1
|
Sturm A, Jóźwiak G, Verge MP, Munch L, Cathomen G, Vocat A, Luraschi-Eggemann A, Orlando C, Fromm K, Delarze E, Świątkowski M, Wielgoszewski G, Totu RM, García-Castillo M, Delfino A, Tagini F, Kasas S, Lass-Flörl C, Gstir R, Cantón R, Greub G, Cichocka D. Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform. Nat Commun 2024; 15:2037. [PMID: 38499536 PMCID: PMC10948838 DOI: 10.1038/s41467-024-46213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.
Collapse
Affiliation(s)
- Alexander Sturm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
| | | | - Marta Pla Verge
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Laura Munch
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Gino Cathomen
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Anthony Vocat
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | - Clara Orlando
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Katja Fromm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Eric Delarze
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | | | - Roxana M Totu
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - María García-Castillo
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
| | - Alexandre Delfino
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Florian Tagini
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), 1015, Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale (UFAM) & Université de Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Ronald Gstir
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Rafael Cantón
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Sinesio Delgado 4, 28029, Madrid, Spain
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Danuta Cichocka
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| |
Collapse
|
2
|
Raki H, Aalaila Y, Taktour A, Peluffo-Ordóñez DH. Combining AI Tools with Non-Destructive Technologies for Crop-Based Food Safety: A Comprehensive Review. Foods 2023; 13:11. [PMID: 38201039 PMCID: PMC10777928 DOI: 10.3390/foods13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
On a global scale, food safety and security aspects entail consideration throughout the farm-to-fork continuum, considering food's supply chain. Generally, the agrifood system is a multiplex network of interconnected features and processes, with a hard predictive rate, where maintaining the food's safety is an indispensable element and is part of the Sustainable Development Goals (SDGs). It has led the scientific community to develop advanced applied analytical methods, such as machine learning (ML) and deep learning (DL) techniques applied for assessing foodborne diseases. The main objective of this paper is to contribute to the development of the consensus version of ongoing research about the application of Artificial Intelligence (AI) tools in the domain of food-crop safety from an analytical point of view. Writing a comprehensive review for a more specific topic can also be challenging, especially when searching within the literature. To our knowledge, this review is the first to address this issue. This work consisted of conducting a unique and exhaustive study of the literature, using our TriScope Keywords-based Synthesis methodology. All available literature related to our topic was investigated according to our criteria of inclusion and exclusion. The final count of data papers was subject to deep reading and analysis to extract the necessary information to answer our research questions. Although many studies have been conducted, limited attention has been paid to outlining the applications of AI tools combined with analytical strategies for crop-based food safety specifically.
Collapse
Affiliation(s)
- Hind Raki
- College of Computing, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco; (Y.A.); (D.H.P.-O.)
| | - Yahya Aalaila
- College of Computing, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco; (Y.A.); (D.H.P.-O.)
| | - Ayoub Taktour
- Materials Sciences and Nanotechnoloy (MSN), University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco;
| | - Diego H. Peluffo-Ordóñez
- College of Computing, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco; (Y.A.); (D.H.P.-O.)
| |
Collapse
|
3
|
Vocat A, Sturm A, Jóźwiak G, Cathomen G, Świątkowski M, Buga R, Wielgoszewski G, Cichocka D, Greub G, Opota O. Nanomotion technology in combination with machine learning: a new approach for a rapid antibiotic susceptibility test for Mycobacterium tuberculosis. Microbes Infect 2023; 25:105151. [PMID: 37207717 DOI: 10.1016/j.micinf.2023.105151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Nanomotion technology is a growth-independent approach that can be used to detect and record the vibrations of bacteria attached to cantilevers. We have developed a nanomotion-based antibiotic susceptibility test (AST) protocol for Mycobacterium tuberculosis (MTB). The protocol was used to predict strain phenotype towards isoniazid (INH) and rifampicin (RIF) using a leave-one-out cross-validation (LOOCV) and machine learning techniques. This MTB-nanomotion protocol takes 21 h, including cell suspension preparation, optimized bacterial attachment to functionalized cantilever, and nanomotion recording before and after antibiotic exposure. We applied this protocol to MTB isolates (n = 40) and were able to discriminate between susceptible and resistant strains for INH and RIF with a maximum sensitivity of 97.4% and 100%, respectively, and a maximum specificity of 100% for both antibiotics when considering each nanomotion recording to be a distinct experiment. Grouping recordings as triplicates based on source isolate improved sensitivity and specificity to 100% for both antibiotics. Nanomotion technology can potentially reduce time-to-result significantly compared to the days and weeks currently needed for current phenotypic ASTs for MTB. It can further be extended to other anti-TB drugs to help guide more effective TB treatment.
