu Qin
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Trachsel B, Valpreda G, Lutz A, Schibli R, Mu L, Béhé M. Reducing kidney uptake of radiolabelled exendin-4 using variants of the renally cleavable linker MVK. EJNMMI Radiopharm Chem 2023; 8:21. [PMID: 37665477 PMCID: PMC10477158 DOI: 10.1186/s41181-023-00206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Peptidic radiotracers are preferentially excreted through the kidneys, which often results in high persistent renal retention of radioactivity, limiting or even preventing therapeutic clinical translation of these radiotracers. Exendin-4, which targets the glucagon-like-peptide 1 receptor (GLP-1R) overexpressed in insulinomas and in congenital hyperinsulinism, is an example thereof. The use of the tripeptide MVK, which is readily cleaved between methionine and valine by neprilysin at the renal brush border membrane, already showed promising results in reducing kidney uptake as reported in the literature. Based on our previous findings we were interested how linker variants with multiple copies of the MV-motive influence renal washout of radiolabelled exendin-4. RESULTS Three exendin-4 derivatives, carrying either one MVK, a MV-MVK or a MVK-MVK linker were synthesized and compared to a reference compound lacking a cleavable linker. In vivo results of a biodistribution in GLP-1R overexpressing tumour bearing mice at 24 h post-injection demonstrated a significant reduction (at least 57%) of renal retention of all 111In-labeled exendin-4 compounds equipped with a cleavable linker compared to the reference compound. While the insertion of the single linker MVK led to a reduction in kidney uptake of 70%, the dual approach with the linker MV-MVK slightly, but not significantly enhanced this effect, with 77% reduction in kidney uptake compared to the reference. In vitro IC50 and cell uptake studies were conducted and demonstrated that though the cleavable linkers negatively influenced the affinity towards the GLP-1R, cell uptake remained largely unaffected, except for the MV-MVK cleavable linker conjugate, which displayed lower cell uptake than the other compounds. Importantly, the tumour uptake in the biodistribution study was not significantly affected with 2.9, 2.5, 3.2 and 1.5% iA/g for radiolabelled Ex4, MVK-Ex4, MV-MVK-Ex4 and MVK-MVK-Ex4, respectively. CONCLUSION Cleavable linkers are highly efficient in reducing the radioactivity burden in the kidney. Though the dual linker approach using the instillation of MV-MVK or MVK-MVK between exendin-4 and the radiometal chelator did not significantly outperform the single cleavable linker MVK, further structural optimization or the combination of different cleavable linkers could be a stepping stone in reducing radiation-induced nephrotoxicity.
Collapse
Affiliation(s)
- Belinda Trachsel
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giulia Valpreda
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexandra Lutz
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland.
| |
Collapse
|
15
|
Kraihammer M, von Guggenberg E, Hörmann AA, Gabriel M, Decristoforo C. Automated production of [ 68Ga]Ga-DOTA-exendin-4 via fractionated radionuclide generator elution on a cassette based synthesis module. Nucl Med Biol 2023; 124-125:108381. [PMID: 37634398 DOI: 10.1016/j.nucmedbio.2023.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND PET/CT imaging of glucagon-like peptide receptor 1 has recently filled a gap in reliably diagnosing insulinoma through non-invasive means. 68Ga-labelled derivatives of exendin-4 show high sensitivity as well as sufficient serum stability to enable routine clinical application. Here, we provide data for automated production of [68Ga][Nle14,Lys40(Ahx-DOTA-Ga)NH2]exendin-4 ([68Ga]Ga-DOTA-exendin-4) on a cassette based synthesis module (Modular-Lab PharmTracer, Eckert & Ziegler) using commercially available cassettes in combination with an approved 68Ge/68Ga generator (GalliaPharm, Eckert & Ziegler). This setup ensured high reproducibility as well as low radiation burden for the production team. Quality control including determination of radiochemical purity was performed by RP-HPLC using a water/0.1 % TFA/acetonitrile gradient on a C18 column. A modified TLC system with ammonium acetate & methanol as mobile phase and a novel limit test for determination of polysorbate 80 content in the final formulation are also described in this study. MAIN FINDINGS Reliable yields as well as high molar activity for patient use were only achieved using a fractionated elution approach. Batch data showed radiochemical purity of >93 % as determined by RP-HPLC and TLC as well as good stability over 2 h post production. Testing for polysorbate 80 confirmed a concentration <1 mg/mL in the final product solution. Specifications for routine production were established based on existing Pharmacopeia monographs for other radiopharmaceuticals and were validated with 5 master batches. CONCLUSION The described synthesis method enables reproducible, automated in-house production of [68Ga]Ga-DOTA-exendin-4 for routine clinical application.
Collapse
Affiliation(s)
- Martin Kraihammer
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; Department of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, 4021 Linz, Austria
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Michael Gabriel
- Department of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, 4021 Linz, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Sultana Q, Kar J, Verma A, Sanghvi S, Kaka N, Patel N, Sethi Y, Chopra H, Kamal MA, Greig NH. A Comprehensive Review on Neuroendocrine Neoplasms: Presentation, Pathophysiology and Management. J Clin Med 2023; 12:5138. [PMID: 37568540 PMCID: PMC10420169 DOI: 10.3390/jcm12155138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a group of heterogeneous tumors with neuroendocrine differentiation that can arise from any organ. They account for 2% of all malignancies in the United States. A significant proportion of NEN patients experience endocrine imbalances consequent to increased amine or peptide hormone secretion, impacting their quality of life and prognosis. Over the last decade, pathologic categorization, diagnostic techniques and therapeutic choices for NENs-both well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs)-have appreciably evolved. Diagnosis of NEN mostly follows a suspicion from clinical features or incidental imaging findings. Hormonal or non-hormonal biomarkers (like serum serotonin, urine 5-HIAA, gastrin and VIP) and histology of a suspected NEN is, therefore, critical for both confirmation of the diagnosis and classification as an NET or NEC. Therapy for NENs has progressed recently based on a better molecular understanding, including the involvement of mTOR, VEGF and peptide receptor radionuclide therapy (PRRT), which add to the growing evidence supporting the possibility of treatment beyond complete resection. As the incidence of NENs is on the rise in the United States and several other countries, physicians are more likely to see these cases, and their better understanding may support earlier diagnosis and tailoring treatment to the patient. We have compiled clinically significant evidence for NENs, including relevant changes to clinical practice that have greatly updated our diagnostic and therapeutic approach for NEN patients.
Collapse
Affiliation(s)
- Qamar Sultana
- Department of Medicine, Deccan College of Medical Sciences, Hyderabad 500058, India;
- PearResearch, Dehradun 248001, India; (J.K.); (A.V.); (S.S.); (N.K.); (N.P.)
| | - Jill Kar
- PearResearch, Dehradun 248001, India; (J.K.); (A.V.); (S.S.); (N.K.); (N.P.)
- Department of Medicine, Lady Hardinge Medical College, New Delhi 110001, India
| | - Amogh Verma
- PearResearch, Dehradun 248001, India; (J.K.); (A.V.); (S.S.); (N.K.); (N.P.)
- Rama Medical College Hospital and Research Centre, Hapur 245304, India
| | - Shreya Sanghvi
- PearResearch, Dehradun 248001, India; (J.K.); (A.V.); (S.S.); (N.K.); (N.P.)
- Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai 400022, India
| | - Nirja Kaka
- PearResearch, Dehradun 248001, India; (J.K.); (A.V.); (S.S.); (N.K.); (N.P.)
- Department of Medicine, GMERS Medical College, Himmatnagar 390021, India
| | - Neil Patel
- PearResearch, Dehradun 248001, India; (J.K.); (A.V.); (S.S.); (N.K.); (N.P.)
- Department of Medicine, GMERS Medical College, Himmatnagar 390021, India
| | - Yashendra Sethi
- PearResearch, Dehradun 248001, India; (J.K.); (A.V.); (S.S.); (N.K.); (N.P.)
