1
|
Chi A, Yang B, Dai H, Li X, Mo J, Gao Y, Chen Z, Feng X, Ma M, Li Y, Yang C, Liu J, Liu H, Wang Z, Gao F, Liao Y, Shi X, Deng C, Zhang M. Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice. Nat Commun 2024; 15:2120. [PMID: 38459012 PMCID: PMC10924100 DOI: 10.1038/s41467-024-46190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
As testicular mesenchymal stromal cells, stem Leydig cells (SLCs) show great promise in the treatment of male hypogonadism. The therapeutic functions of mesenchymal stromal cells are largely determined by their reciprocal regulation by immune responses. However, the immunoregulatory properties of SLCs remain unclear. Here, we observe that SLCs transplantation restore male fertility and testosterone production in an ischemia‒reperfusion injury mouse model. SLCs prevent inflammatory cascades through mitochondrial transfer to macrophages. Reactive oxygen species (ROS) released from activated macrophages inducing mitochondrial transfer from SLCs to macrophages in a transient receptor potential cation channel subfamily member 7 (TRPM7)-mediated manner. Notably, knockdown of TRPM7 in transplanted SLCs compromised therapeutic outcomes in both testicular ischemia‒reperfusion and testicular aging mouse models. These findings reveal a new mechanism of SLCs transplantation that may contribute to preserve testis function in male patients with hypogonadism related to immune disorders.
Collapse
Affiliation(s)
- Ani Chi
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Bicheng Yang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Dai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xinyu Li
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahui Mo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihong Chen
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Menghui Ma
- Center of Reproductive Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yanqing Li
- Center of Reproductive Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Chao Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jie Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hanchao Liu
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Feng Gao
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan Liao
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology, Guangzhou, 510640, China.
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518054, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Xing D, Jin Y, Jin B. A narrative review on inflammaging and late-onset hypogonadism. Front Endocrinol (Lausanne) 2024; 15:1291389. [PMID: 38298378 PMCID: PMC10827931 DOI: 10.3389/fendo.2024.1291389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
The increasing life expectancy observed in recent years has resulted in a higher prevalence of late-onset hypogonadism (LOH) in older men. LOH is characterized by the decline in testosterone levels and can have significant impacts on physical and mental health. While the underlying causes of LOH are not fully understood, there is a growing interest in exploring the role of inflammaging in its development. Inflammaging is a concept that describes the chronic, low-grade, systemic inflammation that occurs as a result of aging. This inflammatory state has been implicated in the development of various age-related diseases. Several cellular and molecular mechanisms have been identified as contributors to inflammaging, including immune senescence, cellular senescence, autophagy defects, and mitochondrial dysfunction. Despite the extensive research on inflammaging, its relationship with LOH has not yet been thoroughly reviewed in the literature. To address this gap, we aim to review the latest findings related to inflammaging and its impact on the development of LOH. Additionally, we will explore interventions that target inflammaging as potential treatments for LOH.