Collapse
Affiliation(s)
- Anthony Vocat
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland; Resistell AG, Muttenz, 4132, Switzerland
| | | | | | | | | | | | | | | | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland; Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Onya Opota
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland.
| |
Collapse
|
4
|
Girasole M, Dinarelli S, Longo G. Correlating nanoscale motion and ATP production in healthy and favism erythrocytes: a real-time nanomotion sensor study. Front Microbiol 2023; 14:1196764. [PMID: 37333637 PMCID: PMC10272347 DOI: 10.3389/fmicb.2023.1196764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Red blood cells (RBCs) are among the simplest, yet physiologically relevant biological specimens, due to their peculiarities, such as their lack of nucleus and simplified metabolism. Indeed, erythrocytes can be seen as biochemical machines, capable of performing a limited number of metabolic pathways. Along the aging path, the cells' characteristics change as they accumulate oxidative and non-oxidative damages, and their structural and functional properties degrade. Methods In this work, we have studied RBCs and the activation of their ATP-producing metabolism using a real-time nanomotion sensor. This device allowed time-resolved analyses of the activation of this biochemical pathway, measuring the characteristics and the timing of the response at different points of their aging and the differences observed in favism erythrocytes in terms of the cellular reactivity and resilience to aging. Favism is a genetic defect of erythrocytes, which affects their ability to respond to oxidative stresses but that also determines differences in the metabolic and structural characteristic of the cells. Results Our work shows that RBCs from favism patients exhibit a different response to the forced activation of the ATP synthesis compared to healthy cells. In particular, the favism cells, compared to healthy erythrocytes, show a greater resilience to the aging-related insults which was in good accord with the collected biochemical data on ATP consumption and reload. Conclusion This surprisingly higher endurance against cell aging can be addressed to a special mechanism of metabolic regulation that permits lower energy consumption in environmental stress conditions.
Collapse
|
5
|
Choi JS, Ham DH, Kim JH, Marcial HBF, Jeong PH, Choi JH, Park WT. Quantitative image analysis of thrombus formation in microfluidic in-vitro models. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractIn this study, we present a method to quantitatively analyze the thrombus formation process through image analysis in an in vitro thrombus model with a circular cross section. The thrombus model used was designed based on the mechanism between the physical principle of wall shear rate (WSR) and thrombus formation. Image analysis was used to help visualize the thrombus formation process and calculate the thrombus area. Through this method, the thrombus formation and growth from the channel wall was demonstrated without the use of fluorescence. In addition, by dividing the image into sub-sections, the accuracy of the thrombus growth pattern was improved. The departing blood clots which are called embolus, were observed being separated from the thrombus.
Collapse
|
6
|
Al-madani H, Du H, Yao J, Peng H, Yao C, Jiang B, Wu A, Yang F. Living Sample Viability Measurement Methods from Traditional Assays to Nanomotion. BIOSENSORS 2022; 12:453. [PMID: 35884256 PMCID: PMC9313330 DOI: 10.3390/bios12070453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Living sample viability measurement is an extremely common process in medical, pharmaceutical, and biological fields, especially drug pharmacology and toxicology detection. Nowadays, there are a number of chemical, optical, and mechanical methods that have been developed in response to the growing demand for simple, rapid, accurate, and reliable real-time living sample viability assessment. In parallel, the development trend of viability measurement methods (VMMs) has increasingly shifted from traditional assays towards the innovative atomic force microscope (AFM) oscillating sensor method (referred to as nanomotion), which takes advantage of the adhesion of living samples to an oscillating surface. Herein, we provide a comprehensive review of the common VMMs, laying emphasis on their benefits and drawbacks, as well as evaluating the potential utility of VMMs. In addition, we discuss the nanomotion technique, focusing on its applications, sample attachment protocols, and result display methods. Furthermore, the challenges and future perspectives on nanomotion are commented on, mainly emphasizing scientific restrictions and development orientations.
