1
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
2
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
3
|
Li Z, Zhang Y, Ji M, Wu C, Zhang Y, Ji S. Targeting ferroptosis in neuroimmune and neurodegenerative disorders for the development of novel therapeutics. Biomed Pharmacother 2024; 176:116777. [PMID: 38795640 DOI: 10.1016/j.biopha.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroimmune and neurodegenerative ailments impose a substantial societal burden. Neuroimmune disorders involve the intricate regulatory interactions between the immune system and the central nervous system. Prominent examples of neuroimmune disorders encompass multiple sclerosis and neuromyelitis optica. Neurodegenerative diseases result from neuronal degeneration or demyelination in the brain or spinal cord, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The precise underlying pathogenesis of these conditions remains incompletely understood. Ferroptosis, a programmed form of cell death characterised by lipid peroxidation and iron overload, plays a pivotal role in neuroimmune and neurodegenerative diseases. In this review, we provide a detailed overview of ferroptosis, its mechanisms, pathways, and regulation during the progression of neuroimmune and neurodegenerative diseases. Furthermore, we summarise the impact of ferroptosis on neuroimmune-related cells (T cells, B cells, neutrophils, and macrophages) and neural cells (glial cells and neurons). Finally, we explore the potential therapeutic implications of ferroptosis inhibitors in diverse neuroimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Ye Zhang
- Department of Forensic Medicine, Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Meiling Ji
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Yanxing Zhang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
4
|
Voltin J, Nunn LM, Watson Z, Brasher ZE, Adisetiyo V, Hanlon CA, Nietert PJ, McRae-Clark AL, Jensen JH. Comparison of three magnetic resonance imaging measures of brain iron in healthy and cocaine use disorder participants. NMR IN BIOMEDICINE 2024; 37:e5072. [PMID: 38009303 PMCID: PMC10922943 DOI: 10.1002/nbm.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
Several magnetic resonance imaging (MRI) measures for quantifying endogenous nonheme brain iron have been proposed. These correspond to distinct physical properties with varying sensitivities and specificities to iron. Moreover, they may depend not only on tissue iron concentration, but also on the intravoxel spatial pattern of iron deposition, which is complex in many brain regions. Here, the three MRI brain iron measures of R 2 * , magnetic field correlation (MFC), and magnetic susceptibility are compared in several deep gray matter regions for both healthy participants (HPs) and individuals with cocaine use disorder (CUD). Their concordance is assessed from their correlations with each other and their relative dependencies on age. In addition, associations between the iron measures and microstructure in adjacent white matter regions are investigated by calculating their correlations with diffusion MRI measures from the internal capsule, and associations with cognition are determined by using results from a battery of standardized tests relevant to CUD. It is found that all three iron measures are strongly correlated with each other for the considered gray matter regions, but with correlation coefficients substantially less than one indicating important differences. The age dependencies of all three measures are qualitatively similar in most regions, except for the red nucleus, where the susceptibility has a significantly stronger correlation with age than R 2 * . Weak to moderate correlations are seen for the iron measures with several of the diffusion and cognitive measures, with the strongest correlations being obtained for R 2 * . The iron measures differ little between the HP and CUD groups, although susceptibility is significantly lower in the red nucleus for the CUD group. For the comparisons made, the iron measures behave similarly in most respects, but with notable quantitative differences. It is suggested that these differences may be, in part, attributable to a higher sensitivity to the spatial pattern of iron deposition for R 2 * and MFC than for susceptibility. This is supported most strongly by a sharp contrast between the values of the iron measures in the globus pallidus relative to those in the red nucleus. The observed correlations of the iron measures with diffusion and cognitive scores point to possible connections between gray matter iron, white matter microstructure, and cognition.
Collapse
Affiliation(s)
- Joshua Voltin
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Lisa M. Nunn
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Zoe Watson
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Zoe E. Brasher
- Department of Behavioral Science and Neuroscience, Duke University Medical Center, Durham, North Carolina
| | - Vitria Adisetiyo
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Colleen A. Hanlon
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aimee L. McRae-Clark
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Jens H. Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
5
|
Qin D, Li D, Wang C, Guo S. Ferroptosis and central nervous system demyelinating diseases. J Neurochem 2023; 165:759-771. [PMID: 37095635 DOI: 10.1111/jnc.15831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Danqing Qin
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Li
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, Remião F, Silva R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther 2023; 244:108373. [PMID: 36894028 DOI: 10.1016/j.pharmthera.2023.108373] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxygen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxidation and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways. Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, prevent the import of cysteine into the cells. RSL3, statins, Ml162 and Ml210 induce ferroptosis by inhibiting glutathione peroxidase 4 (GPX4), which is responsible for preventing the formation of lipid peroxides, and FIN56 and withaferin trigger GPX4 degradation. On the other side, ferroptosis inhibitors include ferrostatin-1, liproxstatin-1, α-tocopherol, zileuton, FSP1, CoQ10 and BH4, which interrupt the lipid peroxidation cascade. Additionally, deferoxamine, deferiprone and N-acetylcysteine, by targeting other cellular pathways, have also been classified as ferroptosis inhibitors. Increased evidence has established the involvement of ferroptosis in distinct brain diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and Friedreich's ataxia. Thus, a deep understanding of how ferroptosis contributes to these diseases, and how it can be modulated, can open a new window of opportunities for novel therapeutic strategies and targets. Other studies have shown a sensitivity of cancer cells with mutated RAS to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers synergize in tumor treatment. Thus, it is tempting to consider that ferroptosis may arise as a target mechanistic pathway for the treatment of brain tumors. Therefore, this work provides an up-to-date review on the molecular and cellular mechanisms of ferroptosis and their involvement in brain diseases. In addition, information on the main ferroptosis inducers and inhibitors and their molecular targets is also provided.
Collapse
Affiliation(s)
- Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Vera Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Wang Z, Mak HKF, Cao P. Deep learning-regularized, single-step quantitative susceptibility mapping quantification. NMR IN BIOMEDICINE 2023; 36:e4849. [PMID: 36259729 DOI: 10.1002/nbm.4849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The purpose of the current study was to develop deep learning-regularized, single-step quantitative susceptibility mapping (QSM) quantification, directly generating QSM from the total phase map. A deep learning-regularized, single-step QSM quantification model, named SS-POCSnet, was trained with datasets created using the QSM synthesis approach in QSM reconstruction challenge 2.0. In SS-POCSnet, a data fidelity term based on a single-step model was iteratively applied that combined the spherical mean value kernel and dipole model. Meanwhile, SS-POCSnet regularized susceptibility maps, avoiding underestimating susceptibility values. We evaluated the SS-POCSnet on 10 synthetic datasets, 24 clinical datasets with lesions of cerebral microbleed (CMB) and calcification, and 10 datasets with multiple sclerosis (MS).On synthetic datasets, SS-POCSnet showed the best performance among the methods evaluated, with a normalized root mean squared error of 37.3% ± 4.2%, susceptibility-tuned structured similarity index measure of 0.823 ± 0.02, high-frequency error norm of 37.0 ± 5.7, and peak signal-to-noise ratio of 42.8 ± 1.1. SS-POCSnet also reduced the underestimations of susceptibility values in deep brain nuclei compared with those from the other models evaluated. Furthermore, SS-POCSnet was sensitive to CMB/calcification and MS lesions, demonstrating its clinical applicability. Our method also supported variable imaging parameters, including matrix size and resolution. It was concluded that deep learning-regularized, single-step QSM quantification can mitigate underestimating susceptibility values in deep brain nuclei.