Collapse
Affiliation(s)
- Dong Xing
- Medical College of Southeast University, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Zhang W, Xia S, Xiao W, Song Y, Tang L, Cao M, Yang J, Wang S, Li Z, Xu C, Liu J, Zhao S, Yang C, Wang J. A single-cell transcriptomic landscape of mouse testicular aging. J Adv Res 2023; 53:219-234. [PMID: 36528294 PMCID: PMC10658307 DOI: 10.1016/j.jare.2022.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Advanced paternal age of reproduction is an increasing trend, especially in developed countries and areas. This trend results in elevated risks of adverse reproductive outcomes such as reduced fertility rates, increased pregnancy loss, and poor childhood health. Yet, a systematic profiling of aging-associated molecular and cellular alterations in testicular tissue is still missing. OBJECTIVES We aimed to dissect aging-associated molecular characteristics in testes of mice. METHODS Single-cell transcriptomic sequencing and analysis were conducted in testes of young (2 months old) and old mice (24 months old). Immunofluorescences and immunochemistry were used to characterize aging-associated phenotypes and verify single cell sequence results. RESULTS Here, we constructed the first single-cell transcriptomic atlases of testes of young and old mice. In-depth dissection of aging-dependent transcriptional alterations in specific cell types revealed multiple dysregulated biological processes such as increased 'senescence-associated secretory phenotype' and 'inflammation', which were major aging-associated characteristics. Further analysis of aging-related differentially expressed genes uncovered a disrupted balance of undifferentiated and differentiated spermatogonia stem cells in spermatogonia, indicative of a potential role of spermatogonia stem cells in aging-associated subfertility. Importantly, for the first time, our results identified an increased subtype of aging-specific macrophages, which may contribute to a hostile proinflammatory microenvironment during testicular aging. CONCLUSION Taken together, our findings depict the distinct single-cell transcriptional features of the aged mouse testes and provide enormous resources for a comprehensive understanding of the cell-type-specific molecular mechanisms underlying mouse testicular aging, which may shed light on developing novel potential diagnostic biomarkers and therapeutic targets for age-associated male subfertility.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Siyu Xia
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523000, China
| | - Li Tang
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523000, China
| | - Min Cao
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jing Yang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Shuang Wang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Zhijie Li
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Chengchao Xu
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jianqiao Liu
- Key Laboratory for Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Shanchao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, and Nanfang Hospital, Southern Medical University, Guangzhou, 510500, China.
| | - Chuanbin Yang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Jigang Wang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China; Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523000, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Altered transcriptomic and metabolomic profiles of testicular interstitial fluid during aging in mice. Theriogenology 2023; 200:86-95. [PMID: 36773384 DOI: 10.1016/j.theriogenology.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/12/2023] [Accepted: 02/04/2023] [Indexed: 02/07/2023]
Abstract
The testicular interstitial fluid (TIF) that bathes seminiferous tubules and testicular interstitial cells is the main microenvironment of the testis and involved in crosstalk between testicular cells. TIF also provides a new mean to investigate dysfunctional states of testis such as spermatogenic disorder and aging. In this study, we performed integrative omics analysis on the exosomal transcriptomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS) based non-targeted metabolomics in TIF by comparison between 21-month-old and 3-month-old male mice. A total of 1627 genes were identified as aging-related differently expressed genes (DEGs) in mouse TIF exosomes, with 1139 downregulated and 488 upregulated. Functional and pathway analysis revealed that the DEGs were associated with oxidative stress, carbon metabolism, and systemic lupus erythematosus. By comparing the DEGs with the Aging Atlas Database, we screened out key aging-related genes functioning as oxidative stress regulators, and their expression pattern in human testis with age was confirmed by immunohistochemistry results in the Human Protein Atlas database. In addition, the metabolomic analysis identified mild differences between young and old groups with 28 downregulated differently expressed metabolites (DEMs) and 6 upregulated DEMs, in the negative ion mode, including decreased level of several antioxidant metabolites. The KEGG analysis demonstrated that 10 pathways were upregulated, while the pyrimidine metabolism pathway was downregulated in the aged mice TIF. Taken together, this study highlighted the prominent role of oxidative stress that contributed to the aging microenvironment in the TIF, and brought comprehensive transcriptomic and metabolomic perspectives for understanding the mechanism underlying the testicular aging.