Collapse
Affiliation(s)
- Hamzah Al-madani
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Du
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlie Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Peng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Jiang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Fang Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
7
|
Pleskova SN, Fomichev OI, Kriukov RN, Sudakova IS. Nanovibrations of Atomic Force Microscope Cantilevers as a System for Real Time Detection of Antibiotic Resistance in Bacteria. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921060154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Villalba MI, Venturelli L, Willaert R, Vela ME, Yantorno O, Dietler G, Longo G, Kasas S. Nanomotion Spectroscopy as a New Approach to Characterize Bacterial Virulence. Microorganisms 2021; 9:microorganisms9081545. [PMID: 34442624 PMCID: PMC8398272 DOI: 10.3390/microorganisms9081545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Atomic force microscopy (AFM)-based nanomotion detection is a label-free technique that has been used to monitor the response of microorganisms to antibiotics in a time frame of minutes. The method consists of attaching living organisms onto an AFM cantilever and in monitoring its nanometric scale oscillations as a function of different physical-chemical stimuli. Up to now, we only used the cantilever oscillations variance signal to assess the viability of the attached organisms. In this contribution, we demonstrate that a more precise analysis of the motion pattern of the cantilever can unveil relevant medical information about bacterial phenotype. We used B. pertussis as the model organism, it is a slowly growing Gram-negative bacteria which is the agent of whooping cough. It was previously demonstrated that B. pertussis can expresses different phenotypes as a function of the physical-chemical properties of the environment. In this contribution, we highlight that B. pertussis generates a cantilever movement pattern that depends on its phenotype. More precisely, we noticed that nanometric scale oscillations of B. pertussis can be correlated with the virulence state of the bacteria. The results indicate a correlation between metabolic/virulent bacterial states and bacterial nanomotion pattern and paves the way to novel rapid and label-free pathogenic microorganism detection assays.
Collapse
Affiliation(s)
- Maria I. Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Leonardo Venturelli
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
| | - Ronnie Willaert
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
| | - Maria E. Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Giovanni Dietler
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
| | - Giovanni Longo
- Istituto Di Struttura Della Materia–CNR, 00133 Roma, Italy;
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
- Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, 1015 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Venturelli L, Kohler AC, Stupar P, Villalba MI, Kalauzi A, Radotic K, Bertacchi M, Dinarelli S, Girasole M, Pešić M, Banković J, Vela ME, Yantorno O, Willaert R, Dietler G, Longo G, Kasas S. A perspective view on the nanomotion detection of living organisms and its features. J Mol Recognit 2020; 33:e2849. [PMID: 32227521 DOI: 10.1002/jmr.2849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The insurgence of newly arising, rapidly developing health threats, such as drug-resistant bacteria and cancers, is one of the most urgent public-health issues of modern times. This menace calls for the development of sensitive and reliable diagnostic tools to monitor the response of single cells to chemical or pharmaceutical stimuli. Recently, it has been demonstrated that all living organisms oscillate at a nanometric scale and that these oscillations stop as soon as the organisms die. These nanometric scale oscillations can be detected by depositing living cells onto a micro-fabricated cantilever and by monitoring its displacements with an atomic force microscope-based electronics. Such devices, named nanomotion sensors, have been employed to determine the resistance profiles of life-threatening bacteria within minutes, to evaluate, among others, the effect of chemicals on yeast, neurons, and cancer cells. The data obtained so far demonstrate the advantages of nanomotion sensing devices in rapidly characterizing microorganism susceptibility to pharmaceutical agents. Here, we review the key aspects of this technique, presenting its major applications. and detailing its working protocols.
Collapse
Affiliation(s)
- Leonardo Venturelli
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anne-Céline Kohler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petar Stupar
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maria I Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotic
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Simone Dinarelli
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Marco Girasole
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasna Banković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maria E Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET-CCT La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ronnie Willaert
- ARG VUB-UGent NanoMicrobiology, IJRG VUB-EPFL BioNanotechnology & NanoMedicine, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Longo
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Vannocci T, Dinarelli S, Girasole M, Pastore A, Longo G. A new tool to determine the cellular metabolic landscape: nanotechnology to the study of Friedreich's ataxia. Sci Rep 2019; 9:19282. [PMID: 31848436 PMCID: PMC6917756 DOI: 10.1038/s41598-019-55799-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding the cell response to oxidative stress in disease is an important but difficult task. Here, we demonstrate the feasibility of using a nanomotion sensor to study the cellular metabolic landscape. This nanosensor permits the non-invasive real-time detection at the single-cell level and offers high sensitivity and time resolution. We optimised the technique to study the effects of frataxin overexpression in a cellular model of Friedreich's ataxia, a neurodegenerative disease caused by partial silencing of the FXN gene. Previous studies had demonstrated that FXN overexpression are as toxic as silencing, thus indicating the importance of a tight regulation of the frataxin levels. We probed the effects of frataxin overexpression in the presence of oxidative stress insults and measured the metabolic response by the nanosensor. We show that the nanosensor provides new detailed information on the metabolic state of the cell as a function of time, that agrees with and complements data obtained by more traditional techniques. We propose that the nanosensor can be used in the future as a new and powerful tool to study directly how drugs modulate the effects of oxidative stress on Friedreich's ataxia patients and, more in general, on other neurodegenerative processes.
