1
|
New Data on Nephron Microanatomy and Ultrastructure of Senegal Bichir (Polypterus senegalus). BIOLOGY 2022; 11:biology11101374. [PMID: 36290280 PMCID: PMC9598534 DOI: 10.3390/biology11101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Transitional forms of animals between Pisces and Amphibia are interesting to study, as they are the first to begin the development of a new environment - terrestrial. Such a transitional form are amphibious fish. The study of the structure of the nephron, the main structure that performs an osmoregulatory function, makes it possible to build evolutionary series that describe the processes of transition from the aquatic environment to the terrestrial one. Bichirs is a monophyletic group that arose in the Devonian and formed a species complex only in the Neogene. They share features with lungfish and amphibians, which formed convergently in the early stages of evolution. Therefore Bichirs are of great interest as a transitional form of animals. This study presents new data on the nephron age of Polypterus senegalus. Two groups of features are described. The first group consists of ancestral traits that have been preserved in the modern population of P. senegalus and are associated with habitat conditions in the aquatic environment. The second group is a complex of characters associated with the adaptation of P. senegalus to air breathing and periodic ground migrations. Abstract This study presents new data on the microanatomy and ultrastructure of Polypterus senegalus nephrons. It was shown that the diameter and ultrastructure of renal corpuscles, a well-developed neck segment, and ultrastructure of two types of epithelial cells of the proximal tubule are ancestral signs of the modern population of P. senegalus associated with habitat conditions in the aquatic environment. The outer diameter of the tubules, the height of the epitheliocytes, the presence of two types of epithelial cells of the intermediate and distal tubules of the corresponding ultrastructure, and a large area of nephrogenic tissue are progressive features of the modern population of P. senegalus, associated with adaptation to air respiration and periodic terrestrial migrations, which were formed at the early stages of evolution of P. senegalus convergently with lungfish and amphibians.
Collapse
|
2
|
Increasing salinity stress decreases the thermal tolerance of amphibian tadpoles in coastal areas of Taiwan. Sci Rep 2022; 12:9014. [PMID: 35637243 PMCID: PMC9151724 DOI: 10.1038/s41598-022-12837-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractGlobal warming is the main cause for the rise of both global temperatures and sea-level, both major variables threatening biodiversity. Rising temperatures threaten to breach the thermal limits of organisms while rising sea-level threatens the osmotic balance of coastal animals through habitat salinization. However, variations in thermal tolerance under different salinity stresses have not yet been thoroughly studied. In this study, we assessed the critical thermal maxima (CTmax) of amphibian tadpoles in different salinity conditions. We collected tadpoles of Duttaphrynus melanostictus, Fejervarya limnocharis and Microhyla fissipes from coastal areas and housed them in freshwater, low, and high salinity treatments for 7 days of acclimation. The CTmax, survival rate, and development rate of tadpoles in high salinity treatments were significantly lower than that of the two other treatments. Our results indicate that physiological performances and heat tolerances of tadpoles are negatively affected by salinization. Maximum entropy models showed that CTmax and sea-level rise are predicted to negatively affect the distribution of the three focal species. The present results suggest that global warming can lead to negative dual-impacts on coastal animals because of reduced thermal tolerances at elevated salinity. The impacts of global warming on anurans in coastal areas and other habitats impacted by salinization may be more severe than predicted and it is likely to cause similar dual-impacts on other ectotherms.