Collapse
|
5
|
Matzkin ME, Calandra RS, Rossi SP, Bartke A, Frungieri MB. Hallmarks of Testicular Aging: The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural and/or Pharmacological Compounds to Improve the Physiopathological Status of the Aged Male Gonad. Cells 2021; 10:cells10113114. [PMID: 34831334 PMCID: PMC8619877 DOI: 10.3390/cells10113114] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The evolutionary theory of aging supports a trade-off relationship between reproduction and aging. Aging of the male reproductive system primarily affects the testes, leading to a decrease in the levels of sexual hormones, alterations in sperm quality and production, and a decline in fertility that does not necessarily involve a complete cessation of spermatogenesis. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases that are frequently observed in aged testes. Although the molecular mechanisms are still poorly understood, accumulating evidence points toward pro-inflammatory molecules and reactive oxygen species as primary contributing factors for testicular aging. However, the real impact of aging-related testicular alterations on fertility, reproductive health, and life span is far from being fully revealed. This work discusses the current knowledge on the impact of aging in the testis, particularly of aging-related dysregulated inflammation and oxidative damage on the functioning of its different cell populations. More interestingly, this review covers the potential benefits of anti-aging interventions and therapies using either pharmacological compounds (such as non-selective non-steroidal anti-inflammatory medication) or more natural alternatives (such as various nutraceuticals or even probiotics) that exhibit anti-inflammatory, antioxidant, and anti-apoptotic properties. Some of these are currently being investigated or are already in clinical use to delay or prevent testicular aging.
Collapse
Affiliation(s)
- María Eugenia Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Departamento de Bioquímica Humana, Cátedra I, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
- Correspondence: ; Tel.: +54-114783-2869 (ext. 1209)
| | - Ricardo Saúl Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
| | - Soledad Paola Rossi
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Departamento de Bioquímica Humana, Cátedra I, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Andrzej Bartke
- Geriatrics Research, Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL 62794, USA;
| | - Mónica Beatriz Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Cátedra de Química, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad de Buenos Aires C1405CAE, Argentina
| |
Collapse
|
6
|
Dutta S, Sandhu N, Sengupta P, Alves MG, Henkel R, Agarwal A. Somatic-Immune Cells Crosstalk In-The-Making of Testicular Immune Privilege. Reprod Sci 2021; 29:2707-2718. [PMID: 34580844 DOI: 10.1007/s43032-021-00721-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/22/2021] [Indexed: 11/27/2022]
Abstract
Immunological infertility contributes significantly to the etiology of idiopathic male infertility. Shielding the spermatogenic cells from systemic immune responses is fundamental to secure normal production of spermatozoa. The body's immune system is tuned with the host self-components since the early postnatal period, while sperm first develops during puberty, thus rendering spermatogenic proteins as 'non-self' or 'antigenic.' Development of antibodies to these antigens elicits autoimmune responses affecting sperm motility, functions, and fertility. Therefore, the testes need to establish a specialized immune-privileged microenvironment to protect the allogenic germ cells by orchestration of various testicular cells and resident immune cells. This is achieved through sequestration of antigenic germ cells by blood-testis barrier and actions of various endocrine, paracrine, immune-suppressive, and immunomodulatory mechanisms. The various mechanisms are very complex and need conceptual integration to disclose the exact physiological scenario, and to facilitate detection and management of immunogenic infertility caused by disruption of testicular immune regulation. The present review aims to (a) discuss the components of testicular immune privilege; (b) explain testicular somatic and immune cell interactions in establishing and maintaining the testicular immune micro-environment; and (c) illustrate the integration of multiple mechanisms involved in the control of immune privilege of the testis.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor , Malaysia
| | - Narpal Sandhu
- Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor , Malaysia
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Theale, Berkshire, UK
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
7
|
Frungieri MB, Calandra RS, Bartke A, Matzkin ME. Male and female gonadal ageing: its impact on health span and life span. Mech Ageing Dev 2021; 197:111519. [PMID: 34139215 DOI: 10.1016/j.mad.2021.111519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Ageing is linked to changes in the hypothalamic-pituitary-gonadal axis and a progressive decline in gonadal function. While women become infertile when they enter menopause, fertility decline in ageing men does not necessarily involve a complete cessation of spermatogenesis. Gonadal dysfunction in elderly people is characterized by morphological, endocrine and metabolic alterations affecting the reproductive function and quality of life. With advancing age, sexuality turns into a critical emotional and physical factor actually defining the number of years that ageing people live a healthy life. Gonadal ageing correlates with comorbidities and an increased risk of age-related diseases including diabetes, kidney problems, cardiovascular failures and cancer. This article briefly summarizes the current state of knowledge on ovarian and testicular senescence, explores the experimental models used in the study of gonadal ageing, and describes the local pro-inflammatory, oxidative and apoptotic events and the associated signalling pathways that take place in the gonads while people get older. Overall, literature reports that ageing exacerbates a mutual crosstalk among oxidative stress, apoptosis and the inflammatory response in the gonads leading to detrimental effects on fertility. Data also highlight the clinical implications of novel therapeutic interventions using antioxidant, anti-apoptotic and anti-inflammatory drugs on health span and life span.