Collapse
Affiliation(s)
- Tommaso Vannocci
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom
- The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom
| | - Simone Dinarelli
- Istituto di Struttura della Materia - CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Marco Girasole
- Istituto di Struttura della Materia - CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom.
- The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom.
| | - Giovanni Longo
- Istituto di Struttura della Materia - CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
11
|
Mertens J, Cuervo A, Carrascosa JL. Nanomechanical detection of Escherichia coli infection by bacteriophage T7 using cantilever sensors. NANOSCALE 2019; 11:17689-17698. [PMID: 31538998 DOI: 10.1039/c9nr05240b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Viruses that infect bacteria (bacteriophages) are a promising alternative treatment for bacterial diseases, especially in the case of antibiotic resistance. Due to a renewed interest in phage therapies, development of rapid and specific detection methods for bacteria/bacteriophage interaction are gaining attention for proper diagnosis and treatment. This paper describes a new method to detect the interaction between Escherichia coli and bacteriophage T7 in a sensitive and quantitative way, using the nanomechanical motion of bacteria adhered to a cantilever surface. Our approach combines both deflection and dynamic frequency-domain characterization. The device was able to determine the viability of a low amount of living bacteria attached to the cantilever, and was used to monitor T7 interaction with E. coli over a wide range of virus concentrations up to 109 PFU ml-1. The nanomechanical assay described here requires no protein labeling and can be performed in a single reaction without additional reagents. The system was able to detect the interaction between a few thousand particles through the fluctuation of mechanical energy over a broad range of frequencies. The presented data provides the basis for more detailed studies of the sequence of molecular events that contribute to the motion of the device.
Collapse
Affiliation(s)
- Johann Mertens
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Campus Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
12
|
Behera B, Anil Vishnu GK, Chatterjee S, Sitaramgupta V VSN, Sreekumar N, Nagabhushan A, Rajendran N, Prathik BH, Pandya HJ. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron 2019; 142:111552. [PMID: 31421358 DOI: 10.1016/j.bios.2019.111552] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
Abstract
Superbugs such as infectious bacteria pose a great threat to humanity due to an increase in bacterial mortality leading to clinical treatment failure, lengthy hospital stay, intravenous therapy and accretion of bacteraemia. These disease-causing bacteria gain resistance to drugs over time which further complicates the treatment. Monitoring of antibiotic resistance is therefore necessary so that bacterial infectious diseases can be diagnosed rapidly. Antimicrobial susceptibility testing (AST) provides valuable information on the efficacy of antibiotic agents and their dosages for treatment against bacterial infections. In clinical laboratories, most widely used AST methods are disk diffusion, gradient diffusion, broth dilution, or commercially available semi-automated systems. Though these methods are cost-effective and accurate, they are time-consuming, labour-intensive, and require skilled manpower. Recently much attention has been on developing rapid AST techniques to avoid misuse of antibiotics and provide effective treatment. In this review, we have discussed emerging engineering AST techniques with special emphasis on phenotypic AST. These techniques include fluorescence imaging along with computational image processing, surface plasmon resonance, Raman spectra, and laser tweezer as well as micro/nanotechnology-based device such as microfluidics, microdroplets, and microchamber. The mechanical and electrical behaviour of single bacterial cell and bacterial suspension for the study of AST is also discussed.