Collapse
|
3
|
Jin WT, Guan JY, Dai XY, Wu GJ, Zhang LP, Storey KB, Zhang JY, Zheng RQ, Yu DN. Mitochondrial gene expression in different organs of Hoplobatrachus rugulosus from China and Thailand under low-temperature stress. BMC ZOOL 2022; 7:24. [PMID: 37170336 PMCID: PMC10127437 DOI: 10.1186/s40850-022-00128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hoplobatrachus rugulosus (Anura: Dicroglossidae) is distributed in China and Thailand and the former can survive substantially lower temperatures than the latter. The mitochondrial genomes of the two subspecies also differ: Chinese tiger frogs (CT frogs) display two identical ND5 genes whereas Thai tiger frogs (TT frogs) have two different ND5 genes. Metabolism of ectotherms is very sensitive to temperature change and different organs have different demands on energy metabolism at low temperatures. Therefore, we conducted studies to understand: (1) the differences in mitochondrial gene expression of tiger frogs from China (CT frogs) versus Thailand (TT frogs); (2) the differences in mitochondrial gene expression of tiger frogs (CT and TT frogs) under short term 24 h hypothermia exposure at 25 °C and 8 °C; (3) the differences in mitochondrial gene expression in three organs (brain, liver and kidney) of CT and TT frogs.
Results
Utilizing RT-qPCR and comparing control groups at 25 °C with low temperature groups at 8 °C, we came to the following results. (1) At the same temperature, mitochondrial gene expression was significantly different in two subspecies. The transcript levels of two identical ND5 of CT frogs were observed to decrease significantly at low temperatures (P < 0.05) whereas the two different copies of ND5 in TT frogs were not. (2) Under low temperature stress, most of the genes in the brain, liver and kidney were down-regulated (except for COI and ATP6 measured in brain and COI measured in liver of CT frogs). (3) For both CT and TT frogs, the changes in overall pattern of mitochondrial gene expression in different organs under low temperature and normal temperature was brain > liver > kidney.
Conclusions
We mainly drew the following conclusions: (1) The differences in the structure and expression of the ND5 gene between CT and TT frogs could result in the different tolerances to low temperature stress. (2) At low temperatures, the transcript levels of most of mitochondrial protein-encoding genes were down-regulated, which could have a significant effect in reducing metabolic rate and supporting long term survival at low temperatures. (3) The expression pattern of mitochondrial genes in different organs was related to mitochondrial activity and mtDNA replication in different organs.
Collapse
|
4
|
Molecular determinants of protein reabsorption in the amphibian kidneys. Acta Histochem 2021; 123:151760. [PMID: 34303296 DOI: 10.1016/j.acthis.2021.151760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022]
Abstract
Participation of molecular determinants of endocytosis in the processes of glomerular filtration and tubular reabsorption of albumin and lysozyme in the mesonephros of grass frogs (Rana temporaria L.), lake frogs (Rana ridibunda P.), and newts (Triturus vulgaris L.) is investigated. In all studied species, the constitutive expression of endocytic receptors in proximal tubule (PT) cells is established using immunofluorescence microscopy and immunoblotting. The certain stages of lysozyme and albumin endocytosis involving megalin/LRP2, cubilin, clathrin and protein Rab11 are detailed, and the central role of ligand-induced megalin/LRP2 activity in this process is shown. Increased ligand-induced expression for clathrin and Rab11was also found. In grass frogs, the different patterns of endocytic receptors and both absorbed proteins in the initial parts of proximal tubules suggest the proximo-distal specialization of absorptive processes along these tubule segments, similar to this in more complex mammalian nephrons. This data, as well as the revealed peculiarities of ligand-receptor interactions during intracellular trafficking of proteins prove that megalin is mainly involved in the absorption of lysozyme. At the same time, albumin absorption is mediated by both receptors, or cubilin contributes the most. The detection of endocytic receptor in glomerular structural elements in frogs and newts suggests the participation of filtration barrier components in endocytosis of filterable proteins. The results represent a new contribution to the study of the fundamental mechanisms of renal protein uptake in the amphibian mesonephros as a more primitive kidney compared to mammalian metanephros.