Collapse
Affiliation(s)
- Zuojun Wang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Duan X, Xie Y, Zhu X, Chen L, Li F, Feng G, Li L. Quantitative Susceptibility Mapping of Brain Iron Deposition in Patients With Recurrent Depression. Psychiatry Investig 2022; 19:668-675. [PMID: 36059056 PMCID: PMC9441458 DOI: 10.30773/pi.2022.0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Recurrence is the most significant feature of depression and the relationship between iron and recurrent depression is still lack of direct evidence in vivo. METHODS Twenty-one patients with depression and twenty control subjects were included. Gradient-recalled echo, T1 and T2 images were acquired using a 3.0T MRI system. After quantitative susceptibility mapping were reconstructed and standardized, a whole-brain and the regions of interest were respectively analyzed. RESULTS Significant increases in susceptibility were found in multiple recurrent depression patients, which involved several brain regions (frontal lobes, temporal lobe structures, occipital lobes hippocampal regions, putamen, thalamus, cingulum, and cerebellum). Interestingly, no susceptibility changes after treatment compared to pre-treatment (all p>0.05) and no significant correlation between susceptibility and Hamilton Depression Rating Scale were found. Besides, it was close to significance that those with a higher relapse frequency or a longer mean duration of single episode had a higher susceptibility in the putamen, thalamus, and hippocampus. Further studies showed susceptibility across the putamen (ρ2=0.27, p<0.001), thalamus (ρ2=0.21, p<0.001), and hippocampus (ρ2=0.19, p<0.001) were strongly correlated with total course of disease onset. CONCLUSION Brain iron deposition is related to the total course of disease onset, but not the severity of depression, which suggest that brain iron deposition may be a sign of brain damage in multiple recurrent depression.
Collapse
Affiliation(s)
- Xinxiu Duan
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yuhang Xie
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiufang Zhu
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Lei Chen
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Feng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lei Li
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
9
|
Qu Y, Li N, Xu M, Zhang D, Xie J, Wang J. Estrogen Up-Regulates Iron Transporters and Iron Storage Protein Through Hypoxia Inducible Factor 1 Alpha Activation Mediated by Estrogen Receptor β and G Protein Estrogen Receptor in BV2 Microglia Cells. Neurochem Res 2022; 47:3659-3669. [PMID: 35829942 DOI: 10.1007/s11064-022-03658-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Estrogen is a steroid hormone produced mainly by the ovaries. It has been found that estrogen could regulate iron metabolism in neurons and astrocytes in different ways. The role of estrogen on iron metabolism in microglia is currently unknown. In this study, we investigated the effect and mechanism of 17β-estrogen (E2) on iron transport proteins. We found that following E2 treatment for 24h in BV2 microglial cell lines, the iron importer divalent metal transporter 1 (DMT1) and iron exporter ferroportin 1 (FPN1) were up-regulated , iron storage protein ferritin (FT) was increased. The protein levels of iron regulatory proteins (IRPs) and hepcidin remained unchanged, but hypoxia inducible factor 1 alpha (HIF-1α) was up-regulated. Two kinds of estrogen receptor β (ERβ) antagonist G15 and G protein estrogen receptor (GPER) antagonist PHTPPcould block the effects of E2 in BV2 microglial cell lines. These results suggest that estrogen could increase the protein expressions of DMT1, FPN1, FT-L and FT-H in BV2 microglia cells, which were not related to the regulation of IRP1 and hepcidin, but to the upregulation of HIF-1α. In addition, estrogen might regulate the expressions of iron-related proteins through both ER β and GPER in BV2 microglia cells.
Collapse
Affiliation(s)
- Yan Qu
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Na Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Manman Xu
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Lutti A, Corbin N, Ashburner J, Ziegler G, Draganski B, Phillips C, Kherif F, Callaghan MF, Di Domenicantonio G. Restoring statistical validity in group analyses of motion-corrupted MRI data. Hum Brain Mapp 2022; 43:1973-1983. [PMID: 35112434 PMCID: PMC8933245 DOI: 10.1002/hbm.25767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Motion during the acquisition of magnetic resonance imaging (MRI) data degrades image quality, hindering our capacity to characterise disease in patient populations. Quality control procedures allow the exclusion of the most affected images from analysis. However, the criterion for exclusion is difficult to determine objectively and exclusion can lead to a suboptimal compromise between image quality and sample size. We provide an alternative, data‐driven solution that assigns weights to each image, computed from an index of image quality using restricted maximum likelihood. We illustrate this method through the analysis of quantitative MRI data. The proposed method restores the validity of statistical tests, and performs near optimally in all brain regions, despite local effects of head motion. This method is amenable to the analysis of a broad type of MRI data and can accommodate any measure of image quality.
Collapse
Affiliation(s)
- Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nadège Corbin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/University Bordeaux, Bordeaux, France.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Gabriel Ziegler
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christophe Phillips
- GIGA Cyclotron Research Centre - in vivo imaging, GIGA Institute, University of Liège, Liège, Belgium
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Giulia Di Domenicantonio
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
A proposal: How to study pro-myelinating proteins in MS. Autoimmun Rev 2021; 21:102924. [PMID: 34416371 DOI: 10.1016/j.autrev.2021.102924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and degenerative disease of the CNS. An unmet need in MS is repair i.e.,promoting endogenous regeneration and remyelination after demyelinating inflammatory injury. Remyelination is critical in neuronal preservation and the prevention of clinical progression. There is a good deal of evidence for histological repair and remyelination in MS patients. Repair is driven by several prominent endogenous pro-myelinating proteinsincluding neural cellular adhesion molecule (N-CAM) and brain derived neurotrophic factor (BDNF) among others. To follow changes during acute re-myelination in vivo in MS subjects, non conventional MRI techniques are necessary such as quantitative susceptibility mapping (QSM) that detects the release of Fe from dying oligodendroglial cells and myelin water imaging (MWI) that detects water captured within newly formed myelin. The best time to monitor changes in pro-myelinating proteins and link those changes to imaging evolution is immediately after the acute inflammatory response in MS lesions (gadolinium enhancement [Gd+]) during an intense period of remyelination. We can monitor MS subjects with new Gd + lesions with periodic imaging along with sampling of blood and CSF and determine if myelin formation is linked with increases in pro-myelinating proteins. This would lead to potential therapeutic manipulation with directly administered proteins to promote CNS re-myelination in animal models and in early clinical trials.