- Government Doon Medical College, HNB Uttarakhand Medical Education University, Dehradun 248001, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India;
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610017, China;
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1216, Bangladesh
- Enzymoics, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
17
|
Chang L, Bi X, Li S, Tong Q, Gu Y, He Z, Li Y, Chen Q, Cui J, Yu H, He Q, Liu M. The comparison of three different molecular imaging methods in localization and grading of insulinoma. Front Endocrinol (Lausanne) 2023; 14:1163176. [PMID: 37455905 PMCID: PMC10348808 DOI: 10.3389/fendo.2023.1163176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Aims This cross-sectional study compared the value of molecular imaging (Exendin-4 positron emission tomography/computed tomography [PET/CT], 68Ga-DOTATATE PET/CT, 18F- fluorodeoxyglucose [FDG] PET/CT) in insulinoma localization by stratified tumor size and grading, and explored the correlation of the related the maximum standardized uptake value (SUVmax) with insulinoma grading, Ki-67, maximum tumor diameter, and glucose metabolism. Methods In 28 insulinoma patients, the sensitivity of three types of PET/CT for localizing insulinoma was calculated according to tumor size and grade. We compared the SUVmax for different insulinoma grades and analyzed the correlation of SUVmax with Ki-67, maximum tumor diameter, and glucose metabolism indicators. Results The study included 12 grade (G) 1 and 16 G2 cases, with maximum tumor diameters ranging from 9 to 40 mm. Without differentiation by size and grade, the sensitivity of Exendin-4 PET/CT to localize insulinoma was 100%, which significantly exceeded that of 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT (75% and 57%, respectively). In tumors with a maximum diameter ≤ 20 mm and ≤ 15 mm, the sensitivity of Exendin-4 (both 100%) significantly exceeded that of 68Ga-DOTATATE PET/CT (74% and 64%, respectively) and 18F-FDG PET/CT (54% and 50%, respectively). In G1 tumors, the sensitivity of Exendin-4 PET/CT was significantly higher than that of 18F-FDG PET/CT, but not that of 68Ga-DOTATATE PET/CT, while in G2 tumors, the sensitivity of Exendin-4 PET/CT was significantly higher than that of both other types. However, all three PET/CT types missed a metastatic lymph node in one patient. The 18F-FDG PET/CT SUVmax was significantly lower than that of the other PET/CT types and that of 68Ga-DOTATATE PET/CT was significantly lower in G2 than in G1. 68Ga-DOTATATE PET/CT SUVmax correlated negatively with Ki-67. A receiver operating characteristic (ROC) curve suggested that 68Ga-DOTATATE PET/CT SUVmax > 19.9 could predict G1 tumors. Conclusion Exendin-4 PET/CT was superior to 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT for insulinoma localization, particularly small and G2 tumors, but its diagnostic value in small metastatic lymph nodes requires further exploration. 68Ga-DOTATATE PET/CT SUVmax could be used as an adjunct to pathology, and a value > 19.9 could predict G1 tumors. No PET/CT SUVmax could predict tumor maximum diameter and glucose metabolism.
Collapse
Affiliation(s)
- Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Bi
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuo Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Tong
- Department of General Internal Medicine, Baodi District People’s Hospital, Tianjin, China
| | - Yian Gu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghao He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yansheng Li
- Department of PET/CT Examination Room, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiusong Chen
- Department of PET/CT Examination Room, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Haonan Yu
- Department of PET/CT Examination Room, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
Lindheimer F, Lindner MJ, Oos R, Honarpisheh M, Zhang Y, Lei Y, Wolf-van Buerck L, Gildehaus FJ, Lindner S, Bartenstein P, Kemter E, Wolf E, Seissler J, Ziegler S. Non-invasive in vivo imaging of porcine islet xenografts in a preclinical model with [ 68Ga]Ga-exendin-4. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1157480. [PMID: 39355020 PMCID: PMC11440980 DOI: 10.3389/fnume.2023.1157480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/07/2023] [Indexed: 10/03/2024]
Abstract
Introduction Islet xenotransplantation may be a therapeutic option in type 1 diabetes. Recent advances in generating genetically modified source pigs offer advantages as immune suppressants can potentially be eliminated after the transplantation. Therapy monitoring would greatly benefit from noninvasive methods for assessing the viability of transplanted islets. Peptide-based positron emission tomography (PET) targeting the glucagon-like peptide-1 receptor (GLP1R) expression on beta cells may offer a procedure that can directly be translated from an experimental setting to the clinic. The aim of this study was to establish the labeling of the GLP1R ligand [68Ga]Ga-exendin-4, to demonstrate the feasibility of imaging porcine islet xenografts in vivo and to compare signal quality for three different transplantation sites in a mouse model. Materials and methods Mice with engrafted neonatal porcine islet cell clusters (NPICCs) under the kidney capsule, into the inguinal fold, or the lower hindlimb muscle were studied. After reaching normoglycemia, the mice were injected with [68Ga]Ga-exendin-4 for PET data acquisition. Subsequent autoradiography (AR) was used for comparing ex vivo data with in vivo uptake. Results NPICCs in the lower right hindlimb muscle could be detected in vivo and in AR. Due to the high background in the kidney and urinary bladder, islets could not be detected in the PET data at transplantation sites close to these organs, while AR showed a clear signal for the islets in the inguinal fold. Discussion PET with [68Ga]Ga-exendin-4 detects islets transplanted in the hindlimb muscle tissue of mice, offering the potential of longitudinal monitoring of viable porcine islets. Other sites are not suitable for in vivo imaging owing to high activity accumulation of Exendin-4 in kidney and bladder.
Collapse
Affiliation(s)
- Felix Lindheimer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Rosel Oos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mohsen Honarpisheh
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Yichen Zhang
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Yutian Lei
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lelia Wolf-van Buerck
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Khalily MP, Soydan M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading? Chem Biol Drug Des 2023; 101:772-793. [PMID: 36366980 DOI: 10.1111/cbdd.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Peptides are increasingly present in all branches of medicine as innovative drugs, imaging agents, theragnostic, and constituent moieties of other sophisticated drugs such as peptide-drug conjugates. Due to new developments in chemical synthesis strategies, computational biology, recombinant technology, and chemical biology, peptide drug development has made a great progress in the last decade. Numerous natural peptides and peptide mimics have been obtained and studied, covering multiple therapeutic areas. Even though peptides have been investigated across the wide therapeutic spectrum, oncology, metabolism, and endocrinology are the most frequent medical indications of them. This review summarizes the current use of and the emerging new opportunities of peptides for diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Melek P Khalily
- Department of Basic Science and Health, Cannabis Research Institute, Yozgat Bozok University, Yozgat, Turkey
| | - Medine Soydan
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
20
|
Collado Camps E, van Lith SAM, Kip A, Frielink C, Joosten L, Brock R, Gotthardt M. Conjugation to a cell-penetrating peptide drives the tumour accumulation of the GLP1R antagonist exendin(9-39). Eur J Nucl Med Mol Imaging 2023; 50:996-1004. [PMID: 36446951 PMCID: PMC9931918 DOI: 10.1007/s00259-022-06041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4. METHODS We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo. RESULTS Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39). CONCLUSION We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.
Collapse
Affiliation(s)
- Estel Collado Camps
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ,Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands ,Present Address: Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 278 Tumor Immunology, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sanne A. M. van Lith
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Annemarie Kip
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands ,Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Martin Gotthardt
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Tokgöz S, Boss M, Prasad S, Shah P, Laverman P, van Riel M, Gotthardt M. Protocol for Clinical GLP-1 Receptor PET/CT Imaging with [ 68Ga]Ga-NODAGA-Exendin-4. Methods Mol Biol 2022; 2592:143-153. [PMID: 36507990 DOI: 10.1007/978-1-0716-2807-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging with radiolabeled exendin enables detection and characterization of glucagon-like peptide 1 receptors (GLP-1Rs) in vivo with high specificity. The novel radiotracer [68Ga]Ga-NODAGA-exendin-4 forms a stable complex after a simple and fast labeling procedure. Beta-cell mass in the islets of Langerhans can be visualized using [68Ga]Ga-NODAGA-exendin-4, which is promising for research into diabetes mellitus (DM) pathophysiology. Furthermore, this radiotracer enables very sensitive detection of insulinomas, resulting from vast overexpression of GLP-1Rs, and seems promising for the detection of focal lesions in congenital hyperinsulinism (CHI). Here, we describe the procedures involved in [68Ga]Ga-NODAGA-exendin-4 positron emission tomography (PET)/computed tomography (CT) imaging including the radiolabeling of the NODAGA-exendin conjugate with 68Ga, quality controls, and PET/CT.
Collapse
Affiliation(s)
- S Tokgöz
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Boss
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S Prasad
- Department of Nuclear Medicine, Radiopharmacy, Berlin Experimental Radionuclide Imaging Center (BERIC), Berlin, Germany
| | - P Shah
- Department of Pediatric Endocrinology, Barts Health NHS Trust (The Royal London Childrens Hospital), London, UK
| | - P Laverman
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M van Riel
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Gotthardt
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Prosperi D, Gentiloni Silveri G, Panzuto F, Faggiano A, Russo VM, Caruso D, Polici M, Lauri C, Filice A, Laghi A, Signore A. Nuclear Medicine and Radiological Imaging of Pancreatic Neuroendocrine Neoplasms: A Multidisciplinary Update. J Clin Med 2022; 11:jcm11226836. [PMID: 36431313 PMCID: PMC9694730 DOI: 10.3390/jcm11226836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are part of a large family of tumors arising from the neuroendocrine system. PanNENs show low-intermediate tumor grade and generally high somatostatin receptor (SSTR) expression. Therefore, panNENs benefit from functional imaging with 68Ga-somatostatin analogues (SSA) for diagnosis, staging, and treatment choice in parallel with morphological imaging. This narrative review aims to present conventional imaging techniques and new perspectives in the management of panNENs, providing the clinicians with useful insight for clinical practice. The 68Ga-SSA PET/CT is the most widely used in panNENs, not only fr diagnosis and staging purpose but also to characterize the biology of the tumor and its responsiveness to SSAs. On the contrary, the 18F-Fluordeoxiglucose (FDG) PET/CT is not employed systematically in all panNEN patients, being generally preferred in G2-G3, to predict aggressiveness and progression rate. The combination of 68Ga-SSA PET/CT and 18F-FDG PET/CT can finally suggest the best therapeutic strategy. Other radiopharmaceuticals are 68Ga-exendin-4 in case of insulinomas and 18F-dopamine (DOPA), which can be helpful in SSTR-negative tumors. New promising but still-under-investigation radiopharmaceuticals include radiolabeled SSTR antagonists and 18F-SSAs. Conventional imaging includes contrast enhanced CT and multiparametric MRI. There are now enriched by radiomics, a new non-invasive imaging approach, very promising to early predict tumor response or progression.