Collapse
|
5
|
Lametschwandtner A, Minnich B. Renal microvasculature in the adult pipid frog, Xenopus laevis: A scanning electron microscope study of vascular corrosion casts. J Morphol 2020; 281:725-736. [PMID: 32374496 PMCID: PMC7383921 DOI: 10.1002/jmor.21132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
We studied the opisthonephric (mesonephric) kidneys of adult male and female Xenopus laevis using scanning electron microscopy (SEM) of vascular corrosion casts and light microscopy of paraplast embedded tissue sections. Both techniques displayed glomeruli from ventral to mid-dorsal regions of the kidneys with single glomeruli located dorsally close beneath the renal capsule. Glomeruli in general were fed by a single afferent arteriole and drained via a single thinner efferent arteriole into peritubular vessels. Light microscopy and SEM of vascular corrosion casts revealed sphincters at the origins of afferent arterioles, which arose closely, spaced from their parent renal arteries. The second source of renal blood supply via renal portal veins varied interindividually in branching patterns with vessels showing up to five branching orders before they became peritubular vessels. Main trunks and their first- and second-order branches revealed clear longish endothelial cell nuclei imprint patterns oriented parallel to the vessels longitudinal axis, a pattern characteristic for arteries. Peritubular vessels had irregular contours and were never seen as clear cylindrical structures. They ran rather parallel, anastomosed with neighbors and changed into renal venules and veins, which finally emptied into the ventrally located posterior caval vein. A third source of blood supply of the peritubular vessels by straight terminal portions of renal arteries (vasa recta) was not found.
Collapse
Affiliation(s)
- Alois Lametschwandtner
- Department of BiosciencesUniversity of Salzburg, Vascular and Exercise Biology Research GroupSalzburgAustria
| | - Bernd Minnich
- Department of BiosciencesUniversity of Salzburg, Vascular and Exercise Biology Research GroupSalzburgAustria
| |
Collapse
|
6
|
Abstract
Amphibians are a remarkably diverse group of vertebrates with lifestyles ranging from fully aquatic to entirely terrestrial. Although some aspects of renal anatomy and physiology are similar among all amphibians, species differences in nitrogenous waste production and broad normal variation in plasma osmolality and composition make definitive antemortem diagnosis of renal disease challenging. Treatment is often empirical and aimed at addressing possible underlying infection, reducing abnormal fluid accumulation, and optimizing husbandry practices to support metabolic and fluid homeostasis. This article reviews amphibian renal anatomy and physiology, provides recommendations for diagnostic and therapeutic options, and discusses etiologies of renal disease.
Collapse
|
7
|
Seliverstova EV, Prutskova NP. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria. Eur J Histochem 2015; 59:2482. [PMID: 26150156 PMCID: PMC4503969 DOI: 10.4081/ejh.2015.2482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/23/2022] Open
Abstract
The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endo-somes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intra-cellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.
Collapse
Affiliation(s)
- E V Seliverstova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences.
| | | |
Collapse
|
8
|
Jarial MS, Gattone VH, Wilkins JH. Ultrastructural Study of the Kidney in the CoelacanthLatimeria chalumnae(Rhipidistia: Coelacanthini). Zoolog Sci 2014; 31:283-91. [DOI: 10.2108/zs130192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Prutskova NP. Renal filtration and reabsorption of GFP in Rana temporaria: Effect of arginine-vasotocin. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
|
12
|
Uchiyama M, Kumano T, Konno N, Yoshizawa H, Matsuda K. Ontogeny of ENaC expression in the gills and the kidneys of the Japanese black salamander (Hynobius nigrescens Stejneger). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:135-45. [DOI: 10.1002/jez.b.21384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/22/2010] [Accepted: 10/12/2010] [Indexed: 11/07/2022]
|
13
|
Jarial MS, Wilkins JH. Structure of the kidney in the coelacanth Latimeria chalumnae with reference to osmoregulation. JOURNAL OF FISH BIOLOGY 2010; 76:655-668. [PMID: 20666903 DOI: 10.1111/j.1095-8649.2009.02522.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The morphology of the nephrons of the coelacanth Latimeria chalumnae was investigated by light microscopy. Each nephron is composed of a large renal corpuscle with well-vascularized glomerulus, non-ciliated neck segment, proximal convoluted tubule divided into distinct first and second segments, non-ciliated intermediate segment, distal tubule, collecting tubule and collecting duct. The parietal layer of the Bowman's capsule of the renal corpuscle is composed of low cuboidal cells. The short non-ciliated neck segment is lined by cuboidal epithelium. The first and second proximal segments display a prominent brush border and contain amorphous material in their lumen. The second proximal segment differs from the first segment in having taller columnar epithelium and a relatively narrow lumen. The intermediate segment is lined by non-ciliated columnar epithelium and its lumen appears empty. The distal tubule is narrow in diameter and its cuboidal epithelium is devoid of intercalated cells. A unique feature of L. chalumnae is having binucleate cells in the tubule and collecting duct epithelium. The renal arteries have poorly developed tunica media and its cells contain granular material. The structure of L. chalumnae nephrons correlates well with their osmoregulatory function and resembles those of euryhaline teleosts.