Collapse
|
12
|
Galbusera R, Parmar K, Boillat Y, Fartaria MJ, Todea AR, Brien KO, Smolinski A, Kappos L, van der Zwaag W, Granziera C. Laminar analysis of the cerebellar cortex shows widespread damage in early MS patients: A pilot study at 7T MRI. Mult Scler J Exp Transl Clin 2020; 6:2055217320961409. [PMID: 33149930 PMCID: PMC7586276 DOI: 10.1177/2055217320961409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
Background To date, little is known about the presence and extent of cerebellar cortical pathology in early stages of MS. Objective The aims of this study were to (i) investigate microstructural changes in the normal-appearing cerebellar cortex of early MS patients by using 7 T MRI and (ii) evaluate the influence of those changes on clinical performance. Methods Eighteen RRMS patients and nine healthy controls underwent quantitative T1 and T2* measurement at 7 T MRI using high-resolution MP2RAGE and multi-echo gradient-echo imaging. After subtracting lesion masks, average T1 and T2* maps were computed for three layers in the cerebellar cortex and compared between groups using mixed effects models. Results The volume of the cerebellar cortex and its layers did not differ between patients and controls. In MS patients, significantly longer T1 values were observed in all vermis cortical layers and in the middle and external cortical layer of the cerebellar hemispheres. No between-group differences in T2* values were found. T1 values correlated with EDSS, SDMT and PASAT. Conclusions We found MRI evidence of damage in the normal-appearing cerebellar cortex at early MS stages and before volumetric changes. This microstructural alteration appears to be related to EDSS and cognitive performance.
Collapse
Affiliation(s)
- Riccardo Galbusera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Joao Fartaria
- Advanced Clinical Imaging Technology, Siemens Healthcare AG (HC CMEA SUI DI BM PI), Lausanne, Switzerland
| | - Alexandra-Ramona Todea
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kieran O' Brien
- Siemens Healthcare Pty Ltd., Bowen Hills, Australia; Centre for Advanced Imaging, University of Queensland, Australia
| | - Anna Smolinski
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Petrovic A, Aigner CS, Rund A, Stollberger R. A time domain signal equation for multi-echo spin-echo sequences with arbitrary excitation and refocusing angle and phase. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106515. [PMID: 31648131 DOI: 10.1016/j.jmr.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 05/13/2023]
Abstract
Accurate T2 mapping using multi-echo spin-echo is usually impaired by non-ideal refocusing due to B1+ inhomogeneities and slice profile effects. Incomplete refocusing gives rise to stimulated echo and so called "T1-mixing" and consequently a non-exponential signal decay. Here we present a time domain formula that incorporates all relaxation and pulse parameters and enables accurate and realistic modelling of the magnetization decay curve. By pulse parameters here we specifically mean the actual refocusing angle and axis, and phase angle of both the excitation and refocusing pulse. The method used for derivation comprises the so called Generating functions approach with subsequent back-transformation to the time domain. The proposed approach was validated by simulations using realistic RF pulse shapes as well as by comparison to phantom measurements. Excellent agreement between simulations and measurements underpin the validity of the presented approach. Conclusively, we here present a complete time domain formula ready to use for accurate T2 mapping with multi-echo spin-echo sequences.
Collapse
Affiliation(s)
- Andreas Petrovic
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria.
| | - Christoph Stefan Aigner
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | - Armin Rund
- Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria
| | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria; BioTechMed-Graz, Austria
| |
Collapse
|
14
|
Bsteh G, Haschka D, Tymoszuk P, Berek K, Petzer V, Hegen H, Wurth S, Auer M, Zinganell A, Pauli FD, Deisenhammer F, Weiss G, Berger T. Serum hepcidin levels in multiple sclerosis. Mult Scler J Exp Transl Clin 2019; 5:2055217319885984. [PMID: 31723437 PMCID: PMC6831977 DOI: 10.1177/2055217319885984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Background Brain iron accumulation is associated with multiple sclerosis (MS). Hepcidin
is the master regulator of iron homeostasis and distribution. Dysregulation
of hepcidin is a feature of different chronic inflammatory diseases but has
not been investigated in MS so far. Objective The aim of this study was to determine serum hepcidin levels of MS patients
and healthy volunteers serving as controls and to investigate possible
relations between hepcidin levels, disease activity and disease course. Methods In a cross-sectional design, we measured serum hepcidin levels in 71 MS
patients and 16 healthy controls (HC). MS patients were sub-grouped in
active relapsing–remitting MS (aRRMS), inactive (i)RRMS, active progressive
MS (aPMS) and inactive (i)PMS. Blood parameters were measured by standard
laboratory methods. Results Median hepcidin levels were 26.9 ng/ml (confidence interval (CI) 22.8; 30.9)
in MS and 17.3 ng/ml (CI 12.8; 23.4) in HC with significant age and sex
effects. Hepcidin correlates were in line with hepcidin as an indicator of
iron stores. After correction for age and sex, hepcidin was neither
associated with MS subgroups nor degree of disability and occurrence of
relapses. Conclusions Serum hepcidin levels are not associated with disease activity and disease
course in MS.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Austria
| | | | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, Austria
| | | | | | | | | | | | | | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Austria
| |
Collapse
|
15
|
Choi JY, Lee J, Nam Y, Lee J, Oh SH. Improvement of reproducibility in quantitative susceptibility mapping (QSM) and transverse relaxation rates ( R 2 * ) after physiological noise correction. J Magn Reson Imaging 2019; 49:1769-1776. [PMID: 31062456 DOI: 10.1002/jmri.26522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Numerous studies have suggested that quantitative susceptibility mapping (QSM) and transverse relaxation rates ( R 2 * ) are useful to monitor neurological diseases. For clinical use of QSM and R 2 * , reproducibility is an important feature. However, respiration-induced local magnetic field variation makes artifacts in gradient echo-based images and reduces the reproducibility of QSM and R 2 * . PURPOSE To investigate the improvement of reproducibility of QSM and R 2 * after the correction of respiration-induced field variation, and to assess the effect of varying types of the region of interest (ROI) analysis on reproducibility. STUDY TYPE Reproducibility study. POPULATION Ten controls. FIELD STRENGTH/SEQUENCE 3T/multiecho gradient echo sequence. ASSESSMENT Intrascan reproducibility of QSM and R 2 * was investigated in ROIs before and after the respiration correction. STATISTICAL TESTS Reproducibility was obtained by the square of voxel-wise correlation coefficients between scans. A paired t-test was performed for comparison between before and after the respiration correction and between QSM and R 2 * . RESULTS Based on the ROI analysis, reproducibility increased after the respiration correction. Reproducibility in the white matter (11.89% increased in QSM and 23.38% in R 2 * , P = 0.009 and 0.024, respectively) and deep gray matter (5.50% increased in QSM and 13.96% in R 2 * , P = 0.024 and 0.019, respectively) increased significantly after the respiration correction. Reproducibility of R 2 * was higher than that of QSM in the whole brain and cortical gray matter, while QSM maps showed higher reproducibility than R 2 * in the white matter and deep gray matter. DATA CONCLUSION Respiration-induced error correction significantly improved reproducibility in QSM and R 2 * mapping. QSM and R 2 * mapping showed a different level of reproducibility depending on the types of ROI analysis. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Joon Yul Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jingu Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yoonho Nam
- Department of Radiology, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| |
Collapse
|
16
|
Diagnostics and Treatments of Iron-Related CNS Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:179-194. [PMID: 31456211 DOI: 10.1007/978-981-13-9589-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron has been proposed to be responsible for neuronal loss in several diseases of the central nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), stroke, Friedreich's ataxia (FRDA), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS). In many diseases, abnormal accumulation of brain iron in disease-affected area has been observed, without clear knowledge of the contribution of iron overload to pathogenesis. Recent evidences implicate that key proteins involved in the disease pathogenesis may also participate in cellular iron metabolism, suggesting that the imbalance of brain iron homeostasis is associated with the diseases. Considering the complicated regulation of iron homeostasis within the brain, a thorough understanding of the molecular events leading to this phenotype is still to be investigated. However, current understanding has already provided the basis for the diagnosis and treatment of iron-related CNS diseases, which will be reviewed here.