Collapse
Affiliation(s)
- Mónica B Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina.
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, IL 62702, USA
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1121ABG, Argentina
| |
Collapse
|
8
|
Microglial heterogeneity in aging and Alzheimer's disease: Is sex relevant? J Pharmacol Sci 2021; 146:169-181. [PMID: 34030799 DOI: 10.1016/j.jphs.2021.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases and their associated cognitive decline are known to be more prevalent during aging. Recent evidence has uncovered the role of microglia, the immunocompetent cells of the brain, in dysfunctions linked to neurodegenerative diseases such as is Alzheimer's disease (AD). Similar to other pathologies, AD is shown to be sex-biased, with females being more at risk compared to males. While the mechanisms driving this prevalence are still unclear, emerging data suggest the sex differences present in microglia throughout life might lead to different responses of these cells in both health and disease. Furthermore, microglial cells have recently been recognized as a deeply heterogeneous population, with multiple subsets and/or phenotypes stemming from diverse parameters such as age, sex or state of health. Therefore, this review discusses microglial heterogeneity during aging in both basal conditions and AD with a focus on existing sex differences in this process.
Collapse
|
9
|
Saif M, Kwanten WJ, Carr JA, Chen IX, Posada JM, Srivastava A, Zhang J, Zheng Y, Pinter M, Chatterjee S, Softic S, Kahn CR, van Leyen K, Bruns OT, Jain RK, Bawendi MG. Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nat Biomed Eng 2020; 4:801-813. [PMID: 32572196 PMCID: PMC8310386 DOI: 10.1038/s41551-020-0569-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Monitoring the progression of non-alcoholic fatty liver disease is hindered by a lack of suitable non-invasive imaging methods. Here, we show that the endogenous pigment lipofuscin displays strong near-infrared and shortwave-infrared fluorescence when excited at 808 nm, enabling label-free imaging of liver injury in mice and the discrimination of pathological processes from normal liver processes with high specificity and sensitivity. We also show that the near-infrared and shortwave-infrared fluorescence of lipofuscin can be used to monitor the progression and regression of liver necroinflammation and fibrosis in mouse models of non-alcoholic fatty liver disease and advanced fibrosis, as well as to detect non-alcoholic steatohepatitis and cirrhosis in biopsied samples of human liver tissue.