Collapse
Affiliation(s)
- Daniela Prosperi
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Guido Gentiloni Silveri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Francesco Panzuto
- Digestive Disease Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Roma, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Roma, Italy
| | - Vincenzo Marcello Russo
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Michela Polici
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
- Correspondence:
| | - Angelina Filice
- Nucler Medicine Unit, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Laghi
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| |
Collapse
|
23
|
Nakashima K, Iikuni S, Watanabe H, Ono M. Application of the Chelator-Based Clickable Radiotheranostic Platform to Moderate-Molecular-Weight Ligands. ACS Med Chem Lett 2022; 13:1642-1647. [PMID: 36262405 PMCID: PMC9575180 DOI: 10.1021/acsmedchemlett.2c00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
We have reported that the chelator-based clickable radiotheranostic platform, ADIBO-DOTADG-ALB (ADA), has favorable properties as a radiotheranostic platform for low-molecular-weight ligands. In this study, we evaluated the applicability of ADA to moderate-molecular-weight ligands to expand the utility of the ADA platform. As a moderate-molecular-weight ligand, we selected exendin-4, a peptide-based agonist to glucagon-like peptide-1 receptor (GLP-1R). An exendin-4-incorporated ADA derivative, exendin-4-Cys40-triazole-DOTADG-ALB (EtDA), was radiolabeled with 111In by the conjugation of exendin-4-Cys40 azide to [111In]In-ADA. The click ligation of exendin-4-Cys40 azide to [111In]In-ADA was quantitatively completed in 10 min under ambient conditions. In the in vitro cell-binding assay and albumin-binding assay, [111In]In-EtDA showed strong binding to both a GLP-1R-expressing cell and albumin. In the biodistribution assay, [111In]In-EtDA showed markedly protracted tumor uptake, which was significantly decreased by the coinjection of exendin-4-Cys40. The single photon emission computed tomography (SPECT) image of [111In]In-EtDA visualized the tumor clearly. These results indicated the utility of [111In]In-EtDA as a radiotheranostic agent, suggesting the applicability of the ADA platform to moderate-molecular-weight ligands.
Collapse
Affiliation(s)
- Kazuma Nakashima
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Pilszyk A, Niebrzydowska M, Pilszyk Z, Wierzchowska-Opoka M, Kimber-Trojnar Ż. Incretins as a Potential Treatment Option for Gestational Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms231710101. [PMID: 36077491 PMCID: PMC9456218 DOI: 10.3390/ijms231710101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disease affecting an increasing number of pregnant women around the world. It is not only associated with numerous perinatal complications but also has long-term consequences impacting maternal health and fetal development. To prevent them, it is important to keep glucose levels under control. As much as 15-30% of GDM patients will require treatment with insulin, metformin, or glyburide. With that in mind, it is crucial to keep searching for novel and improved pharmacotherapies. Nowadays, there are ongoing studies investigating the use of other groups of drugs that have proven successful in the treatment of T2DM. Glucagon-like peptide-1 (GLP-1) receptor agonist and dipeptidyl peptidase-4 (DPP-4) inhibitor are among the drugs targeting the incretin system and are currently receiving significant attention. The aim of our review is to demonstrate the potential of these medications in treating GDM and preventing its later complications. It seems that both groups may be successful in the GDM management used alone or as an addition to better-known drugs, including metformin and glyburide. However, more clinical trials are needed to confirm their importance in GDM treatment and to demonstrate effective therapeutic strategies.
Collapse
|
25
|
Wang F, Yang Z, Chen X, Peng Y, Jiang H, Qin S. A novel diagnostic model for insulinoma. Discov Oncol 2022; 13:68. [PMID: 35916979 PMCID: PMC9346017 DOI: 10.1007/s12672-022-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
The aim is to describe a simple and feasible model for the diagnosis of insulinoma. This retrospective study enrolled 37 patients with insulinoma and 44 patients with hypoglycemia not due to insulinoma at the First Affiliated Hospital of Guangxi Medical University. General demographic and clinical characteristics; hemoglobin A1c (HbA1c), insulin and C-peptide concentrations; and the results of 2-h oral glucose tolerance tests (OGTT) were recorded, and a logistic regression model predictive of insulinoma was determined. Body mass index (BMI), HbA1c concentration, 0-h C-peptide concentration, and 0-h and 1-h plasma glucose concentrations (P < 0.05 each) were independently associated with insulinoma. A regression prediction model was established through multivariate logistics regression analysis: Logit p = 7.399+(0.310 × BMI) - (1.851 × HbA1c) - (1.467 × 0-h plasma glucose) + (1.963 × 0-h C-peptide) - (0.612 × 1-h plasma glucose). Using this index to draw a receiver operating characteristic (ROC) curve, the area under the curve (AUC) was found to be 0.957. The optimal cut-off value was - 0.17, which had a sensitivity of 89.2% and a specificity of 86.4%. Logit P ≥ - 0.17 can be used as a diagnostic marker for predicting insulinoma in patients with hypoglycemia.
Collapse
Affiliation(s)
- Feng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhe Yang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - XiuBing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yiling Peng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - HaiXing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - ShanYu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
26
|
Iikuni S, Ohara T, Watanabe H, Ono M. Structure-Activity Relationships and Pharmacokinetics of 111In-Labeled Glucagon-like Peptide-1 Receptor-Targeting Exendin-4 Derivatives Conjugated with Albumin Binder Moieties. Mol Pharm 2022; 19:2832-2839. [PMID: 35757958 DOI: 10.1021/acs.molpharmaceut.2c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulinomas are neuroendocrine tumors that are derived from pancreatic β-cells, and they often overexpress the glucagon-like peptide-1 receptor (GLP-1R). Radiolabeled exendin-4 derivatives have been used to noninvasively detect the GLP-1R during the diagnosis and preoperative localization of insulinomas; however, their marked renal accumulation can hinder the imaging of pancreatic tail lesions. In this study, we designed and synthesized 111In-labeled exendin-4 derivatives that possessed 4-(4-substituted phenyl)-moieties as albumin binder (ALB) moieties ([111In]In-E4DA2-4), and studied their structure-activity relationships and pharmacokinetics (as well as those of [111In]In-E4DA1, which we previously reported) to determine their usefulness as radioligands for GLP-1R imaging. 111In-labeling was performed by reacting maleimide precursors with [111In]InCl3 in 2-(N-morpholino)ethanesulfonic acid buffer, and then, the products were conjugated with exendin-4-Cys40. A saturation binding assay using GLP-1R-expressing INS-1 cells was carried out to evaluate the in vitro affinity of the radioligands for the cells. In addition, the affinity of the 111In-labeled derivatives for human serum albumin (HSA) was evaluated in an HSA-binding assay. Furthermore, an in vivo biodistribution study and single-photon emission computed tomography (SPECT) imaging were performed using INS-1 tumor-bearing mice. [111In]In-E4DA1-4 were prepared at radiochemical yields of 6-17%. In the saturation binding assay, [111In]In-E4DA1-4 showed a similar affinity for the INS-1 cells, indicating that the kind of ALB moiety used had no effect on the affinity of the exendin-4 derivatives for the cells. In the HSA-binding assay, [111In]In-E4DA1-4 all bound to HSA. In the biodistribution assay, [111In]In-E4DA1-4 exhibited marked tumor accumulation and retention. In addition, they showed lower renal accumulation than previously reported exendin-4-based radioligands without ALB moieties. The pharmacokinetics of the 111In-labeled exendin-4 derivatives varied markedly according to the kind of ALB moiety used. In particular, [111In]In-E4DA2, which contained a 4-(4-bromophenyl)butyric acid derivative as an ALB moiety, showed the highest tumor accumulation. SPECT imaging with [111In]In-E4DA2 clearly visualized INS-1 tumors with no marked accumulation in normal organs. These results provide important information that will aid the design of novel exendin-4-based radioligands targeting the GLP-1R.
Collapse
Affiliation(s)
- Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takaki Ohara
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Fargette C, Imperiale A, Taïeb D. Molecular imaging of endocrine neoplasms with emphasis on 18F-DOPA PET: a practical approach for well-tailored imaging protocols. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:141-147. [PMID: 35343670 DOI: 10.23736/s1824-4785.22.03450-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
6-[18F]-L-fluoro-L-3, 4-dihydroxyphenylalanine (18F-DOPA) PET/CT can be a useful tool for the detection of different neuroendocrine tumors (NETs). The main determinants of 18F-DOPA uptake and retention by NETs are related to expression of LAT1/LAT2 transporters, expression and activity of AADC and biochemical phenotype, all being intimately inter-connected to their embryological origin. In order to improve sensitivity of 18F-DOPA PET, it is of main importance to perform indivisualized imaging protocols across primaries. This review provides a practical approach for performing well-tailored imaging protocols and describes the clinical value of the recommended radiopharmaceuticals.