Collapse
|
17
|
Belova AN, Solovieva VS, Boyko AN. [Anemia and dysregulation of iron metabolism in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:10-17. [PMID: 30160662 DOI: 10.17116/jnevro201811808210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anemia is one of the common diseases comorbid with multiple sclerosis (MS). This article reviews the prevalence and types of anemia in MS patients. It has been shown that anemia is often accompanied by a decrease in serum iron level. The authors present the data on iron metabolism in patients with MS and MRI findings concerning deposits of iron in the gray matter of the brain. The causal relationship between abnormalities in iron metabolism and MS remains unclear; this study allows to approach the understanding of the MS pathogenesis and to increase the efficacy of therapy for this disease.
Collapse
Affiliation(s)
- A N Belova
- Privolzskyi Federal Medical Research Center, Nizhny Novgorod, Russia
| | - V S Solovieva
- City Clinical Hospital #3, Regional Center fo Multiple Sclerosis, Nizhny Novgorod, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia; Center for Demyelination Diseases 'Neuroclinic', Moscow, Russia
| |
Collapse
|
18
|
Sheelakumari R, Kesavadas C, Varghese T, Sreedharan RM, Thomas B, Verghese J, Mathuranath PS. Assessment of Iron Deposition in the Brain in Frontotemporal Dementia and Its Correlation with Behavioral Traits. AJNR Am J Neuroradiol 2017; 38:1953-1958. [PMID: 28838910 DOI: 10.3174/ajnr.a5339] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Brain iron deposition has been implicated as a major culprit in the pathophysiology of neurodegeneration. However, the quantitative assessment of iron in behavioral variant frontotemporal dementia and primary progressive aphasia brains has not been performed, to our knowledge. The aim of our study was to investigate the characteristic iron levels in the frontotemporal dementia subtypes using susceptibility-weighted imaging and report its association with behavioral profiles. MATERIALS AND METHODS This prospective study included 46 patients with frontotemporal dementia (34 with behavioral variant frontotemporal dementia and 12 with primary progressive aphasia) and 34 age-matched healthy controls. We performed behavioral and neuropsychological assessment in all the subjects. The quantitative iron load was determined on SWI in the superior frontal gyrus and temporal pole, precentral gyrus, basal ganglia, anterior cingulate, frontal white matter, head and body of the hippocampus, red nucleus, substantia nigra, insula, and dentate nucleus. A linear regression analysis was performed to correlate iron content and behavioral scores in patients. RESULTS The iron content of the bilateral superior frontal and temporal gyri, anterior cingulate, putamen, right hemispheric precentral gyrus, insula, hippocampus, and red nucleus was higher in patients with behavioral variant frontotemporal dementia than in controls. Patients with primary progressive aphasia had increased iron levels in the left superior temporal gyrus. In addition, right superior frontal gyrus iron deposition discriminated behavioral variant frontotemporal dementia from primary progressive aphasia. A strong positive association was found between apathy and iron content in the superior frontal gyrus and disinhibition and iron content in the putamen. CONCLUSIONS Quantitative assessment of iron deposition with SWI may serve as a new biomarker in the diagnostic work-up of frontotemporal dementia and help distinguish frontotemporal dementia subtypes.
Collapse
Affiliation(s)
- R Sheelakumari
- From the Cognition and Behavioural Neurology Section, Department of Neurology (R.S., T.V., P.S.M.)
| | - C Kesavadas
- Department of Imaging Sciences and Interventional Radiology (C.K., B.T.), Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - T Varghese
- From the Cognition and Behavioural Neurology Section, Department of Neurology (R.S., T.V., P.S.M.)
| | - R M Sreedharan
- Department of Radiodiagnostics (R.M.S.), Medical College, Trivandrum, Kerala, India
| | - B Thomas
- Department of Imaging Sciences and Interventional Radiology (C.K., B.T.), Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - J Verghese
- Integrated Divisions of Cognitive and Motor Aging (Neurology) and Geriatrics (Medicine) (J.V.), Albert Einstein College of Medicine, Bronx, New York
| | - P S Mathuranath
- From the Cognition and Behavioural Neurology Section, Department of Neurology (R.S., T.V., P.S.M.) .,Department of Neurology (P.S.M.), National Institute of Mental Health and Neurosciences, Banglore, Karnataka, India
| |
Collapse
|
19
|
Baranovicova E, Kantorova E, Kalenska D, Lichardusova L, Bittsan-sky M, Dobrota D. Thalamic paramagnetic iron by T2* relaxometry correlates with severity of multiple sclerosis. J Biomed Res 2017; 31:301-305. [PMID: 28808201 PMCID: PMC5548990 DOI: 10.7555/jbr.31.20160023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 12/03/2016] [Indexed: 11/03/2022] Open
Abstract
Iron can contribute to the pathogenesis and progression of multiple sclerosis (MS) due to its accumulation in the human brain. We focus on the thalamus as an information transmitter between various subcortical and cortical areas. Thalamic iron seems to follow different rules than iron in other deep gray matter structures and its relation to the clinical outcomes of MS is still indistinct. In our study, we investigated a connection between thalamic iron and patients' disability and course of the disease. The presence of paramagnetic substances in the tissues was tracked by T2* quantification. Twenty-eight subjects with definite MS and 15 age-matched healthy controls underwent MRI examination with a focus on gradient echo sequence. We observed a non-monotonous course of T2* values with age in healthy controls. Furthermore, T2* distribution in MS patients was significantly wider than that of age matched healthy volunteers (P<0.001). A strong significant correlation was demonstrated between T2* distribution spread and the expanded disability status scale (EDSS) (left thalamus:P<0.00005; right thalamus: P<0.005), and multiple sclerosis severity scale (MSSS) (left thalamus: P<0.05; right thalamus: P<0.005). The paramagnetic iron distribution in the thalamus in MS was not uniform and this inhomogeneity may be considered as an indicator of thalamic neurodegeneration in MS.