Collapse
Affiliation(s)
- Bhagaban Behera
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - G K Anil Vishnu
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Suman Chatterjee
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta V
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Niranjana Sreekumar
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Apoorva Nagabhushan
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | | | - B H Prathik
- Indira Gandhi Institute of Child Health, Bangalore, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
13
|
Mustazzolu A, Venturelli L, Dinarelli S, Brown K, Floto RA, Dietler G, Fattorini L, Kasas S, Girasole M, Longo G. A Rapid Unraveling of the Activity and Antibiotic Susceptibility of Mycobacteria. Antimicrob Agents Chemother 2019; 63:e02194-18. [PMID: 30602518 PMCID: PMC6395931 DOI: 10.1128/aac.02194-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/14/2018] [Indexed: 01/10/2023] Open
Abstract
The development of antibiotic-resistant bacteria is a worldwide health-related emergency that calls for new tools to study the bacterial metabolism and to obtain fast diagnoses. Indeed, the conventional analysis time scale is too long and affects our ability to fight infections. Slowly growing bacteria represent a bigger challenge, since their analysis may require up to months. Among these bacteria, Mycobacterium tuberculosis, the causative agent of tuberculosis, has caused more than 10 million new cases and 1.7 million deaths in 2016 only. We employed a particularly powerful nanomechanical oscillator, the nanomotion sensor, to characterize rapidly and in real time tuberculous and nontuberculous bacterial species, Mycobacterium bovis bacillus Calmette-Guérin and Mycobacterium abscessus, respectively, exposed to different antibiotics. Here, we show how high-speed and high-sensitivity detectors, the nanomotion sensors, can provide a rapid and reliable analysis of different mycobacterial species, obtaining qualitative and quantitative information on their responses to different drugs. This is the first application of the technique to tackle the urgent medical issue of mycobacterial infections, evaluating the dynamic response of bacteria to different antimicrobial families and the role of the replication rate in the resulting nanomotion pattern. In addition to a fast analysis, which could massively benefit patients and the overall health care system, we investigated the real-time responses of the bacteria to extract unique information on the bacterial mechanisms triggered in response to antibacterial pressure, with consequences both at the clinical level and at the microbiological level.
Collapse
Affiliation(s)
| | - L Venturelli
- LPMV-IPHYS, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - S Dinarelli
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - K Brown
- Molecular Immunity Unit, University of Cambridge, Cambridge, United Kingdom
| | - R A Floto
- Molecular Immunity Unit, University of Cambridge, Cambridge, United Kingdom
| | - G Dietler
- LPMV-IPHYS, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | | | - S Kasas
- LPMV-IPHYS, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - M Girasole
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - G Longo
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
14
|
Pellequer JL, Parot P, Navajas D, Kumar S, Svetličić V, Scheuring S, Hu J, Li B, Engler A, Sousa S, Lekka M, Szymoński M, Schillers H, Odorico M, Lafont F, Janel S, Rico F. Fifteen years of Servitude et Grandeur
to the application of a biophysical technique in medicine: The tale of AFMBioMed. J Mol Recognit 2018; 32:e2773. [DOI: 10.1002/jmr.2773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Daniel Navajas
- Institute for Bioengineering of Catalonia and CIBER de Enfermedades Respiratorias; Universitat de Barcelona; Barcelona Spain
| | - Sanjay Kumar
- Departments of Bioengineering and Chemical & Biomolecular Engineering; University of California, Berkeley; Berkeley California USA
| | | | - Simon Scheuring
- Department of Anesthesiology, Department of Physiology and Biophysics; Weill Cornell Medicine; New York City New York USA
| | - Jun Hu
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; Shanghai China
- Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai China
| | - Bin Li
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; Shanghai China
- Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai China
| | - Adam Engler
- Department of Bioengineering; University of California San Diego; La Jolla California USA
| | - Susana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto Portugal
- ISEP-Instituto Superior de Engenharia; Politécnico do Porto; Portugal
| | - Małgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences; Kraków Poland
| | - Marek Szymoński
- Center for Nanometer-scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science; Jagiellonian University; Kraków Poland
| | | | - Michael Odorico
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ Montpellier, Marcoule; Montpellier France
| | - Frank Lafont
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Univ Lille; Lille France
| | - Sebastien Janel
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Univ Lille; Lille France
| | - Felix Rico
- LAI, U1067, Aix-Marseille Univ, CNRS, INSERM; Marseille France
| |
Collapse
|
15
|
Villalba MI, Stupar P, Chomicki W, Bertacchi M, Dietler G, Arnal L, Vela ME, Yantorno O, Kasas S. Nanomotion Detection Method for Testing Antibiotic Resistance and Susceptibility of Slow-Growing Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702671. [PMID: 29205867 DOI: 10.1002/smll.201702671] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Infectious diseases are caused by pathogenic microorganisms and are often severe. Time to fully characterize an infectious agent after sampling and to find the right antibiotic and dose are important factors in the overall success of a patient's treatment. Previous results suggest that a nanomotion detection method could be a convenient tool for reducing antibiotic sensitivity characterization time to several hours. Here, the application of the method for slow-growing bacteria is demonstrated, taking Bordetella pertussis strains as a model. A low-cost nanomotion device is able to characterize B. pertussis sensitivity against specific antibiotics within several hours, instead of days, as it is still the case with conventional growth-based techniques. It can discriminate between resistant and susceptible B. pertussis strains, based on the changes of the sensor's signal before and after the antibiotic addition. Furthermore, minimum inhibitory and bactericidal concentrations of clinically applied antibiotics are compared using both techniques and the suggested similarity is discussed.