Collapse
Affiliation(s)
- M S Jarial
- Center for Medical Education, Ball State University, Muncie, IN 47306, USA
| | | |
Collapse
|
14
|
Kumano T, Konno N, Wakasugi T, Matsuda K, Yoshizawa H, Uchiyama M. Cellular localization of a putative Na+/H+ exchanger 3 during ontogeny in the pronephros and mesonephros of the Japanese black salamander (Hynobius nigrescens Stejneger). Cell Tissue Res 2007; 331:675-85. [DOI: 10.1007/s00441-007-0544-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 10/24/2007] [Indexed: 11/28/2022]
|
15
|
The atrial natriuretic peptide (ANP) system in the pronephros and mesonephros of Bufo bufo larvae. Open Life Sci 2007. [DOI: 10.2478/s11535-007-0023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn this study on the excretory apparatus of the Bufo bufo larvae, the ultrastructural features and the atrial natriuretic peptide (ANP)-system were examined using cytochemical and immunocytochemical methods. The early embryonic kidney, the pronephros, is replaced by a later stage, the mesonephros. The pronephros degenerates at the time of metamorphosis and the mesonephros becomes the functional kidney in the adult. Both these organs are targets for ANP, demonstrated by the presence of the specific receptors, indirectly highlighted by the cytochemical localization of the guanylate cyclase in the presence of exogenous atrial natriuretic peptide. This study concluded that the mesonephros produces ANP and thus clusters of cells containing ANP-like granules, positive to the anti-α ANP immunolocalization, were present along the mesonephric proximal tubule. The atrial natriuretic peptide system carries out an important osmoregulatory role in the excretory apparatus.
Collapse
|
16
|
Konno N, Hyodo S, Yamada T, Matsuda K, Uchiyama M. Immunolocalization and mRNA expression of the epithelial Na+ channel alpha-subunit in the kidney and urinary bladder of the marine toad, Bufo marinus, under hyperosmotic conditions. Cell Tissue Res 2007; 328:583-94. [PMID: 17333031 DOI: 10.1007/s00441-007-0383-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) has previously been shown to be involved in the maintenance of body fluid volume and in Na(+) absorption across the skin and urinary bladder in amphibians. However, the function and distribution of ENaC have not been clearly described in amphibian kidney. We therefore cloned the ENaC alpha-subunit cDNA from kidney of the marine toad, Bufo marinus. The ENaC mRNA and protein were abundantly expressed in the kidney and in the urinary bladder and ventral pelvic skin. In an immunohistochemical study, the ENaC alpha-subunit protein was specifically localized to the apical membrane of the principal cells but not the intercalated cells from the late distal tubule to the collecting duct in the kidney or in the apical area of cells of urinary bladder epithelia. When toads were acclimated to dry and hyper-saline environments, the levels of ENaC mRNA expression in the kidney and urinary bladder decreased under hyper-saline acclimation, but not under dry conditions. Immunohistochemical observations indicated that the levels of ENaC protein expression were much lower in the apical area of renal distal tubules and urinary bladder epithelia of hyper-saline acclimated toad compared with controls. The present study suggests that Bufo ENaC is significantly expressed and functions during Na(+) reabsorption in the apical membrane domain in the distal nephron of normal and desiccated toads. Natriuresis may be caused by decreases in ENaC expression and its trafficking to the cell surface in the distal nephron, a response to prevent excessive Na(+) reabsorption in hyper-saline-acclimated toads.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | | | | | | | | |
Collapse
|
17
|
Uchiyama M, Konno N. Hormonal regulation of ion and water transport in anuran amphibians. Gen Comp Endocrinol 2006; 147:54-61. [PMID: 16472810 DOI: 10.1016/j.ygcen.2005.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 12/18/2005] [Accepted: 12/29/2005] [Indexed: 10/25/2022]