Collapse
Affiliation(s)
- Eva Baranovicova
- . Biomedical Centre BioMed, Division of Neuroscience, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Ema Kantorova
- . Neurology Clinic, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia
| | - Dagmar Kalenska
- . Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Lucia Lichardusova
- . Biomedical Centre BioMed, Division of Neuroscience, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Michal Bittsan-sky
- . Biomedical Centre BioMed, Division of Neuroscience, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Dusan Dobrota
- . Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| |
Collapse
|
20
|
Burgetova A, Dusek P, Vaneckova M, Horakova D, Langkammer C, Krasensky J, Sobisek L, Matras P, Masek M, Seidl Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:1079-1086. [PMID: 28450431 DOI: 10.3174/ajnr.a5166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/26/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Potential differences between primary progressive and relapsing remitting multiple sclerosis are the subject of ongoing controversial discussions. The aim of this work was to determine whether and how primary-progressive and relapsing-remitting multiple sclerosis subtypes differ regarding conventional MR imaging parameters, cerebral iron deposits, and their association with clinical status. MATERIALS AND METHODS We analyzed 24 patients with primary-progressive MS, 80 with relapsing-remitting MS, and 20 healthy controls with 1.5T MR imaging for assessment of the conventional quantitative parameters: T2 lesion load, T1 lesion load, brain parenchymal fraction, and corpus callosum volume. Quantitative susceptibility mapping was performed to estimate iron concentration in the deep gray matter. RESULTS Decreased susceptibility within the thalamus in relapsing-remitting MS compared with primary-progressive MS was the only significant MR imaging difference between these MS subtypes. In the relapsing-remitting MS subgroup, the Expanded Disability Status Scale score was positively associated with conventional parameters reflecting white matter lesions and brain atrophy and with iron in the putamen and caudate nucleus. A positive association with putaminal iron and the Expanded Disability Status Scale score was found in primary-progressive MS. CONCLUSIONS Susceptibility in the thalamus might provide additional support for the differentiation between primary-progressive and relapsing-remitting MS. That the Expanded Disability Status Scale score was associated with conventional MR imaging parameters and iron concentrations in several deep gray matter regions in relapsing-remitting MS, while only a weak association with putaminal iron was observed in primary-progressive MS suggests different driving forces of disability in these MS subtypes.
Collapse
Affiliation(s)
- A Burgetova
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - P Dusek
- Neurology (P.D., D.H.), Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Neuroradiology (P.D.), University Medicine Göttingen, Göttingen, Germany
| | - M Vaneckova
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - D Horakova
- Neurology (P.D., D.H.), Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - C Langkammer
- Department of Neurology (C.L.), Medical University of Graz, Graz, Austria
| | - J Krasensky
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - L Sobisek
- Department of Statistics and Probability (L.S.), University of Economics, Prague, Czech Republic
| | - P Matras
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - M Masek
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - Z Seidl
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| |
Collapse
|
21
|
Sun H, Seres P, Wilman AH. Structural and functional quantitative susceptibility mapping from standard fMRI studies. NMR IN BIOMEDICINE 2017; 30:e3619. [PMID: 27687150 DOI: 10.1002/nbm.3619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/15/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Standard functional MRI (fMRI), which includes resting-state or paradigm-driven designs, is widely used in studies of brain function, aging, and disease. These fMRI studies typically use two-dimensional gradient echo-planar imaging, which inherently contains phase data that enables quantitative susceptibility mapping (QSM). This work focuses on the dual value of QSM within fMRI studies, by providing both a localized analysis of functional changes in activated tissue, and iron-sensitive structural maps in deep grey matter (DGM). Using a visual paradigm fMRI study on healthy volunteers at clinical (1.5 T) and high field strength (4.7 T), we perform functional analysis of magnitude and QSM time series, and at the same time harness structural QSM of iron-rich DGM, including globus pallidus, putamen, caudate head, substantia nigra, and red nucleus. The effects of fMRI spatial resolution and time series variation on structural DGM QSM are investigated. Our results indicate that structural DGM QSM is feasible within existing fMRI studies, provided that the voxel dimensions are equal to or less than 3 mm, with higher resolutions preferred. The mean DGM QSM values were about 40 to 220 ppb, while the interquartile ranges of the DGM QSM time series varied from about 3 to 9 ppb, depending on structure and resolution. In contrast, the peak voxel functional QSM (fQSM) changes in activated visual cortex ranged from about -10 to -30 ppb, and functional clusters were consistently smaller on QSM than magnitude fMRI. Mean-level DGM QSM of the time series was successfully extracted in all cases, while fQSM results were more prone to residual background fields and showed less functional change compared with standard magnitude fMRI. Under the conditions prescribed, standard fMRI studies may be used for robust mean-level DGM QSM, enabling study of DGM iron accumulation, in addition to functional analysis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- H Sun
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - P Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - A H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Aydin O, Buyukkaya R, Hakyemez B. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil. Pol J Radiol 2017; 82:179-187. [PMID: 28439322 PMCID: PMC5386431 DOI: 10.12659/pjr.900374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/31/2016] [Indexed: 11/09/2022] Open
Abstract
Background Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Material/Methods Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. Results There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21 Conslusions In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading.