Collapse
Affiliation(s)
- Mari Saif
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wilhelmus J Kwanten
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Experimental Medicine and Pediatrics (LEMP)-Gastroenterology and Hepatology, University of Antwerp, Wilrijk, Belgium
| | - Jessica A Carr
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ivy X Chen
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica M Posada
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Juanye Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yi Zheng
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Matthias Pinter
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sampurna Chatterjee
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samir Softic
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Oliver T Bruns
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rakesh K Jain
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Frungieri MB, Calandra RS, Bartke A, Matzkin ME. Ageing and inflammation in the male reproductive tract. Andrologia 2018; 50:e13034. [DOI: 10.1111/and.13034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- M. B. Frungieri
- Instituto de Biología y Medicina Experimental, CONICET; Ciudad de Buenos Aires Argentina
- Cátedra de Química; Ciclo Básico Común; Universidad de Buenos Aires; Ciudad de Buenos Aires Argentina
| | - R. S. Calandra
- Instituto de Biología y Medicina Experimental, CONICET; Ciudad de Buenos Aires Argentina
| | - A. Bartke
- Geriatrics Research; Department of Internal Medicine; School of Medicine; Southern Illinois University; Springfield Illinois USA
| | - M. E. Matzkin
- Instituto de Biología y Medicina Experimental, CONICET; Ciudad de Buenos Aires Argentina
- Departamento de Bioquímica Humana; Facultad de Medicina; Universidad de Buenos Aires; Ciudad de Buenos Aires Argentina
| |
Collapse
|
11
|
Testicular macrophages: Guardians of fertility. Cell Immunol 2018; 330:120-125. [PMID: 29650243 DOI: 10.1016/j.cellimm.2018.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022]
Abstract
Macrophages are innate immune cells present in essentially every organ of the body with dedicated tissue specific functions. We will present in this review the unique properties and functions of macrophage populations residing in the testis, an immune-privileged organ. Testicular macrophages (tMΦ) could be seen as guardians of fertility due to their immunosuppressive functions protecting spermatogenesis from auto immune-attack. They exhibit testis specific functions with essential roles in normal testis homeostasis and fetal testicular development. Recently, two distinct testicular macrophage populations have been characterized based on different localization, morphology, gene expression profiles, developmental origin and postnatal development. We will discuss the importance of these two testicular macrophage populations for organ specific functions such as testosterone production and spermatogenesis, as well as their role in establishing immuno-privilege highlighting the contributions of macrophages to male fertility.
Collapse
|
12
|
Lu L, Zhou Q, Chen Z, Chen L. The significant role of the Golgi apparatus in cardiovascular diseases. J Cell Physiol 2017; 233:2911-2919. [PMID: 28574583 DOI: 10.1002/jcp.26039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
The Golgi apparatus (GA) is a ribbon-like system of stacks which consist of multiple closely apposed flattened cisternae and vesicles usually localized in the juxta-nuclear area. As for the biological functions, the GA plays a major role in protein biosynthesis, post-translational modification, and sorting protein from ER to plasma membrane and other destinations. Structural changes and functional disorder of the GA is associated with various diseases. Moreover, increasing evidence revealed that swelling, poor development, and other morphological alterations of the GA are linked to cardiovascular diseases such as heart failure (HF), arrhythmia, and dilated cardiomyopathy. Furthermore, dysfunction of the GA is also related to cardiovascular diseases since the GA is extremely responsible for transport, glycosylation, biosynthesis, and subcellular distribution of cardiovascular proteins. This review gives a brief overview of the intricate relationship between the GA and cardiovascular diseases. In addition, we provide a further prospective that the GA may provide diagnosis reference for cardiovascular diseases, and changes in the ultrastructure and morphology of the GA such as swelling, poor development, and fragmentation may serve as a reliable index for cardiovascular diseases.