Collapse
Affiliation(s)
- Christelle Fargette
- Department of Nuclear Medicine, CERIMED, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Alessio Imperiale
- Department of Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), IPHC, UMR 7178, University Hospitals of Strasbourg, CNRS/University of Strasbourg, Strasbourg, France
| | - David Taïeb
- Department of Nuclear Medicine, CERIMED, La Timone University Hospital, Aix-Marseille University, Marseille, France -
| |
Collapse
|
28
|
Fortunati E, Argalia G, Zanoni L, Fanti S, Ambrosini V. New PET Radiotracers for the Imaging of Neuroendocrine Neoplasms. Curr Treat Options Oncol 2022; 23:703-720. [PMID: 35325412 PMCID: PMC9001579 DOI: 10.1007/s11864-022-00967-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/18/2022]
Abstract
OPINION STATEMENT Neuroendocrine neoplasms (NEN) are a heterogeneous group of tumours derived from cells of neuroendocrine origin and can potentially arise everywhere in the human body. The diagnostic assessment of NEN can be performed using a variety of PET radiopharmaceuticals. Well-differentiated NEN (NET) present a high expression of SSTR (somatostatin receptors) and can therefore be studied with 68Ga-DOTA-peptides ([68Ga]Ga-DOTANOC, [68Ga]Ga-DOTATOC, [68Ga]Ga-DOTATATE). Current guidelines recommend the use of SSTR imaging to assess disease extension at staging/restaging, follow-up, assessment of response to therapy and selection of patients who may benefit from radionuclide therapy (PRRT). [18F]F-FDG is used for the assessment of high-grade tumours (high-grade G2, G3 and NEC) and in every case, there is one or more mismatched lesions between diagnostic CT (positive) and SSTR-PET/CT (negative). [18F]F-DOPA is currently used for the assessment of medullary thyroid carcinoma, neuroblastoma, primary pheochromocytoma and abdominal paraganglioma. In recent years, however, several new tracers were designed exploiting the many potential targets of the neuroendocrine cell and were employed in clinical trials for both imaging and therapy. Currently, the real-life clinical impact of these tracers is still mostly not known; however, the favourable biodistribution (e.g. [68Ga]Ga-FAPI, SSTR antagonists) and the possibility to use new theranostic pairs may provide novel diagnostic as well as therapeutic options (e.g. [68Ga]Ga-PSMA, [64Cu]Cu-SARTATE, [68Ga]Ga-CXCR4) for NEN patients.
Collapse
Affiliation(s)
- Emilia Fortunati
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Giulia Argalia
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Valentina Ambrosini
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
29
|
Sammartano A, Migliari S, Scarlattei M, Baldari G, Serreli G, Lazzara C, Garau L, Ghetti C, Ruffini L. Performance and long-term consistency of five Galliform 68Ge/68Ga generators used for clinical Ga-68 preparations over a 4 year period. Nucl Med Commun 2022; 43:568-576. [PMID: 35190517 DOI: 10.1097/mnm.0000000000001545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gallium-68 is a positron emitter for PET applications that can be produced without cyclotron by a germanium (Ge-68) chloride/gallium (Ga-68) chloride generator. Short half-life (67.71 min) of Ga-68, matching pharmacokinetic properties of small biomolecules, facilitates isotope utilization in compounding radiopharmaceuticals for PET imaging. The increasing cost of good manufacturing practice-compliant generators has strengthened the need for radionuclide efficient use by planning specific radiopharmaceutical sessions during the week, careful maintenance of the generator and achievement of high labeling yield and radiochemical purity (RCP) of the radiolabeled molecules. METHODS The aim of this study was to evaluate the annual performance of five consecutive 68Ge/68Ga generators used for small-scale preparations of 68Ga-radiopharmaceuticals. To assess the long-term efficiency of isotope production we measured the weekly elution yield. To assess process efficiency we measured elution yield, labeling yield and RCP of four radiopharmaceutical preparations (68Ga-DOTATOC, 68Ga-PSMA-HBED-CC, 68Ga-PENTIXAFOR and 68Ga-DOTATATE). RESULTS The annual mean elution yield of the generators was 74.7%, higher than that indicated by the manufacturer, and it never went below 65%. The Ge-68 level in the final products was under the detection limits in all the produced batches (mean value 0.0000048%). The RCP of radiopharmaceuticals determined by high-performance liquid chromatography was 98 ± 0.22%. The mean yield of radiolabelling was 64.68, 68.71, 57 and 63.68% for 68Ga-DOTATOC, 68Ga-PSMA-HBED-CC, 68GaPENTIXAFOR and 68Ga-DOTATATE. CONCLUSION The ability to prepare in the hospital radiopharmacy high-purity and pharmaceutically acceptable 68Ga-radiolabeled probes on a routine basis facilitates patient access to precision imaging for clinical and research aims.
Collapse
Affiliation(s)
| | | | | | | | - Giulio Serreli
- Diagnostic Department, Medical Physics Unit, Azienda Ospedaliero-Universitaria di Parma, Gramsci, Parma, Italy
| | | | | | - Caterina Ghetti
- Diagnostic Department, Medical Physics Unit, Azienda Ospedaliero-Universitaria di Parma, Gramsci, Parma, Italy
| | | |
Collapse
|
30
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Iikuni S, Kamei I, Ohara T, Watanabe H, Ono M. Development of an 111In-Labeled Glucagon-Like Peptide-1 Receptor-Targeting Exendin-4 Derivative that Exhibits Reduced Renal Uptake. Mol Pharm 2022; 19:1019-1027. [PMID: 35138111 DOI: 10.1021/acs.molpharmaceut.2c00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Insulinomas are neuroendocrine tumors that are mainly found in the pancreas. Surgical resection is currently the first-line treatment for insulinomas; thus, it is vital to preoperatively determine their locations. The marked expression of the glucagon-like peptide-1 receptor (GLP-1R) is seen in pancreatic β-cells and almost all insulinomas. Radiolabeled derivatives of exendin-4, a GLP-1R agonist, have been used with nuclear medicine imaging techniques for the in vivo detection of the GLP-1R; however, their marked renal accumulation can hinder the imaging of pancreatic tail lesions. To develop a GLP-1R imaging probe that exhibits reduced renal accumulation, we designed and synthesized a straight-chain GLP-1R-targeting radioligand, [111In]In-E4DA1, which consisted of exendin-4, DOTADG (a chelator), and an (iodophenyl)butyric acid derivative (an albumin binder [ALB]). We performed preclinical evaluations of [111In]In-E4DA1 to investigate its utility as a GLP-1R imaging probe. [111In]In-E4DA1 and [111In]In-E4D (a control compound lacking the ALB moiety) were prepared by reacting the corresponding precursors with [111In]InCl3 in buffer. Cell-binding and human serum albumin (HSA)-binding assays were performed to assess the in vitro affinity of the molecules for INS-1 (GLP-1R-positive) cells and albumin, respectively. A biodistribution assay and single-photon emission computed tomography imaging were carried out using INS-1 tumor-bearing mice. In the cell-binding assay, [111In]In-E4DA1 and [111In]In-E4D exhibited in vitro binding to INS-1 cells. In the HSA-binding assay, [111In]In-E4DA1 bound to HSA, while [111In]In-E4D showed little HSA binding. The in vivo experiments involving INS-1 tumor-bearing mice revealed that the introduction of an ALB moiety into the DOTADG-based exendin-4 derivative markedly increased the molecule's tumor accumulation while decreasing its renal accumulation. In addition, [111In]In-E4DA1 exhibited greater tumor accumulation than renal accumulation, whereas previously reported radiolabeled exendin-4 derivatives demonstrated much higher accumulation in the kidneys than in tumors. These results indicate that [111In]In-E4DA1 may be a useful GLP-1R imaging probe, as it demonstrates only slight renal accumulation.