Collapse
Affiliation(s)
- Omer Aydin
- Department of Radiology, Gaziosmanpaşa University, Tokat, Turkey
| | | | | |
Collapse
|
23
|
Lewin A, Hamilton S, Witkover A, Langford P, Nicholas R, Chataway J, Bangham CR. Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Res 2016; 1:10. [PMID: 27996064 PMCID: PMC5159626 DOI: 10.12688/wellcomeopenres.9967.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background A major cause of disability in secondary progressive multiple sclerosis (SPMS) is progressive brain atrophy, whose pathogenesis is not fully understood. The objective of this study was to identify protein biomarkers of brain atrophy in SPMS. Methods We used surface-enhanced laser desorption-ionization time-of-flight mass spectrometry to carry out an unbiased search for serum proteins whose concentration correlated with the rate of brain atrophy, measured by serial MRI scans over a 2-year period in a well-characterized cohort of 140 patients with SPMS. Protein species were identified by liquid chromatography-electrospray ionization tandem mass spectrometry. Results There was a significant (p<0.004) correlation between the rate of brain atrophy and a rise in the concentration of proteins at 15.1 kDa and 15.9 kDa in the serum. Tandem mass spectrometry identified these proteins as alpha-haemoglobin and beta-haemoglobin, respectively. The abnormal concentration of free serum haemoglobin was confirmed by ELISA (p<0.001). The serum lactate dehydrogenase activity was also highly significantly raised (p<10-12) in patients with secondary progressive multiple sclerosis. Conclusions An underlying low-grade chronic intravascular haemolysis is a potential source of the iron whose deposition along blood vessels in multiple sclerosis plaques contributes to the neurodegeneration and consequent brain atrophy seen in progressive disease. Chelators of free serum iron will be ineffective in preventing this neurodegeneration, because the iron (Fe2+) is chelated by haemoglobin.
Collapse
Affiliation(s)
- Alex Lewin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK,Present address: Department of Mathematics, Brunel University, London, UK,
| | - Shea Hamilton
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK,
| | - Aviva Witkover
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Paul Langford
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jeremy Chataway
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust and Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London, London, UK
| | - Charles R.M. Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK,
| |
Collapse
|
24
|
Lewin A, Hamilton S, Witkover A, Langford P, Nicholas R, Chataway J, Bangham CRM. Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Res 2016. [PMID: 27996064 DOI: 10.12688/wellcomeopenres.9967.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background A major cause of disability in secondary progressive multiple sclerosis (SPMS) is progressive brain atrophy, whose pathogenesis is not fully understood. The objective of this study was to identify protein biomarkers of brain atrophy in SPMS. Methods We used surface-enhanced laser desorption-ionization time-of-flight mass spectrometry to carry out an unbiased search for serum proteins whose concentration correlated with the rate of brain atrophy, measured by serial MRI scans over a 2-year period in a well-characterized cohort of 140 patients with SPMS. Protein species were identified by liquid chromatography-electrospray ionization tandem mass spectrometry. Results There was a significant (p<0.004) correlation between the rate of brain atrophy and a rise in the concentration of proteins at 15.1 kDa and 15.9 kDa in the serum. Tandem mass spectrometry identified these proteins as alpha-haemoglobin and beta-haemoglobin, respectively. The abnormal concentration of free serum haemoglobin was confirmed by ELISA (p<0.001). The serum lactate dehydrogenase activity was also highly significantly raised (p<10-12) in patients with secondary progressive multiple sclerosis. Conclusions An underlying low-grade chronic intravascular haemolysis is a potential source of the iron whose deposition along blood vessels in multiple sclerosis plaques contributes to the neurodegeneration and consequent brain atrophy seen in progressive disease. Chelators of free serum iron will be ineffective in preventing this neurodegeneration, because the iron (Fe2+) is chelated by haemoglobin.
Collapse
Affiliation(s)
- Alex Lewin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,Present address: Department of Mathematics, Brunel University, London, UK
| | - Shea Hamilton
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Aviva Witkover
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Paul Langford
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jeremy Chataway
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust and Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London, London, UK
| | - Charles R M Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
25
|
Khalil M, Renner A, Langkammer C, Enzinger C, Ropele S, Stojakovic T, Scharnagl H, Bachmaier G, Pichler A, Archelos JJ, Fuchs S, Seifert-Held T, Fazekas F. Cerebrospinal fluid lipocalin 2 in patients with clinically isolated syndromes and early multiple sclerosis. Mult Scler 2016; 22:1560-1568. [DOI: 10.1177/1352458515624560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/06/2015] [Indexed: 11/17/2022]
Abstract
Background: Lipocalin 2 (LCN2) may be involved in the immunopathogenesis of multiple sclerosis (MS) and might further impact on iron homoeostasis. Brain iron accumulates in MS; however, the association to iron-related proteins is still unsolved. Objective: To investigate cerebrospinal fluid (CSF) and serum LCN2, transferrin (Trf) and ferritin in early MS in relation to disease evolution and longitudinal brain iron accumulation. Methods: We analysed CSF and serum LCN2 by enzyme-linked immunosorbent assay (ELISA) and Trf and ferritin by nephelometry in 55 patients (45 clinically isolated syndrome (CIS), 10 MS, median clinical follow-up 4.8 years) and 63 controls. In patients, we assessed sub-cortical grey matter iron by 3T magnetic resonance imaging (MRI) R2* relaxometry (median imaging follow-up 2.2 years). Results: Compared to controls serum ( p < 0.01), CSF ( p < 0.001) LCN2 and CSF Trf ( p < 0.001) levels were reduced in the patients. CSF LCN2 correlated with CSF Trf ( r = 0.5, p < 0.001). In clinically stable patients, CSF LCN2 levels correlated with basal ganglia iron accumulation ( r = 0.5, p < 0.05). In CIS, higher CSF LCN2 levels were associated with conversion to clinically definite MS ( p < 0.05). Conclusion: We demonstrate altered LCN2 regulation in early MS and provide first evidence for this to be possibly linked to both clinical MS activity and iron accumulation in the basal ganglia.
Collapse
Affiliation(s)
- M Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - A Renner
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - C Langkammer
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - C Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria/Division of Neuroradiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - S Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - T Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - H Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - G Bachmaier
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - A Pichler
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - JJ Archelos
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - S Fuchs
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - T Seifert-Held
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - F Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
Zhang Y, Gauthier SA, Gupta A, Tu L, Comunale J, Chiang GCY, Chen W, Salustri CA, Zhu W, Wang Y. Magnetic Susceptibility from Quantitative Susceptibility Mapping Can Differentiate New Enhancing from Nonenhancing Multiple Sclerosis Lesions without Gadolinium Injection. AJNR Am J Neuroradiol 2016; 37:1794-1799. [PMID: 27365331 DOI: 10.3174/ajnr.a4856] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/15/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Magnetic susceptibility values of multiple sclerosis lesions increase as they change from gadolinium-enhancing to nonenhancing. Can susceptibility values measured on quantitative susceptibility mapping without gadolinium injection be used to identify the status of lesion enhancement in surveillance MR imaging used to monitor patients with MS? MATERIALS AND METHODS In patients who had prior MR imaging and quantitative susceptibility mapping in a current MR imaging, new T2-weighted lesions were evaluated for enhancement on conventional T1-weighted imaging with gadolinium, and their susceptibility values were measured on quantitative susceptibility mapping. Receiver operating characteristic analysis was used to assess the diagnostic accuracy of using quantitative susceptibility mapping in distinguishing new gadolinium-enhancing from new nonenhancing lesions. A generalized estimating equation was used to assess differences in susceptibility values among lesion types. RESULTS In 54 patients, we identified 86 of 133 new lesions that were gadolinium-enhancing and had relative susceptibility values significantly lower than those of nonenhancing lesions (β = -17.2; 95% CI, -20.2 to -14.2; P < .0001). Using susceptibility values to discriminate enhancing from nonenhancing lesions, we performed receiver operating characteristic analysis and found that the area under the curve was 0.95 (95% CI, 0.92-0.99). Sensitivity was measured at 88.4%, and specificity, at 91.5%, with a cutoff value of 11.2 parts per billion for quantitative susceptibility mapping-measured susceptibility. CONCLUSIONS During routine MR imaging monitoring to detect new MS lesion activity, quantitative susceptibility mapping can be used without gadolinium injection for accurate identification of the BBB leakage status in new T2WI lesions.