Collapse
Affiliation(s)
- Liqun Lu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Qun Zhou
- College of Pharmacy, Hunan University of Medicine, Huaihua, China
| | - Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| |
Collapse
|
13
|
Yin Y, Liu L, Yang C, Lin C, Veith GM, Wang C, Sutovsky P, Zhou P, Ma L. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis. J Biol Chem 2016; 291:6923-35. [PMID: 26846852 DOI: 10.1074/jbc.m115.699660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
CUL4B ubiquitin ligase belongs to the cullin-RING ubiquitin ligase family. Although sharing many sequence and structural similarities, CUL4B plays distinct roles in spermatogenesis from its homologous protein CUL4A. We previously reported that genetic ablation ofCul4ain mice led to male infertility because of aberrant meiotic progression. In the present study, we generated Cul4bgerm cell-specific conditional knock-out (Cul4b(Vasa)),as well asCul4bglobal knock-out (Cul4b(Sox2)) mouse, to investigate its roles in spermatogenesis. Germ cell-specific deletion of Cul4bled to male infertility, despite normal testicular morphology and comparable numbers of spermatozoa. Notably, significantly impaired sperm mobility caused by reduced mitochondrial activity and glycolysis level were observed in the majority of the mutant spermatozoa, manifested by low, if any, sperm ATP production. Furthermore,Cul4b(Vasa)spermatozoa exhibited defective arrangement of axonemal microtubules and flagella outer dense fibers. Our mass spectrometry analysis identified INSL6 as a novel CUL4B substrate in male germ cells, evidenced by its direct polyubiquination and degradation by CUL4B E3 ligase. Nevertheless,Cul4bglobal knock-out males lost their germ cells in an age-dependent manner, implying failure of maintaining the spermatogonial stem cell niche in somatic cells. Taken together, our results show that CUL4B is indispensable to spermatogenesis, and it functions cell autonomously in male germ cells to ensure spermatozoa motility, whereas it functions non-cell-autonomously in somatic cells to maintain spermatogonial stemness. Thus, CUL4B links two distinct spermatogenetic processes to a single E3 ligase, highlighting the significance of ubiquitin modification during spermatogenesis.
Collapse
Affiliation(s)
- Yan Yin
- From the Division of Dermatology, Department of Medicine and
| | - Liren Liu
- the Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, and
| | - Chenyi Yang
- the Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, and
| | - Congxing Lin
- From the Division of Dermatology, Department of Medicine and
| | | | - Caihong Wang
- the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Peter Sutovsky
- the Division of Animal Sciences and the Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Pengbo Zhou
- the Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, and
| | - Liang Ma
- From the Division of Dermatology, Department of Medicine and
| |
Collapse
|
14
|
Beltrán-Frutos E, Seco-Rovira V, Ferrer C, Madrid JF, Sáez FJ, Canteras M, Pastor LM. Cellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod. Reprod Fertil Dev 2016; 28:838-51. [DOI: 10.1071/rd14117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/09/2014] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an ‘age group’ with three subgroups – young, adult and old animals – and a ‘regressed group’ with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.
Collapse
|
15
|
Chojnacka K, Zarzycka M, Mruk DD. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis. Results Probl Cell Differ 2016; 58:225-251. [PMID: 27300181 DOI: 10.1007/978-3-319-31973-5_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
16
|
Beltrán-Frutos E, Seco-Rovira V, Ferrer C, Martínez-Hernández J, Madrid JF, Sáez FJ, Canteras M, Pastor LM. Changes in Testicular Interstitial Connective Tissue of Hamsters (Mesocricetus auratus) During Ageing and After Exposure to Short Photoperiod. Reprod Domest Anim 2015; 51:47-53. [PMID: 26602183 DOI: 10.1111/rda.12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022]
Abstract
The testicular interstitium of Syrian hamster (Mesocricetus auratus) was studied during ageing and in testicular regression after exposure to a short photoperiod, in relation to the interstitial cells and their connective tissue. This tissue was assessed histochemically using Masson's trichrome technique and the expression of Heat Shock Protein 47 (HSP-47) and collagen IV (α5) was assessed in Leydig cells. Finally, an ultrastructural analysis of some cells of the testicular interstitium was made. Leydig cells were positive for HSP-47 and collagen IV (α5). Ageing did not change the parameters studied while the short photoperiod altered the synthetic activity of Leydig cells. The positivity index of these cells for HSP-47 was significantly higher in the regressed testis, but was lower for collagen IV (α5). During ageing no change were observed. Ultrastructural Leydig cells showed a discontinuous basal lamina that did not change during ageing. The basal lamina was not identified in Leydig cells regressed by exposure to a short photoperiod. In conclusion; the intertubular connective tissue suffers little change with age. By contrast, in the testis regressed after exposure to a short photoperiod the studied parameters related to the intertubular connective tissue were altered. These changes are probably related with the low synthetic activity of regressed Leydig cell.