Abstract
Amphibians occupy a wide variety of ecological habitats, and their adaptation is made possible through the specialization of the epithelia of their osmoregulatory organs, such as the skin, kidney, and urinary bladder, which control the hydromineral and acid-base balance of their internal medium. Amphibians can change drastically plasma Na+, Cl-, and urea levels and excretion rates in response to environmental stimuli such as acute desiccation and changes in external salinity. Several hormones and the autonomic nervous system act to control osmoregulation. Several ion channels including an epithelial sodium channel (ENaC), a urea transporter (UT), and water channels (AQPs) are found in epithelial tissues of their osmoregulatory organs. This mini review examines the currents status of our knowledge about hormone receptors for arginine vasotocin, angiotensin II and aldosterone, and membrane ion channels and transporters, such as ENaC, UT, and AQPs in amphibians.
Collapse
Affiliation(s)
- Minoru Uchiyama
- Department of Biology, Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | | |
Collapse
|
18
|
Ojeda JL, Icardo JM, Wong WP, Ip YK. Microanatomy and ultrastructure of the kidney of the African lungfishProtopterus dolloi. ACTA ACUST UNITED AC 2006; 288:609-25. [PMID: 16703593 DOI: 10.1002/ar.a.20333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Dipnoi (lungfishes) have developed true lungs, having the ability to take oxygen from both the gills and the lungs. During the tropical dry season, many lungfish estivate on land, breathing only air. The estivation period is accompanied by profound functional modifications, including the suppression of urine. Thus, the lungfish kidney must be designed to cope with these dramatic cyclic changes in renal function. We study here the microanatomy and the structure of the kidney of the African lungfish Protopterus dolloi, maintained under controlled freshwater conditions. Chemical microdissection, light microscopy, and scanning and transmission electron microscopy have been used. The nephrons of P. dolloi are composed of a renal corpuscle (RC) and of a renal tubule that appears divided into five morphologically distinct segments: neck segment (NS), proximal tubule (PT), intermediate segment (IS), distal tubule (DT), and collecting tubule (CT). Paired CTs abut into a collecting duct, the latter emptying into an archinephric duct. The RCs lie in the mid-zone of the kidney, between the PTs and the convoluted DTs. The spatial distribution of these elements allows recognition of a kidney zonation. The RCs group into clusters (3-4 RCs per cluster) that are supplied by a single arteriole surrounded by pericytes. Each cluster appears to represent a functional unit with a common hemodynamic regulatory mechanism. The major processes of the podocytes form flattened networks that appear to constitute an integrated system due to the presence of gap junctions. The existence of mesangial cells with large cell processes, and of mesangial cells with a dendritic appearance, suggests a complex functional role (contractile and phagocytic) for the mesangium. The NS and the IS are the narrowest nephron segments, formed only by multiciliated cells. The PT and the DT can be subdivided, based on the tubular morphology and on cell composition, into portions I and II: PTI is formed only by brush border (BB) cells, while PTII contains BB and multiciliated cells. The DTI is formed by segment-specific cells, while the DTII contains segment-specific and a small number of flask cells. The CT contains principal and flask cells in a 5:1 ratio. The flask cells adopt two different configurations (with a narrow canaliculus or with a large cavity). The main goal of this study was to disclose specific kidney features that could be related to function, phylogeny, and habitat. In addition, the present results constitute the basis for a study of the morphologic changes that should occur in the kidney of P. dolloi during estivation.