Collapse
Affiliation(s)
- Y Zhang
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Radiology (Y.Z., C.A.S., Y.W.), Weill Cornell Medical College, New York, New York
| | | | - A Gupta
- Radiology (A.G., J.C., G.C.-Y.C.), Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - L Tu
- School of Applied and Engineering Physics (L.T.)
| | - J Comunale
- Radiology (A.G., J.C., G.C.-Y.C.), Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - G C-Y Chiang
- Radiology (A.G., J.C., G.C.-Y.C.), Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - W Chen
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C A Salustri
- Department of Radiology (Y.Z., C.A.S., Y.W.), Weill Cornell Medical College, New York, New York.,Department of Biomedical Engineering (Y.W.), Cornell University, Ithaca, New York
| | - W Zhu
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Wang
- Department of Radiology (Y.Z., C.A.S., Y.W.), Weill Cornell Medical College, New York, New York .,Department of Biomedical Engineering (Y.W.), Cornell University, Ithaca, New York
| |
Collapse
|
27
|
Zhang Y, Gauthier SA, Gupta A, Chen W, Comunale J, Chiang GCY, Zhou D, Askin G, Zhu W, Pitt D, Wang Y. Quantitative Susceptibility Mapping and R2* Measured Changes during White Matter Lesion Development in Multiple Sclerosis: Myelin Breakdown, Myelin Debris Degradation and Removal, and Iron Accumulation. AJNR Am J Neuroradiol 2016; 37:1629-35. [PMID: 27256856 DOI: 10.3174/ajnr.a4825] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping and R2* are sensitive to myelin and iron changes in multiple sclerosis lesions. This study was designed to characterize lesion changes on quantitative susceptibility mapping and R2* at various gadolinium-enhancement stages. MATERIALS AND METHODS This study included 64 patients with MS with different enhancing patterns in white matter lesions: nodular, shell-like, nonenhancing < 1 year old, and nonenhancing 1-3 years old. These represent acute, late acute, early chronic, and late chronic lesions, respectively. Susceptibility values measured on quantitative susceptibility mapping and R2* values were compared among the 4 lesion types. Their differences were assessed with a generalized estimating equation, controlling for Expanded Disability Status Scale score, age, and disease duration. RESULTS We analyzed 203 lesions: 80 were nodular-enhancing, of which 77 (96.2%) were isointense on quantitative susceptibility mapping; 33 were shell-enhancing, of which 30 (90.9%) were hyperintense on quantitative susceptibility mapping; and 49 were nonenhancing lesions < 1 year old and 41 were nonenhancing lesions 1-3 years old, all of which were hyperintense on quantitative susceptibility mapping. Their relative susceptibility/R2* values were 0.5 ± 4.4 parts per billion/-5.6 ± 2.9 Hz, 10.2 ± 5.4 parts per billion/-8.0 ± 2.6 Hz, 20.2 ± 7.8 parts per billion/-3.1 ± 2.3 Hz, and 33.2 ± 8.2 parts per billion/-2.0 ± 2.6 Hz, respectively, and were significantly different (P < .005). CONCLUSIONS Early active MS lesions with nodular enhancement show R2* decrease but no quantitative susceptibility mapping change, reflecting myelin breakdown; late active lesions with peripheral enhancement show R2* decrease and quantitative susceptibility mapping increase in the lesion center, reflecting further degradation and removal of myelin debris; and early or late chronic nonenhancing lesions show both quantitative susceptibility mapping and R2* increase, reflecting iron accumulation.
Collapse
Affiliation(s)
- Y Zhang
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | | | - A Gupta
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | - W Chen
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Comunale
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | - G C-Y Chiang
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | - D Zhou
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | - G Askin
- Healthcare Policy and Research (G.A.), Weill Cornell Medical College, New York, New York
| | - W Zhu
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - D Pitt
- Department of Neurology (D.P.), School of Medicine, Yale University, New Haven, Connecticut
| | - Y Wang
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.) Department of Biomedical Engineering (Y.W.), Cornell University, Ithaca, New York.
| |
Collapse
|
28
|
Zhang Y, Gauthier SA, Gupta A, Comunale J, Chia-Yi Chiang G, Zhou D, Chen W, Giambrone AE, Zhu W, Wang Y. Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM). J Magn Reson Imaging 2016; 44:426-32. [PMID: 26800367 DOI: 10.1002/jmri.25144] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To measure the longitudinal change in multiple sclerosis (MS) lesion susceptibility using quantitative susceptibility mapping (QSM). MATERIALS AND METHODS The study was approved by our Institutional Review Board. Longitudinal changes in quantitative susceptibility values of new enhanced-with-Gd MS lesions were measured at baseline magnetic resonance imaging (MRI) and on a follow-up MRI in 29 patients within 2 years using a 3D multiple echo gradient echo sequence on a 3T scanner. Paired t-test and the generalized estimating equations (GEE) model was used to analyze the longitudinal change. RESULTS Lesion susceptibility values relative to normal-appearing white matter (NAWM) changed from 3.61 ± 6.11 ppb when enhanced-with-Gd at the baseline MRI to 20.42 ± 10.23 ppb when not-enhanced-with-Gd at the follow-up MRI (P < 0.001). CONCLUSION MS lesion susceptibility value increases significantly as the lesion evolves from enhanced-with-Gd to not-enhanced-with-Gd, serving as a disease biomarker. J. Magn. Reson. Imaging 2016;44:426-432.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Joseph Comunale
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | | | - Dong Zhou
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Weiwei Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ashley E Giambrone
- Department of Healthcare Policy & Research, Weill Cornell Medical College, New York, New York, USA
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
29
|
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int J Mol Sci 2016; 17:ijms17010100. [PMID: 26784172 PMCID: PMC4730342 DOI: 10.3390/ijms17010100] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/06/2023] Open
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.
Collapse
Affiliation(s)
- Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - David Pitt
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
30
|
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int J Mol Sci 2016. [PMID: 26784172 DOI: 10.3390/ijmsl17010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.