Collapse
Affiliation(s)
- Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ichiro Kamei
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Takaki Ohara
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
32
|
Deden LN, Booij J, Grandjean J, Homberg JR, Hazebroek EJ, Gotthardt M, Boss M. Brain Imaging of the GLP-1 Receptor in Obesity Using 68Ga-NODAGA-Exendin-4 PET. Brain Sci 2021; 11:brainsci11121647. [PMID: 34942949 PMCID: PMC8699257 DOI: 10.3390/brainsci11121647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Stimulation of glucagon-like peptide-1 (GLP-1) receptors increases the insulin release in the pancreas during high glucose levels, and also stimulates a feeling of satiety. Likewise, synthetic GLP-1 receptor agonists derived from exendin are used successfully in the treatment of type-2 diabetes mellitus and obesity. Interestingly, preclinical and clinical studies further suggest that GLP-1 receptor agonists may decrease motor, behavioral, and cognitive symptoms in (animal models) Parkinson’s disease and Alzheimer’s disease and may slow down neurodegeneration. These observations suggest stimulation of GLP-1 receptors in the brain. The GLP-1 positron emission tomography (PET) tracer 68Ga-NODAGA-exendin-4 has been developed and successfully used for imaging in humans. In an ongoing study on the effects of bariatric surgery on GLP-1 receptor expression, we performed 68Ga-NODAGA-exendin-4 PET in obese subjects. Here we evaluated whether GLP-1 receptor binding could be visualized in the central nervous system in 10 obese subjects (seven woman; body mass index: mean ± SD: 39 ± 4.4 kg/m2) before bariatric surgery. Although we observed clear uptake in the pituitary area (mean SUVmax 4.3 ± 2.3), we found no significant uptake in other parts of the brain. We conclude that 68Ga-NODAGA-exendin-4 PET cannot be used to analyze GLP-1 receptors in the brain of obese subjects.
Collapse
Affiliation(s)
- Laura N. Deden
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Department of Surgery, Vitalys Clinic, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
| | - Jan Booij
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Center for Medical Neuroscience, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Center for Medical Neuroscience, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands;
| | - Eric J. Hazebroek
- Department of Surgery, Vitalys Clinic, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
- Division of Human Nutrition and Health, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Correspondence:
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
| |
Collapse
|
33
|
Ogawa Y, Kimura H, Fujimoto H, Kawashima H, Toyoda K, Mukai E, Yagi Y, Ono M, Inagaki N, Saji H. Development of novel radioiodinated exendin-4 derivatives targeting GLP-1 receptor for detection of β-cell mass. Bioorg Med Chem 2021; 52:116496. [PMID: 34808404 DOI: 10.1016/j.bmc.2021.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
In subjects with type 2 diabetes mellitus (T2DM), pancreatic β-cell mass decreases; however, it is unknown to what extent this decrease contributes to the pathophysiology of T2DM. Therefore, the development of a method for noninvasive detection of β-cell mass is underway. We previously reported that glucagon-like peptide-1 receptor (GLP-1R) is a promising target molecule for β-cell imaging. In this study, we attempted to develop a probe targeting GLP-1R for β-cell imaging using single-photon emission computed tomography (SPECT). For this purpose, we selected exendin-4 as the lead compound and radiolabeled lysine at residue 12 in exendin-4 or additional lysine at the C-terminus using [123I]iodobenzoylation. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Biodistribution study was performed in normal ddY mice. Ex vivo autoradiography was performed in transgenic mice expressing green fluorescent protein under control of the mouse insulin I gene promoter. Additionally, SPECT imaging was performed in normal ddY mice. The affinity of novel synthesized derivatives toward pancreatic β-cells was not affected by iodobenzoylation. The derivatives accumulated in the pancreas after intravenous administration specifically via GLP-1R expressed on the pancreatic β-cells. Extremely high signal-to-noise ratio was observed during evaluation of biodistribution of [123I]IB12-Ex4. SPECT images using normal mice showed that [123I]IB12-Ex4 accumulated in the pancreas with high contrast between the pancreas and background. These results indicate that [123I]IB12-Ex4 for SPECT is useful for clinical applications because of its preferable kinetics in vivo.
Collapse
Affiliation(s)
- Yu Ogawa
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Hiroyuki Fujimoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidekazu Kawashima
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Radioisotope Research Center, Kyoto Pharmaceutical University, 1 Misasagi-shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kentaro Toyoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eri Mukai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yusuke Yagi
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
34
|
Cheung P, Eriksson O. The Current State of Beta-Cell-Mass PET Imaging for Diabetes Research and Therapies. Biomedicines 2021; 9:1824. [PMID: 34944640 PMCID: PMC8698817 DOI: 10.3390/biomedicines9121824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Diabetes is a chronic metabolic disease affecting over 400 million people worldwide and one of the leading causes of death, especially in developing nations. The disease is characterized by chronic hyperglycemia, caused by defects in the insulin secretion or action pathway. Current diagnostic methods measure metabolic byproducts of the disease such as glucose level, glycated hemoglobin (HbA1c), insulin or C-peptide levels, which are indicators of the beta-cell function. However, they inaccurately reflect the disease progression and provide poor longitudinal information. Beta-cell mass has been suggested as an alternative approach to study disease progression in correlation to beta-cell function, as it behaves differently in the diabetes physiopathology. Study of the beta-cell mass, however, requires highly invasive and potentially harmful procedures such as pancreatic biopsies, making diagnosis and monitoring of the disease tedious. Nuclear medical imaging techniques using radiation emitting tracers have been suggested as strong non-invasive tools for beta-cell mass. A highly sensitive and high-resolution technique, such as positron emission tomography, provides an ideal solution for the visualization of beta-cell mass, which is particularly essential for better characterization of a disease such as diabetes, and for estimating treatment effects towards regeneration of the beta-cell mass. Development of novel, validated biomarkers that are aimed at beta-cell mass imaging are thus highly necessary and would contribute to invaluable breakthroughs in the field of diabetes research and therapies. This review aims to describe the various biomarkers and radioactive probes currently available for positron emission tomography imaging of beta-cell mass, as well as highlight the need for precise quantification and visualization of the beta-cell mass for designing new therapy strategies and monitoring changes in the beta-cell mass during the progression of diabetes.
Collapse
Affiliation(s)
- Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden;
| | | |
Collapse
|
35
|
Yang Y, Shi J, Zhu J. Diagnostic performance of noninvasive imaging modalities for localization of insulinoma: A meta-analysis. Eur J Radiol 2021; 145:110016. [PMID: 34763145 DOI: 10.1016/j.ejrad.2021.110016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insulinoma is the most common functional neuroendocrine tumor found only in the pancreas. The early detection of insulinoma is of importance. Studies comparing the performance of noninvasive modalities were limited by sample size and heterogeneity between studies. The aim of this meta-analysis was to evaluate the diagnostic performance of PET/CT, SPECT/CT, CT and MRI for the localization of insulinoma, and to provide evidence for clinical practice. METHODS PubMed, Embase, Cochrane Library, Wanfang Data and China National Knowledge Infrastructure were searched from inception to May 31, 2021. Pooled sensitivity, specificity, positive Likelihood Ratio (+LR) and negative Likelihood Ratio (-LR), diagnostic odds ratio (DOR), and concordance rate were calculated. RESULTS A total of 19 studies including 708 patients of insulinoma reached the inclusion criteria. PET/CT imaging demonstrated a pooled sensitivity of 0.79 (95% CI: 0.54-0.92) and a pooled specificity of 0.84 (95% CI: 0.20-0.99). The pooled sensitivity and specificity of SPECT/CT were 0.77 (95% CI: 0.46-0.93) and 0.45 (95% CI: 0.22-0.70). CT showed an overall sensitivity of 0.54 (95% CI: 0.35-0.72) and specificity of 0.75 (95% CI: 0.54-0.88). The pooled sensitivity and specificity for MRI were 0.54 (95% CI: 0.31-0.75) and 0.65 (95% CI: 0.39-0.84), respectively. The concordance rates of PET, SPECT, CT, and MRI were 78% (95% CI: 66-90%), 74% (95% CI: 52-97%), 56% (95% CI: 41-72%), and 53% (95% CI: 33-73%), respectively. CONCLUSION Results of this study indicate that PET/CT demonstrated superior performance than SPECT/CT, CT and MRI for the localization of insulinoma. GLP-1R based PET/CT manifested better diagnostic performance in comparison with SSTR based PET/CT imaging modality.
Collapse
Affiliation(s)
- Yi Yang
- Department of Nuclear Medicine, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, PR China
| | - Jian Shi
- Department of Radiology, Suzhou Integrative Traditional Chinese and Western Medicine Hospital, Suzhou, Jiangsu Province, PR China
| | - Jianbing Zhu
- Department of Radiology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, PR China.
| |
Collapse
|
36
|
Li L, Zhao R, Hong H, Li G, Zhang Y, Luo Y, Zha Z, Zhu J, Qiao J, Zhu L, Kung HF. 68Ga-labelled-exendin-4: New GLP1R targeting agents for imaging pancreatic β-cell and insulinoma. Nucl Med Biol 2021; 102-103:87-96. [PMID: 34695640 DOI: 10.1016/j.nucmedbio.2021.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor (GLP1R) specifically expressed on the surface of pancreatic β-cells and insulinoma, is a potential biomarker for imaging β-cell mass (BCM). In this study, two new 68Ga-labelled GLP1R targeting agents were prepared and their biological properties for imaging BCM and insulinoma were evaluated. METHODS [68Ga]Ga-HBED-CC-MAL-Cys39-exendin-4 ([68Ga]Ga-4) and its dimer ([68Ga]Ga-5) were synthesized from corresponding precursors. Cell uptake studies were evaluated in INS-1 cells. Biodistribution and microPET studies were performed in male normal Sprague-Dawley rats, diabetic rats and insulinoma xenograft NOD/SCID mice. RESULTS [68Ga]Ga-4 and [68Ga]Ga-5 were efficiently radiolabelled by a simple one-step reaction without purification leading to high radiochemical yields and radiochemical purities (both >95%, decay corrected, n = 6, molar activity 15 GBq/μmol). They both showed excellent stability (~95%) in phosphate-buffered saline, pH 7.4, and in rat serum (~90%) for 2 h. Biodistribution studies and small animal PET/CT imaging showed that [68Ga]Ga-4 displayed specific uptake in rat pancreas and mouse insulinoma, and a reduced uptake in the pancreas of diabetic rat was observed (~62% reduction). Notably, it exhibited a rapid time-to-peak pancreatic uptake (0.96 ± 0.19%ID/g in 15 min) and fast clearance from the kidney (42% clearance in 30 min). Results suggested a favorable in vivo kinetics for human imaging studies. CONCLUSIONS [68Ga]Ga-4 targeting GLP1R of pancreatic β-cells may be a potentially useful PET agent and a suitable candidate for further structural modification studies. This agent has demonstrated several advantages, rapid time-to-peak pancreatic uptake and faster clearance from the kidney, factors may enhance diagnosis of diabetes and insulinoma.