Collapse
Affiliation(s)
- María Ines Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Petar Stupar
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Wojciech Chomicki
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Massimiliano Bertacchi
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laura Arnal
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET-CCT La Plata), Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET-CCT La Plata), Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Plateforme de Morphologie, Faculté de Médecine, Université de Lausanne, 1009, Lausanne, Switzerland
| |
Collapse
|
16
|
Florio W, Morici P, Ghelardi E, Barnini S, Lupetti A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit Rev Microbiol 2017; 44:351-370. [PMID: 29185372 DOI: 10.1080/1040841x.2017.1407745] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rapid identification (ID) and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections (BSIs) are essential for the prompt administration of an effective antimicrobial therapy, which can result in clinical and financial benefits. Immediately after blood sampling, empirical antimicrobial therapy, chosen on clinical and epidemiological data, is administered. When ID and AST results are available, the clinician decides whether to continue or streamline the antimicrobial therapy, based on the results of the in vitro antimicrobial susceptibility profile of the pathogen. The aim of the present study is to review and discuss the experimental data, advantages, and drawbacks of recently developed technological advances of culture-based and molecular methods for the diagnosis of BSI (including mass spectrometry, magnetic resonance, PCR-based methods, direct inoculation methods, and peptide nucleic acid fluorescence in situ hybridization), the understanding of which could provide new perspectives to improve and fasten the diagnosis and treatment of septic patients. Although blood culture remains the gold standard to diagnose BSIs, newly developed methods can significantly shorten the turnaround time of reliable microbial ID and AST, thus substantially improving the diagnostic yield.
Collapse
Affiliation(s)
- Walter Florio
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Paola Morici
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Emilia Ghelardi
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Simona Barnini
- b U.O. Microbiologia Universitaria Azienda Ospedaliero-Universitaria Pisana , Pisa , Italy
| | - Antonella Lupetti
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| |
Collapse
|
17
|
Johnson WL, France DC, Rentz NS, Cordell WT, Walls FL. Sensing bacterial vibrations and early response to antibiotics with phase noise of a resonant crystal. Sci Rep 2017; 7:12138. [PMID: 28939857 PMCID: PMC5610186 DOI: 10.1038/s41598-017-12063-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 11/24/2022] Open
Abstract
The speed of conventional antimicrobial susceptibility testing (AST) is intrinsically limited by observation of cell colony growth, which can extend over days and allow bacterial infections to advance before effective antibiotics are identified. This report presents an approach for rapidly sensing mechanical fluctuations of bacteria and the effects of antibiotics on these fluctuations. Bacteria are adhered to a quartz crystal resonator in an electronic bridge that is driven by a high-stability frequency source. Mechanical fluctuations of cells introduce time-dependent perturbations to the crystal boundary conditions and associated resonant frequency, which translate into phase noise measured at the output of the bridge. In experiments on nonmotile E. coli exposed to polymyxin B, cell-generated frequency noise dropped close to zero with the first spectra acquired 7 minutes after introduction of the antibiotic. In experiments on the same bacterial strain exposed to ampicillin, frequency noise began decreasing within 15 minutes of antibiotic introduction and proceeded to drop more rapidly with the onset of antibiotic-induced lysis. In conjunction with cell imaging and post-experiment counting of colony-forming units, these results provide evidence that cell death can be sensed through measurements of cell-generated frequency noise, potentially providing a basis for rapid AST.