Collapse
Affiliation(s)
- José L Ojeda
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain.
| | | | | | | |
Collapse
|
19
|
Møbjerg N, Jespersen A, Wilkinson M. Morphology of the kidney in the West African caecilian,Geotrypetes seraphini(Amphibia, Gymnophiona, Caeciliidae). J Morphol 2004; 262:583-607. [PMID: 15376276 DOI: 10.1002/jmor.10244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study deals with the morphology and ultrastructure of the mesonephros in adult caecilians of the species Geotrypetes seraphini. Based on serial sections in paraffin and araldite, nephrons are reconstructed and the cellular characteristics of different nephron segments described. The long and slender mesonephric kidneys of G. seraphini are broadest caudally and taper toward the front, where the organs are divided into smaller segmental divisions. Two nephron types can be distinguished on the basis of their connections to the coelom and their position within the nephric tissue: ventral nephrons connect to the coelom via a ciliated peritoneal funnel, whereas medial nephrons lack this connection. Both nephron types are composed of a filtration unit, the Malpighian corpuscle, and a renal tubule, which can be divided into six morphologically distinct segments: neck segment, proximal tubule, intermediate segment, early distal tubule, late distal tubule, and collecting tubule. Collecting tubules merge and form a branch system that opens into collecting ducts. Collecting ducts empty into the Wolffian duct. Proximal tubules of nephrons in the frontal divisions are morphologically different from the proximal tubules of more caudal kidney regions. Distal tubule subdivision is only clearly recognizable at the electron microscopic level. The length of each nephron segment is calculated from a ventral nephron with a total length of approximately 3.8 mm, and the course of the segments within the nephric tissue is reported. The number of nephrons was estimated at 1,700 units in each kidney. The segmentation and ultrastructure of the mesonephric nephrons in G. seraphini are discussed in relation to nephron descriptions from other caecilians and we further discuss the evolutionary origin of the amphibian nephron.
Collapse
Affiliation(s)
- N Møbjerg
- Department of Zoomorphology, Biological Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
20
|
Uchiyama M, Kamijyo M, Matsuda K, Yoshizawa H. [Terrestrial adaptation and diversity of the kidney functions in the evolution of vertebrates, Amphibia]. UCHU SEIBUTSU KAGAKU 2000; 14:22-31. [PMID: 11543150 DOI: 10.2187/bss.14.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The Amphibia bridge the phyletic gap between the aquatic fishes and the terrestrial vertebrates. This transition has involved many interesting changes of metabolisms. In this short review, we have attempted to summarize the kidney structure and functions on the osmoregulations in the Amphibia. Amphibians excrete the water absorbed through their skin as a dilute urine. Pronephros of tadpoles may start to work in the hatching stages and metanephros is well developed and functions. Glomerular filtration rate is relatively large and glomerular intermittency is important to regulate urine production. The proximal tubule reabsorbs approximately 20-45% of filtered water and sodium. Absorption is driven by the basolateral Na+, K(+)-ATPase common to all tubular cells. The diluting segment, early parts of distal nephron, highly develops basolateral interdigitation and reabsorbs approximately 40% of filtered Na+, K+, and Cl-, but is impermeable to water, thus this part results in the formation of hypo-osmotic tubular fluid. In the late distal tubule, the primary mechanism of reabsorption may be via a luminal NaCl synporter, driven by the ubiquitous Na+, K(+)-ATPase on basolateral membrane. In collecting tubule, there are two types of cells, the principal cells and the intercalated cells. Many hormonal and nervous regulations are involved in the glomerular filtration rate and reabsorptions in the amphibian nephrons.