Collapse
Affiliation(s)
- Linlin Li
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruiyue Zhao
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Guangwen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yang Luo
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhihao Zha
- Department of Radiology, University of Pennsylvania, USA
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinping Qiao
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, USA.
| |
Collapse
|
37
|
Refardt J, Hofland J, Kwadwo A, Nicolas GP, Rottenburger C, Fani M, Wild D, Christ E. Theranostics in neuroendocrine tumors: an overview of current approaches and future challenges. Rev Endocr Metab Disord 2021; 22:581-594. [PMID: 32495250 DOI: 10.1007/s11154-020-09552-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of tumors, mainly localized in the gastrointestinal system. What characterizes NENs is the expression of hormone receptors on the tumor cell surface, making them accessible for diagnostic and therapeutic approaches (theranostics) using radiolabelled peptides. Somatostatin receptors subtype-two (SST2) play an important role in NENs since they are overexpressed and homogeneously distributed at the surface of the majority of NENs. Accordingly, targeting SST2 for diagnostic and therapeutic purposes has been established. Current research aims at upregulating its expression by epigenetic treatment or improving its targeting via use of alternative radioligands. In addition, recent data suggest a future role of SST antagonists as a diagnostic tool and a potential therapeutic option. Another promising target is the glucagon-like peptide-1 (GLP-1) receptor. Targeting GLP-1R using exendin-4 (GLP-1 analogue) has a high sensitivity for the localization of the often SST2-negative sporadic insulinomas and insulinomas in the context of multiple endocrine neoplasia type-1. Further options for patients with insufficient expression of SST2 involve metaiodobenzylguanidine (MIBG) and the molecular target C-X-C motif chemokine receptor-4 (CXCR4), which have been evaluated for potential theranostic approach in symptomatic NENs or dedifferentiated tumors. Recently, new targets such as the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the fibroblast activation protein (FAP) have been identified in NENs. Finally, minigastrin - a ligand targeting the cholecystokinin-2 (CCK2) receptors in medullary thyroid carcinoma and foregut neuroendocrine tumors - may improve future management of these diseases with currently limited therapeutic options. This review summarises the current approaches and future challenges of diagnostic and therapeutic evaluations in neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Julie Refardt
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Antwi Kwadwo
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Guillaume P Nicolas
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Christof Rottenburger
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Damian Wild
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland.
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
38
|
Felber VB, Wester HJ. Small peptide-based GLP-1R ligands: an approach to reduce the kidney uptake of radiolabeled GLP-1R-targeting agents? EJNMMI Radiopharm Chem 2021; 6:29. [PMID: 34432147 PMCID: PMC8387526 DOI: 10.1186/s41181-021-00136-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022] Open
Abstract
Aim Elevated kidney uptake in insulinoma patients remains a major limitation of radiometallated exendin-derived ligands of the glucagon-like peptide 1 receptor (GLP-1R). Based on the previously published potent GLP-1R-activating undecapeptide 1, short-chained GLP-1R ligands were developed to investigate whether kidney uptake can be reduced by means of direct 18F-labeling (nuclide-based accelerated renal excretion) or the reduction of the overall ligand charge (ligand-based reduced kidney uptake). Materials & methods GLP-1R ligands were prepared according to optimized standard protocols via solid-phase peptide synthesis (SPPS) or, when not practicable, via fragment coupling in solution. Synthesis of (2‘-Et, 4‘-OMe)4, 4’-L-biphenylalanine ((2′-Et, 4′-OMe)BIP), required for the preparation of 1, was accomplished by Suzuki-Miyaura cross-coupling. In vitro experiments were performed using stably transfected GLP-1R+ HEK293-hGLP-1R cells. Results In contrast to the three reference ligands glucagon-like peptide 1 (GLP-1, IC50 = 23.2 ± 12.2 nM), [Nle14, Tyr(3-I)40]exendin-4 (IC50 = 7.63 ± 2.78 nM) and [Nle14, Tyr40]exendin-4 (IC50 = 9.87 ± 1.82 nM), the investigated GLP-1R-targeting small peptides (9–15 amino acids), including lead peptide 1, exhibited only medium to low affinities (IC50 > 189 nM). Only SiFA-tagged undecapeptide 5 (IC50 = 189 ± 35 nM) revealed a higher affinity than 1 (IC50 = 669 ± 242 nM). Conclusion The investigated small peptides, including lead peptide 1, could not compete with favorable in vitro characteristics of glucagon-like peptide 1 (GLP-1), [Nle14, Tyr(3-I)40]exendin-4 and [Nle14, Tyr40]exendin-4. The auspicious EC50 values of 1 provided by the literature could not be transferred to competitive binding experiments. Therefore, the use of 1 as a basic scaffold for the design of further GLP-1R-targeting radioligands cannot be recommended. Further investigations might include the scaffold of 5, although substantial optimizations concerning affinity and lipophilicity would be required. In sum, GLP-1R-targeting radioligands with reduced kidney uptake could not be obtained in this work, which emphasizes the need for further ligands addressing this particular issue. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00136-x.
Collapse
Affiliation(s)
- Veronika Barbara Felber
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Walther-Meißner-Str. 3, 85748, Garching, Germany.
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Walther-Meißner-Str. 3, 85748, Garching, Germany
| |
Collapse
|
39
|
Shah R, Garg R, Majmundar M, Purandare N, Malhotra G, Patil V, Ramteke-Jadhav S, Lila A, Shah N, Bandgar T. Exendin-4-based imaging in insulinoma localization: Systematic review and meta-analysis. Clin Endocrinol (Oxf) 2021; 95:354-364. [PMID: 33386617 DOI: 10.1111/cen.14406] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND CONTEXT Glucagon-like peptide-1 receptor (GLP-1 R) based imaging has shown higher sensitivity for insulinoma localization as compared to other anatomic/functional imaging. METHODOLOGY We reviewed the published English literature for GLP-1 R targeted imaging in insulinoma in PubMed until August 2020 in accordance with PRISMA guidelines using the MeSH terms "((Exendin-4 PET/CT) OR (Exendin-4 SPECT/CT) OR (GLP-1 R imaging)) AND (Insulinoma)". An individual patient data-metanalysis (IPD-MA) was performed, and performance parameters were calculated for the histopathological diagnosis of insulinoma. MAIN OUTCOME MEASURES True-positive (TP), false-positive (FP), false-negative (FN), true-negative (TN), sensitivity (Sn), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) for insulinoma localization. RESULTS A total of 179 cases (316 lesions) from 16 publications were included for IPD-MA. For insulinoma localization, exendin-4-PET/CT (Sn & PPV: 94%) performed better than exendin-4-SPECT/CT (Sn: 63%, PPV: 94%). The Sn was lower in malignant insulinoma cases whereas the Sp was higher in cases with MEN-1 syndrome. With exendin-4-based imaging, FP uptakes in Brunner's gland, normal pancreas, and other β-cell pathologies and FN results in pancreatic tail lesions and malignancy were seen in a few patients. TN results suggested the correct diagnosis of other endogenous hyperinsulinemic hypoglycaemia (EHH) subtypes. CONCLUSION For insulinoma localization, exendin-4 PET/CT should be preferred over exendin-4 SPECT/CT because of higher sensitivity and specificity. FP uptakes in Brunner's gland, normal pancreas, and other β-cell pathologies and FN results in tail lesions, and malignant insulinomas are limitations. Higher specificity for insulinoma localization is particularly useful in patients with MEN-1 syndrome.