Collapse
Affiliation(s)
- Ward L Johnson
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA.
| | - Danielle Cook France
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Nikki S Rentz
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - William T Cordell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA.,Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Fred L Walls
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| |
Collapse
|
18
|
Syal K, Shen S, Yang Y, Wang S, Haydel SE, Tao N. Rapid Antibiotic Susceptibility Testing of Uropathogenic E. coli by Tracking Submicron Scale Motion of Single Bacterial Cells. ACS Sens 2017; 2:1231-1239. [PMID: 28741927 DOI: 10.1021/acssensors.7b00392] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To combat antibiotic resistance, a rapid antibiotic susceptibility testing (AST) technology that can identify resistant infections at disease onset is required. Current clinical AST technologies take 1-3 days, which is often too slow for accurate treatment. Here we demonstrate a rapid AST method by tracking sub-μm scale bacterial motion with an optical imaging and tracking technique. We apply the method to clinically relevant bacterial pathogens, Escherichia coli O157: H7 and uropathogenic E. coli (UPEC) loosely tethered to a glass surface. By analyzing dose-dependent sub-μm motion changes in a population of bacterial cells, we obtain the minimum bactericidal concentration within 2 h using human urine samples spiked with UPEC. We validate the AST method using the standard culture-based AST methods. In addition to population studies, the method allows single cell analysis, which can identify subpopulations of resistance strains within a sample.
Collapse
Affiliation(s)
- Karan Syal
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Simon Shen
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shelley E. Haydel
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
19
|
Amyloid single-cell cytotoxicity assays by nanomotion detection. Cell Death Discov 2017; 3:17053. [PMID: 28845298 PMCID: PMC5564330 DOI: 10.1038/cddiscovery.2017.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/06/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022] Open
Abstract
Cells are extremely complex systems able to actively modify their metabolism and behavior in response to environmental conditions and stimuli such as pathogenic agents or drugs. The comprehension of these responses is central to understand the molecular bases of human pathologies, including amyloid misfolding diseases. Conventional bulk biological assays are limited by intrinsic cellular heterogeneity in gene, protein and metabolite expression, and can investigate only indirectly cellular reactions in non-physiological conditions. Here we employ a label-free nanomotion sensor to study single neuroblastoma cells exposed to extracellular monomeric and amyloid α-synuclein species in real-time and in physiological conditions. Combining this technique with fluorescence microscopy, we demonstrate multispecies cooperative cytotoxic effect of amyloids and aggregate-induced loss of cellular membrane integrity. Notably, the method can study cellular reactions and cytotoxicity an order of magnitude faster, and using 100-fold smaller volume of reagents when compared to conventional bulk analyses. This rapidity and sensitivity will allow testing novel pharmacological approaches to stop or delay a wide range of human diseases.
Collapse
|
20
|
Syal K, Mo M, Yu H, Iriya R, Jing W, Guodong S, Wang S, Grys TE, Haydel SE, Tao N. Current and emerging techniques for antibiotic susceptibility tests. Theranostics 2017; 7:1795-1805. [PMID: 28638468 PMCID: PMC5479269 DOI: 10.7150/thno.19217] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Infectious diseases caused by bacterial pathogens are a worldwide burden. Serious bacterial infection-related complications, such as sepsis, affect over a million people every year with mortality rates ranging from 30% to 50%. Crucial clinical microbiology laboratory responsibilities associated with patient management and treatment include isolating and identifying the causative bacterium and performing antibiotic susceptibility tests (ASTs), which are labor-intensive, complex, imprecise, and slow (taking days, depending on the growth rate of the pathogen). Considering the life-threatening condition of a septic patient and the increasing prevalence of antibiotic-resistant bacteria in hospitals, rapid and automated diagnostic tools are needed. This review summarizes the existing commercial AST methods and discusses some of the promising emerging AST tools that will empower humans to win the evolutionary war between microbial genes and human wits.