Collapse
Affiliation(s)
- E Beltrán-Frutos
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - V Seco-Rovira
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - C Ferrer
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - J Martínez-Hernández
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - F J Sáez
- Department of Cell Biology and Histology UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - M Canteras
- Department of Statistic, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - L M Pastor
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| |
Collapse
|
17
|
|
18
|
Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev 2013; 27:2409-26. [PMID: 24240231 PMCID: PMC3841730 DOI: 10.1101/gad.228080.113] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of testes in the mammalian embryo requires the formation and assembly of several cell types that allow these organs to achieve their roles in male reproduction and endocrine regulation. Testis development is unusual in that several cell types such as Sertoli, Leydig, and spermatogonial cells arise from bipotential precursors present in the precursor tissue, the genital ridge. These cell types do not differentiate independently but depend on signals from Sertoli cells that differentiate under the influence of transcription factors SRY and SOX9. While these steps are becoming better understood, the origins and roles of many testicular cell types and structures-including peritubular myoid cells, the tunica albuginea, the arterial and venous blood vasculature, lymphatic vessels, macrophages, and nerve cells-have remained unclear. This review synthesizes current knowledge of how the architecture of the testis unfolds and highlights the questions that remain to be explored, thus providing a roadmap for future studies that may help illuminate the causes of XY disorders of sex development, infertility, and testicular cancers.
Collapse
Affiliation(s)
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
19
|
Gilissen EP, Staneva-Dobrovski L. Distinct types of lipofuscin pigment in the hippocampus and cerebellum of aged cheirogaleid primates. Anat Rec (Hoboken) 2013; 296:1895-906. [PMID: 24124014 DOI: 10.1002/ar.22809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
The formation of autofluorescent lipopigment or lipofuscin is a highly consistent and reliable cytological change that correlates with cellular aging in postmitotic cells. One causal factor of lipofuscinogenesis involves free radical-induced lipid peroxidation. In mammals, dentate gyrus neurons and Purkinje cells are usually affected widely. In this study, we investigated the ultrastructure of lipofuscin deposits in large neurons of the dentate gyrus and in Purkinje cells of aged fat-tailed dwarf lemurs (Cheirogaleus medius Geoffroy, 1812) with electron and confocal microscopy and compared it with previous observations in other species. Cheirogaleid primates such as mouse and dwarf lemurs are archaic primates that provide interesting nonhuman models of aging. Our study revealed region-specific as well as species-specific characteristics of lipofuscin ultrastructure. This suggests differences in cellular metabolism and/or in organelles involved in lipofuscin production in cerebellar Purkinje cells and in hippocampal dentate gyrus neurons.
Collapse
Affiliation(s)
- Emmanuel P Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium; School of Medicine, Laboratory of Histology and Neuropathology, Université libre de Bruxelles, Brussels, Belgium; Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| | | |
Collapse
|
20
|
Creasy D, Bube A, de Rijk E, Kandori H, Kuwahara M, Masson R, Nolte T, Reams R, Regan K, Rehm S, Rogerson P, Whitney K. Proliferative and nonproliferative lesions of the rat and mouse male reproductive system. Toxicol Pathol 2013; 40:40S-121S. [PMID: 22949412 DOI: 10.1177/0192623312454337] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and differential diagnosis for classifying microscopic lesions observed in the male reproductive system of laboratory rats and mice, with color microphotographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available for society members electronically on the Internet (http://goreni.org). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for lesions of the male reproductive system in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Dianne Creasy
- Huntingdon Life Sciences, East Millstone, New Jersey 08875, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stefater JA, Ren S, Lang RA, Duffield JS. Metchnikoff's policemen: macrophages in development, homeostasis and regeneration. Trends Mol Med 2011; 17:743-52. [PMID: 21890411 DOI: 10.1016/j.molmed.2011.07.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 12/27/2022]
Abstract
Over the past decade, modern genetic tools have permitted scientists to study the function of myeloid lineage cells, including macrophages, as never before. Macrophages were first detected more than a century ago as cells that ingested bacteria and other microbes, but it is now known that their functional roles are far more numerous. In this review, we focus on the prevailing functions of macrophages beyond their role in innate immunity. We highlight examples of macrophages acting as regulators of development, tissue homoeostasis, remodeling (the reorganization or renovation of existing tissues) and repair. We also detail how modern genetic tools have facilitated new insights into these mysterious cells.