Collapse
|
21
|
Møbjerg N, Larsen EH, Jespersen Å. Morphology of the Nephron in the Mesonephros ofBufo bufo(Amphibia, Anura, Bufonidae). ACTA ZOOL-STOCKHOLM 1998. [DOI: 10.1111/j.1463-6395.1998.tb01140.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Seki T, Kikuyama S, Yanaihara N. Morphology of the Skin Glands of the Crab-eating Frog (Rana cancrivora). Zoolog Sci 1995. [DOI: 10.2108/zsj.12.623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Iwasaki S, Wanichanon C. An ultrastructural study of the dorsal lingual epithelium of the crab-eating frog, Rana cancrivora. J Morphol 1993; 215:89-100. [PMID: 8459450 DOI: 10.1002/jmor.1052150106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The amphibian tongue contains two types of papilla which are believed to function in gustation and in the secretion of salivary fluid. Scanning electron microscopy reveals that columnar, filiform papillae are compactly distributed over nearly the entire dorsal surface of the tongue of the frog, Rana cancrivora, and fungiform papillae are scattered among the filiform papillae. Microridges and microvilli are distributed on the epithelial cell surface of the extensive area of the filiform papillae. Light microscopy shows that the apex of each filiform papilla is composed of stratified columnar and/or cuboidal epithelium and its base is composed of simple columnar epithelium. Transmission electron microscopy reveals that most of the epithelium of the filiform papillae is composed of cells that contain numerous round electron-dense granules 1-3 microns in diameter. Cellular interdigitation is well developed between adjacent cells. On the free-surface of epithelial cells, microridges or microvilli are frequently seen. Between these granular cells, a small number of ciliated cells, mitochondria-rich cells and electron-lucent cells are inserted. In some cases, electron-dense granules are present in the ciliated cells. At higher magnification, the electron-dense granules appear to be covered with patterns of spots and tubules. Overall, the morphology and ultrastructure of the lingual epithelium of the three species of Rana that have been studied are quite similar, but they can be easily distinguished from those of Bufo japonicus. Therefore, it appears that lingual morphology is phylogenetically constrained among members of the predominantly freshwater genus Rana to produce uniformity of papillary structure and this morphology persists in Rana cancrivora despite the distinct saline environment in which it lives.
Collapse
Affiliation(s)
- S Iwasaki
- Department of Anatomy, School of Dentistry at Niigata, Nippon Dental University, Japan
| | | |
Collapse
|
24
|
Uchiyama M, Yoshizawa H. Salinity tolerance and structure of external and internal gills in tadpoles of the crab-eating frog, Rana cancrivora. Cell Tissue Res 1992; 267:35-44. [PMID: 1735117 DOI: 10.1007/bf00318689] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Salinity tolerance and histology of gills were studied in Rana cancrivora larvae. The tadpoles at the external gill stages (W stages 21-22) were able to survive in media containing up to 40% seawater, but died in water of higher salinity. Their external gills appear to have no critical role in adaptation to seawater. However, advanced tadpoles with internal gills (T-K stages I-XVIII) were able to tolerate 50% or higher seawater. In the internal gills, there are numerous mitochondria-rich cells (MR cells) scattered on the ventral and lateral epithelia of the gill arches and the gill tufts in both freshwater- and seawater-acclimated tadpoles. In freshwater-acclimated tadpoles there are three types of MR cell: (1) microplicated, (2) microvillous, and (3) apically vacuolated. In tadpoles acclimated to dilute seawater, the ratio of type-1 to type-2 cells is lower, although all three types of MR cell are present. In 60%-seawater-acclimated tadpoles, a few MR cells with a lumen and concave cytoplasm at the apical membrane (type 4) are present. The changes in MR cell morphology under ambient conditions of low or high salinity may reflect alterations in the physiological roles of the gills with regard to transport of ions.
Collapse
Affiliation(s)
- M Uchiyama
- Department of Oral Physiology, School of Dentistry, Nippon Dental University, Niigata, Japan
| | | |
Collapse
|