Collapse
Affiliation(s)
- Karan Syal
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Manni Mo
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Hui Yu
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Rafael Iriya
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Wenwen Jing
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Sui Guodong
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Thomas E. Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Shelley E. Haydel
- Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
21
|
Stupar P, Opota O, Longo G, Prod'hom G, Dietler G, Greub G, Kasas S. Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections. Clin Microbiol Infect 2017; 23:400-405. [PMID: 28062319 DOI: 10.1016/j.cmi.2016.12.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The management of bloodstream infection, a life-threatening disease, largely relies on early detection of infecting microorganisms and accurate determination of their antibiotic susceptibility to reduce both mortality and morbidity. Recently we developed a new technique based on atomic force microscopy capable of detecting movements of biologic samples at the nanoscale. Such sensor is able to monitor the response of bacteria to antibiotic's pressure, allowing a fast and versatile susceptibility test. Furthermore, rapid preparation of a bacterial pellet from a positive blood culture can improve downstream characterization of the recovered pathogen as a result of the increased bacterial concentration obtained. METHODS Using artificially inoculated blood cultures, we combined these two innovative procedures and validated them in double-blind experiments to determine the susceptibility and resistance of Escherichia coli strains (ATCC 25933 as susceptible and a characterized clinical isolate as resistant strain) towards a selection of antibiotics commonly used in clinical settings. RESULTS On the basis of the variance of the sensor movements, we were able to positively discriminate the resistant from the susceptible E. coli strains in 16 of 17 blindly investigated cases. Furthermore, we defined a variance change threshold of 60% that discriminates susceptible from resistant strains. CONCLUSIONS By combining the nanomotion sensor with the rapid preparation method of blood culture pellets, we obtained an innovative, rapid and relatively accurate method for antibiotic susceptibility test directly from positive blood culture bottles, without the need for bacterial subculture.
Collapse
Affiliation(s)
- P Stupar
- Laboratory of Physics of Living Matter, BSP, EPFL, Lausanne, Switzerland
| | - O Opota
- Institute of Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - G Longo
- Laboratory of Physics of Living Matter, BSP, EPFL, Lausanne, Switzerland; Istituto di Struttura della Materia-CNR, Rome, Italy
| | - G Prod'hom
- Institute of Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - G Dietler
- Laboratory of Physics of Living Matter, BSP, EPFL, Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland.
| | - S Kasas
- Laboratory of Physics of Living Matter, BSP, EPFL, Lausanne, Switzerland; Plateforme de Morphologie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
|
23
|
Huang YM, Hsu HY, Hsu CL. Development of electrochemical method to detect bacterial count, Listeria monocytogenes, and somatic cell count in raw milk. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Syal K, Iriya R, Yang Y, Yu H, Wang S, Haydel SE, Chen HY, Tao N. Antimicrobial Susceptibility Test with Plasmonic Imaging and Tracking of Single Bacterial Motions on Nanometer Scale. ACS NANO 2016; 10:845-52. [PMID: 26637243 DOI: 10.1021/acsnano.5b05944] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Currently, most ASTs performed in clinical microbiology laboratories are based on bacterial culturing, which take days to complete for slowly growing microorganisms. A faster AST will reduce morbidity and mortality rates and help healthcare providers administer narrow spectrum antibiotics at the earliest possible treatment stage. We report the development of a nonculture-based AST using a plasmonic imaging and tracking (PIT) technology. We track the motion of individual bacterial cells tethered to a surface with nanometer (nm) precision and correlate the phenotypic motion with bacterial metabolism and antibiotic action. We show that antibiotic action significantly slows down bacterial motion, which can be quantified for development of a rapid phenotypic-based AST.
Collapse
Affiliation(s)
- Karan Syal
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Rafael Iriya
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States
| | - Hui Yu
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Shelley E Haydel
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- School of Life Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
- School of Electrical, Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
25
|
Kasas S, Ruggeri FS, Benadiba C, Maillard C, Stupar P, Tournu H, Dietler G, Longo G. Detecting nanoscale vibrations as signature of life. Proc Natl Acad Sci U S A 2015; 112:378-81. [PMID: 25548177 PMCID: PMC4299216 DOI: 10.1073/pnas.1415348112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Département des Neurosciences Fondamentales, Faculté de Biologie et de Médecine, Université de Lausanne, 1005 Lausanne, Switzerland; and
| | - Francesco Simone Ruggeri
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carine Benadiba
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Caroline Maillard
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Petar Stupar
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hélène Tournu
- Department of Molecular Microbiology, Vlaams Instituut voor Biotechnologie (VIB), B-3001 Leuven, Belgium
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni Longo
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
26
|
Abstract
Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
27
|
Longo G, Kasas S. Effects of antibacterial agents and drugs monitored by atomic force microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:230-44. [PMID: 24616433 DOI: 10.1002/wnan.1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 11/07/2022]
Abstract
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Collapse
Affiliation(s)
- Giovanni Longo
- Ecole Polytechnique Fédérale de Lausanne, LPMV, Lausanne, Switzerland; Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|