Collapse
Affiliation(s)
- Ravikumar Shah
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, India
| | - Robin Garg
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, India
| | - Monil Majmundar
- Department of Internal Medicine, New York Medical College, Metropolitan Hospital Center, New York, NY, USA
| | - Nilendu Purandare
- Department of Radiodiagnosis and Imaging, Tata Memorial Center, Mumbai, India
| | - Gaurav Malhotra
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre, Annexe, Parel, Mumbai, India
| | - Virendra Patil
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, India
| | - Swati Ramteke-Jadhav
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, India
| | - Anurag Lila
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, India
| | - Nalini Shah
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, India
| | - Tushar Bandgar
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, India
| |
Collapse
|
40
|
Distinctive detection of insulinoma using [ 18F]FB(ePEG12)12-exendin-4 PET/CT. Sci Rep 2021; 11:15014. [PMID: 34294854 PMCID: PMC8298522 DOI: 10.1038/s41598-021-94595-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Specifying the exact localization of insulinoma remains challenging due to the lack of insulinoma-specific imaging methods. Recently, glucagon-like peptide-1 receptor (GLP-1R)-targeted imaging, especially positron emission tomography (PET), has emerged. Although various radiolabeled GLP-1R agonist exendin-4-based probes with chemical modifications for PET imaging have been investigated, an optimal candidate probe and its scanning protocol remain a necessity. Thus, we investigated the utility of a novel exendin-4-based probe conjugated with polyethylene glycol (PEG) for [18F]FB(ePEG12)12-exendin-4 PET imaging for insulinoma detection. We utilized [18F]FB(ePEG12)12-exendin-4 PET/CT to visualize mouse tumor models, which were generated using rat insulinoma cell xenografts. The probe demonstrated high uptake value on the tumor as 37.1 ± 0.4%ID/g, with rapid kidney clearance. Additionally, we used Pdx1-Cre;Trp53R172H;Rbf/f mice, which developed endogenous insulinoma and glucagonoma, since they enabled differential imaging evaluation of our probe in functional pancreatic neuroendocrine neoplasms. In this model, our [18F]FB(ePEG12)12-exendin-4 PET/CT yielded favorable sensitivity and specificity for insulinoma detection. Sensitivity: 30-min post-injection 66.7%, 60-min post-injection 83.3%, combined 100% and specificity: 30-min post-injection 100%, 60-min post-injection 100%, combined 100%, which was corroborated by the results of in vitro time-based analysis of internalized probe accumulation. Accordingly, [18F]FB(ePEG12)12-exendin-4 is a promising PET imaging probe for visualizing insulinoma.
Collapse
|
41
|
Wild D, Antwi K, Fani M, Christ ER. Glucagon-like Peptide-1 Receptor as Emerging Target: Will It Make It to the Clinic? J Nucl Med 2021; 62:44S-50S. [PMID: 34230073 DOI: 10.2967/jnumed.120.246009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an emerging target due to its high expression in benign insulinomas as well as in islet cell hypertrophia/hyperplasia (nesidioblastosis) and pancreatic β-cells. In 2008, occult insulinomas were localized for the first time in men using the metabolically stable radiolabeled glucagon-like peptide-1 (GLP-1) agonist [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 (111In-DTPA-exendin-4). Afterward, several radiopharmaceuticals for GLP-1R PET/CT imaging were synthesized and evaluated, for example, [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]-exendin-4 (68Ga-DOTA-exendin-4), [Cys40(MAL-NOTA-68Ga)NH2]-exendin-4 (68Ga-NOTA-exendin-4), and [Lys40(NODAGA-68Ga)NH2]-exendin-4 (68Ga-NODAGA-exendin-4). Several prospective comparison studies provided evidence that GLP-1R PET/CT is significantly more sensitive than contrast-enhanced MRI (ceMRI), contrast-enhanced CT (ceCT), GLP-1R SPECT/CT, somatostatin receptor PET/CT, and SPECT/CT in the detection of benign insulinomas, and insulinomas in the context of multiple endocrine neoplasia type 1. As a result, the European Neuroendocrine Tumor Society guidelines recommend GLP-1R imaging or selective intraarterial calcium stimulation and venous sampling (ASVS) in patients for whom there is a clinical suspicion of having an insulinoma but who have a negative ceMRI/ceCT or negative endoscopic ultrasound. Furthermore, there is growing evidence that GLP-1R PET/CT can visualize and localize adult nesidioblastosis. This is clinically relevant as the distinction between focal and diffuse nesidioblastosis is critical in directing a therapeutic strategy in these patients. Prospective studies have proven the clinical relevance of GLP-1R imaging as it is often the only imaging modality able to localize the insulinoma or nesidioblastosis. It is therefore likely that this noninvasive imaging modality will replace the invasive localization of insulinomas using ASVS. More experimental indications for GLP-1R imaging include the diagnosis of an insulinoma/nesidioblastosis in patients with postprandial hypoglycemia after bariatric bypass surgery and monitoring β-cells in patients with brittle type 1 diabetes after islet-cell transplantation. We believe that these indications and possibly future indications will bring GLP-1R imaging to the clinic.
Collapse
Affiliation(s)
- Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland;
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
| | - Kwadwo Antwi
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland; and
| | - Emanuel R Christ
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
42
|
Migliari S, Sammartano A, Scarlattei M, Baldari G, Janota B, Bonadonna RC, Ruffini L. Feasibility of a scale-down production of [68Ga]Ga-NODAGA-Exendin-4 in a hospital based radiopharmacy. Curr Radiopharm 2021; 15:63-75. [PMID: 33687908 DOI: 10.2174/1874471014666210309151930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glucagon-like peptide 1 receptor (GLP-1R) is preferentially expressed in β-cells, but it is highly expressed in human insulinomas and gastrinomas. Several GLP-1 receptor-avid radioligands have been developed to image insulin-secreting tumors or to provide a quantitative in vivo biomarker of pancreatic β-cell mass. Exendin-4 is a high affinity ligand of the GLP1-R, which is a candidate for being labeled with a PET isotope and used for imaging purposes. OBJECTIVE Here, we report the development and validation results of a semi manual procedure to label [Lys40,Nle14(Ahx-NODAGA)NH2]exendin-4, with Ga-68. METHODS A 68Ge/68Ga Generator (GalliaPharma®,Eckert and Ziegler) was eluted with 0.1M HCl on an automated synthesis module (Scintomics GRP®). The peptide contained in the kit vial (Radioisotope Center POLATOM) in different amounts (10-20-30 µg) was reconstituted with 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethansulfonic acid (HEPES) solution and 68GaCl3 (400-900 MBq), followed by 10 min incubation at 95°C. The reaction solution was then purified through an Oasis HLB column. The radiopharmaceutical product was tested for quality controls (CQs), in accordance with the European Pharmacopoeia standards. RESULTS The synthesis of 68Ga]Ga-NODAGA-Exendin-4 provided optimal results with 10 µg of peptide, getting the best radiochemical yield (23.53 ± 2.4 %), molar activity (100 GBq/µmol) and radiochemical purity (91.69 %). CONCLUSION The study developed an imaging tool [68Ga]Ga-NODAGA-Exendin-4, avoiding pharmacological effects of exendin-4, for the clinical community.
Collapse
Affiliation(s)
- Silvia Migliari
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| | - Antonino Sammartano
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| | - Maura Scarlattei
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| | - Giorgio Baldari
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| | - Barbara Janota
- National Centre for Nuclear Research Radioisotope Centre POLATOM, Otwock. Poland
| | - Riccardo C Bonadonna
- Division of Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma School of Medicine and University Hospital of Parma, Parma. Italy
| | - Livia Ruffini
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| |
Collapse
|
43
|
Maina T, Thakur M. SPECT Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
44
|
Hall AJ, Haskali MB. Radiolabelled Peptides: Optimal Candidates for Theranostic Application in Oncology. Aust J Chem 2021. [DOI: 10.1071/ch21118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
46
|
Calabrò D, Argalia G, Ambrosini V. Role of PET/CT and Therapy Management of Pancreatic Neuroendocrine Tumors. Diagnostics (Basel) 2020; 10:E1059. [PMID: 33297381 PMCID: PMC7762240 DOI: 10.3390/diagnostics10121059] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are heterogeneous neoplasms with neuroendocrine differentiation that show peculiar clinical and histomorphological features, with variable prognosis. In recent years, advances in knowledge regarding the pathophysiology and heterogeneous clinical presentation, as well as the availability of different diagnostic procedures for panNEN diagnosis and novel therapeutic options for patient clinical management, has led to the recognition of the need for an active multidisciplinary discussion for optimal patient care. Molecular imaging with positron emission tomography/computed tomography (PET/CT) has become indispensable for the management of panNENs. Several PET radiopharmaceuticals can be used to characterize either panNEN receptor expression or metabolism. The aim of this review is to offer an overview of all the currently used radiopharmaceuticals and of the new upcoming tracers for pancreatic neuroendocrine tumors (panNETs), and their clinical impact on therapy management. [68Ga]Ga-DOTA-peptide PET/CT (SSA-PET/CT) has high sensitivity, specificity, and accuracy and is recommended for the staging and restaging of any non-insulinoma well-differentiated panNEN cases to carry out detection of unknown primary tumor sites or early relapse and for evaluation of in vivo somatostatin receptors expression (SRE) to select patient candidates for peptide receptor radiometabolic treatment (PRRT) with 90Y or 177Lu and/or cold analogs. SSA-PET/CT also has a strong impact on clinical management, leading to a change in treatment in approximately a third of the cases. Its role for treatment response assessment is still under debate due to the lack of standardized criteria, even though some semiquantitative parameters seem to be able to predict response. [18F]FDG PET/CT generally shows low sensitivity in small growing and well-differentiated neuroendocrine tumors (NET; G1 and G2), while it is of utmost importance in the evaluation and management of high-grade NENs and also provides important prognostic information. When positive, [18F]FDG PET/CT impacts therapeutical management, indicating the need for a more aggressive treatment regime. Although FDG positivity does not exclude the patient from PRRT, several studies have demonstrated that it is certainly useful to predict response, even in this setting. The role of [18F]FDOPA for the study of panNET is limited by physiological uptake in the pancreas and is therefore not recommended. Moreover, it provides no information on SRE that has crucial clinical management relevance. Early acquisition of the abdomen and premedication with carbidopa may be useful to increase the accuracy, but further studies are needed to clarify its utility. GLP-1R agonists, such as exendin-4, are particularly useful for benign insulinoma detection, but their accuracy decreases in the case of malignant insulinomas. Being a whole-body imaging technique, exendin-PET/CT gives important preoperative information on tumor size and localization, which is fundamental for surgical planning as resection (enucleation of the lesion or partial pancreatic resection) is the only curative treatment. New upcoming tracers are under study, such as promising SSTR antagonists, which show a favorable biodistribution and higher tumor-to-background ratio that increases tumor detection, especially in the liver. [68Ga]pentixafor, an in vivo marker of CXCR4 expression associated with the behavior of more aggressive tumors, seems to only play a limited role in detecting well-differentiated NET since there is an inverse expression of SSTR2 and CXCR4 in G1 to G3 NETs with an elevation in CXCR4 and a decrease in SSTR2 expression with increasing grade. Other tracers, such as [68Ga]Ga-PSMA, [68Ga]Ga-DATA-TOC, [18F]SiTATE, and [18F]AlF-OC, are also under investigation.