Collapse
Affiliation(s)
- James A Stefater
- Visual Systems Group, Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
22
|
Chen H, Ge RS, Zirkin BR. Leydig cells: From stem cells to aging. Mol Cell Endocrinol 2009; 306:9-16. [PMID: 19481681 PMCID: PMC2749461 DOI: 10.1016/j.mce.2009.01.023] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 12/27/2022]
Abstract
Leydig cells are the testosterone-producing cells of the testis. The adult Leydig cell population ultimately develops from undifferentiated mesenchymal-like stem cells present in the interstitial compartment of the neonatal testis. Four distinct stages of adult Leydig cell development have been identified and characterized: stem Leydig cells, progenitor Leydig cells, immature Leydig cells and adult Leydig cells. The stem Leydig cells are undifferentiated cells that are capable of indefinite self-renewal, differentiation, and replenishment of the Leydig cell niche. Progenitor Leydig cells are derived from the stem Leydig cells. These spindle-shaped cells are luteinizing hormone (LH) receptor positive, have high mitotic activity, and produce little testosterone but rather testosterone metabolites. The progenitor Leydig cells give rise to immature Leydig cells which are round, contain large amounts of smooth endoplasmic reticulum, and produce some testosterone but also very high levels of testosterone metabolites. A single division of these cells produces adult Leydig cells, which are terminally differentiated cells that produce high levels of testosterone. As men age, serum testosterone levels decline, and this is associated with alterations in body composition, energy level, muscle strength, physical, sexual and cognitive functions, and mood. In the Brown Norway rat, used extensively as a model for male reproductive aging, age-related reductions in serum testosterone result from significant decline in the ability of aged Leydig cells to produce testosterone in response to LH stimulation. This review describes Leydig cell development and aging. Additionally, the molecular mechanisms by which testosterone synthesis declines with aging are discussed.
Collapse
Affiliation(s)
- Haolin Chen
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
23
|
Ovchinnikov DA. Macrophages in the embryo and beyond: Much more than just giant phagocytes. Genesis 2008; 46:447-62. [DOI: 10.1002/dvg.20417] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Tran N, Servos G, Haider SG. Ultrastructure of cell contacts of fetal and adult Leydig cells in the rat: a systematic study from birth to senium. ACTA ACUST UNITED AC 2006; 211:273-82. [PMID: 16450174 DOI: 10.1007/s00429-006-0079-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
Differentiation, development, and function of Leydig cells in the testis are regulated also by macrophages, vascular endothelial cells, and peritubular cells in the testis. The aim of the present study was to investigate the possible morphological substrates for communication between these cells. The cell contacts between adjacent Leydig cells, and between Leydig cells and other interstitial cells were studied electron microscopically in the rat testis of various age groups from birth to senium. Intercellular bridges with continuous cytoplasm were observed between fetal Leydig cells (FLCs) in the early postnatal period. Gap junctions were present in nearly every age group. A structural diversity as well as an increased occurrence of gap junctions with the maturity of the Leydig cells was noted. Coated pits were observed initially on pnd 30. From pnd 50 onwards, macrophages and Leydig cells were attached very closely to each other, when the cell processes of Leydig cells protruded either into the coated pits or into the deep invaginations of macrophages. To conclude, this is the first report on the presence of intercellular bridges between FLCs suggesting a possible functional synchronization of interconnected Leydig cells. The cell contacts observed here are possibly required for a precise communication between the Leydig cells and other interstitial cells.
Collapse
Affiliation(s)
- Nicole Tran
- Institute of Anatomy II, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|