Collapse
Affiliation(s)
- Diletta Calabrò
- Department of Nuclear Medicine, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy; (G.A.); (V.A.)
- Department of Nuclear Medicine, DIMES University of Bologna, 40138 Bologna, Italy
| | - Giulia Argalia
- Department of Nuclear Medicine, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy; (G.A.); (V.A.)
- Department of Nuclear Medicine, DIMES University of Bologna, 40138 Bologna, Italy
| | - Valentina Ambrosini
- Department of Nuclear Medicine, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy; (G.A.); (V.A.)
- Department of Nuclear Medicine, DIMES University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
47
|
Yordanova A, Biersack HJ, Ahmadzadehfar H. Advances in Molecular Imaging and Radionuclide Therapy of Neuroendocrine Tumors. J Clin Med 2020; 9:E3679. [PMID: 33207788 PMCID: PMC7697910 DOI: 10.3390/jcm9113679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine neoplasms make up a heterogeneous group of tumors with inter-patient and intra-patient variabilities. Molecular imaging can help to identify and characterize neuroendocrine tumors (NETs). Furthermore, imaging and treatment with novel theranostics agents offers a new, tailored approach to managing NETs. Recent advances in the management of NETs aim to enhance the effectiveness of targeted treatment with either modifications of known substances or the development of new substances with better targeting features. There have been several attempts to increase the detectability of NET lesions via positron emission tomography (PET) imaging and improvements in pretreatment planning using dosimetry. Especially notable is PET imaging with the radionuclide Copper-64. Increasing interest is also being paid to theranostics of grade 3 and purely differentiated NETs, for example, via targeting of the C-X-C motif chemokine receptor 4 (CXCR4). The aim of this review is to summarize the most relevant recent studies, which present promising new agents in molecular imaging and therapy for NETs, novel combination therapies and new applications of existing molecular imaging modalities in nuclear medicine.
Collapse
Affiliation(s)
- Anna Yordanova
- Department of Radiology, St. Marien Hospital Bonn, 53115 Bonn, Germany;
| | | | | |
Collapse
|
48
|
Yang Y, Zhou Y, Wang Y, Wei X, Wu L, Wang T, Ma A. Exendin-4 reverses high glucose-induced endothelial progenitor cell dysfunction via SDF-1β/CXCR7-AMPK/p38-MAPK/IL-6 axis. Acta Diabetol 2020; 57:1315-1326. [PMID: 32556532 DOI: 10.1007/s00592-020-01551-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
AIM Exendin-4, a glucagon-like peptide-1 (GLP-1) analog, has been used for treating diabetes mellitus (DM). However, its effects on improving the dysfunction of high glucose (HG)-induced endothelial progenitor cells (EPCs) remain unclear. The present study explored the effects of Exendin-4 on improving dysfunction of EPCs and the underlying mechanism. METHODS EPCs were isolated from SD rats and identified by flow cytometry. Next, the EPCs were treated by HG and high or low concentration of Exendin-4, and cell viability, migration and tube formation were, respectively, examined by performing MTT assay, wound-healing assay and tube formation assay. Interleukin-6 (IL-6) secretion was measured by enzyme-linked immunosorbent assay (ELISA). The protein expressions of relative stromal-derived growth factor-1β (SDF-1β), C-X-C chemokine receptor type 7 (CXCR7), AMP-activated protein kinase (AMPK), p38 and expressions of CXCR7 and IL-6 in EPCs were measured by Western blot. The cell behaviors of EPCs treated by HG and Exendin-4 with or without silencing of CXCR7 and IL-6 were detected. RESULTS Exendin-4 reversed the inhibitory effects of HG on viability, migration and tube formation of EPCs and on SDF-1β/CXCR7-AMPK pathway in EPCs in a dose-dependent manner. Moreover, Exendin-4 promoted the effects of HG on IL-6 level in EPCs through the promotion of p38-MAPK phosphorylation and reduction of cleaved caspase-3 protein expressions in EPCs. However, silencing of CXCR7 and IL-6 reversed the effects of Exendin-4 on cell behaviors, inactivated SDF-1β/CXCR7-AMPK pathway and increased cleaved caspase-3 expression in EPCs. CONCLUSIONS Exendin-4 could ameliorate HG-induced EPC dysfunction through regulating the production of IL-6 via SDF-1β/CXCR7-AMPK/p38-MAPK axis.
Collapse
Affiliation(s)
- Yong Yang
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, China
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yong Zhou
- Department of Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yiyong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xianglong Wei
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Lihao Wu
- Department of Cardiovascular Medicine, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tingzhong Wang
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, China
- Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aiqun Ma
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, China.
- Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
49
|
Ramírez-Rentería C, Ferreira-Hermosillo A, Marrero-Rodríguez D, Taniguchi-Ponciano K, Melgar-Manzanilla V, Mercado M. An Update on Gastroenteropancreatic Neuroendocrine Neoplasms: From Mysteries to Paradigm Shifts. Arch Med Res 2020; 51:765-776. [PMID: 32654882 DOI: 10.1016/j.arcmed.2020.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Although neuroendocrine neoplasms (NEN) were once thought to be rare and mostly "benign" diseases, they are now being redefined in light of recently discovered molecular information. NENs constitute a spectrum of variably differentiated neoplasms, ranging from well-differentiated tumors with a protracted course over many years to very aggressive neuroendocrine carcinomas. Although the majority of NEN are non-functional lesions, some of these tumors, do produce a hormonal hypersecretion syndrome. Their reappraisal has led scientist to unveil previously unknown oncogenic pathways and connections that resulted in a new category in the International Classification of Diseases (ICD-11) and a revised version of the World Health Organization Classification (WHO 2018). Complex diseases like NEN require a multidisciplinary approach that includes the perspectives of endocrinologists, medical and surgical oncologists, radiation oncologists, imaging specialists and pathologists. There are currently virtually thousands of ongoing trials evaluating the efficacy and safety of several molecular targeted therapies. The purpose of this review was to critically evaluate recent information regarding the pathogenesis, diagnosis and treatment of NEN.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas. Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas. Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Daniel Marrero-Rodríguez
- Unidad de Investigación Médica en Enfermedades Endocrinas. Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas. Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Virgilio Melgar-Manzanilla
- Unidad de Investigación Médica en Enfermedades Endocrinas. Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Moisés Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas. Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
50
|
Jansen TJP, van Lith SAM, Boss M, Brom M, Joosten L, Béhé M, Buitinga M, Gotthardt M. Exendin-4 analogs in insulinoma theranostics. J Labelled Comp Radiopharm 2020; 62:656-672. [PMID: 31070270 PMCID: PMC6771680 DOI: 10.1002/jlcr.3750] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Insulinomas, neuroendocrine tumors arising from pancreatic beta cells, often show overexpression of the glucagon‐like peptide‐1 receptor. Therefore, imaging with glucagon‐like peptide analog exendin‐4 can be used for diagnosis and preoperative localization. This review presents an overview of the development and clinical implementation of exendin‐based tracers for nuclear imaging, and the potential use of exendin‐4 based tracers for optical imaging and therapeutic applications such as peptide receptor radionuclide therapy or targeted photodynamic therapy.
![]()
Collapse
Affiliation(s)
- Tom J P Jansen
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Marti Boss
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Mijke Buitinga
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands.,Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|