Collapse
Affiliation(s)
- Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - David Pitt
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Lee JY, Biemond M, Petratos S. Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology. Neurodegener Dis Manag 2015; 5:527-48. [DOI: 10.2217/nmt.15.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current therapeutics in multiple sclerosis (MS) target the putative inflammation and immune attack on CNS myelin. Despite their effectiveness in blunting the relapse rate in MS patients, such therapeutics do not prevent MS disease progression. Importantly, specific clinical dilemma arises through inability to predict MS progression and thereby therapeutically target axonal injury during MS, limiting permanent disability. The current review identifies immune and neurobiological principles that govern the sequelae of axonal degeneration during MS disease progression. Defining the specific disease arbiters, inflammatory and autoimmune, oligodendrocyte dystrophy and degenerative myelin, we discuss a basis for a molecular mechanism in axons that may be targeted therapeutically, in spatial and temporal manner to limit axonal degeneration and thereby halt progression of MS.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Melissa Biemond
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| |
Collapse
|
32
|
Sheelakumari R, Madhusoodanan M, Radhakrishnan A, Ranjith G, Thomas B. A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with SWI and Corticospinal Tract Degeneration with DTI Help? AJNR Am J Neuroradiol 2015; 37:252-8. [PMID: 26494694 DOI: 10.3174/ajnr.a4524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Iron-mediated oxidative stress plays a pivotal role in the pathogenesis of amyotrophic lateral sclerosis. This study aimed to assess iron deposition qualitatively and quantitatively by using SWI and microstructural changes in the corticospinal tract by using DTI in patients with amyotrophic lateral sclerosis. MATERIALS AND METHODS Seventeen patients with amyotrophic lateral sclerosis and 15 age- and sex-matched controls underwent brain MR imaging with SWI and DTI. SWI was analyzed for both signal-intensity scoring and quantitative estimation of iron deposition in the anterior and posterior banks of the motor and sensory cortices and deep gray nuclei. The diffusion measurements along the corticospinal tract at the level of pons and medulla were obtained by ROI analysis. RESULTS Patients with amyotrophic lateral sclerosis showed reduced signal-intensity grades in the posterior bank of the motor cortex bilaterally. Quantitative analysis confirmed significantly higher iron content in the posterior bank of the motor cortex in patients with amyotrophic lateral sclerosis. In contrast, no significant differences were noted for the anterior bank of the motor cortex, anterior and posterior banks of the sensory cortex, and deep nuclei. Receiver operating characteristic comparison showed a cutoff of 35μg Fe/g of tissue with an area under the curve of 0.78 (P = .008) for the posterior bank of the motor cortex in discriminating patients with amyotrophic lateral sclerosis from controls. Fractional anisotropy was lower in the pyramidal tracts of patients with amyotrophic lateral sclerosis at the pons and medulla on either side, along with higher directionally averaged mean diffusivity values. The combination of SWI and DTI revealed an area under the curve of 0.784 for differentiating patients with amyotrophic lateral sclerosis from controls. CONCLUSIONS Measurements of motor cortex iron deposition and diffusion tensor parameters of the corticospinal tract may be useful biomarkers for the diagnosis of clinically suspected amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | | | | | - G Ranjith
- Devices Testing Laboratory, Biomedical Technology Wing (G.R.)
| | - B Thomas
- Department of Imaging Sciences and Interventional Radiology (B.T.), Sree Chitra Thirunal Institute of Medical Sciences and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
33
|
Ropele S, Wattjes MP, Langkammer C, Kilsdonk ID, Graaf WL, Frederiksen JL, Fuglø D, Yiannakas M, Wheeler-Kingshott CAM, Enzinger C, Rocca MA, Sprenger T, Amman M, Kappos L, Filippi M, Rovira A, Ciccarelli O, Barkhof F, Fazekas F. Multicenter R2* mapping in the healthy brain. Magn Reson Med 2015; 71:1103-7. [PMID: 23657963 DOI: 10.1002/mrm.24772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The R2* relaxation rate constant has been suggested as a sensitive measure for iron accumulation. The aim of this multi-center study was to assess the inter-scanner and inter-subject variability of R2* mapping and to investigate the relationship between brain volume and R2* in specific structures. METHODS R2* mapping was performed in 81 healthy subjects in seven centers using different 3 T systems. R2* was calculated from a dual-echo gradient echo sequence and was assessed in several deep gray matter structures. The inter-scanner and inter-subject variability of R2* was calculated by means of the coefficient of variation before and after correcting for age. RESULTS Significant center effects were seen in some regions which get lost after age correction. The coefficient of variation for the inter-center variability was much lower (<5.6%) than for the intra-subject variability (6.7%-11.7%). R2* in the putamen and red nucleus scaled with cortical volume while R2* in the globus pallidus and the substantia nigra was negatively associated with white matter volume. CONCLUSION R2* is a robust and reproducible measure in a multicenter setting provided that a standardized MRI protocol is used. The relationship between iron concentration in deep gray matter and volume of specific brain compartments needs further investigation.
Collapse
Affiliation(s)
- Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sudre CH, Cardoso MJ, Bouvy WH, Biessels GJ, Barnes J, Ourselin S. Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:2079-2102. [PMID: 25850086 DOI: 10.1109/tmi.2015.2419072] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In neuroimaging studies, pathologies can present themselves as abnormal intensity patterns. Thus, solutions for detecting abnormal intensities are currently under investigation. As each patient is unique, an unbiased and biologically plausible model of pathological data would have to be able to adapt to the subject's individual presentation. Such a model would provide the means for a better understanding of the underlying biological processes and improve one's ability to define pathologically meaningful imaging biomarkers. With this aim in mind, this work proposes a hierarchical fully unsupervised model selection framework for neuroimaging data which enables the distinction between different types of abnormal image patterns without pathological a priori knowledge. Its application on simulated and clinical data demonstrated the ability to detect abnormal intensity clusters, resulting in a competitive to improved behavior in white matter lesion segmentation when compared to three other freely-available automated methods.
Collapse
|
35
|
Liu C, Wei H, Gong NJ, Cronin M, Dibb R, Decker K. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications. ACTA ACUST UNITED AC 2015; 1:3-17. [PMID: 26844301 PMCID: PMC4734903 DOI: 10.18383/j.tom.2015.00136] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantitative susceptibility mapping (QSM) is a recently developed magnetic resonance imaging (MRI) technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field results from a superposition of the dipole fields generated by all voxels and that each voxel has its own unique magnetic susceptibility. QSM provides an improved contrast-to-noise ratio for certain tissues and structures compared with its magnitude counterpart. More importantly, magnetic susceptibility directly reflects the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism that generates susceptibility contrast within tissues and some associated applications.
Collapse
Affiliation(s)
- Chunlei Liu
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710; Department of Radiology, Duke University School of Medicine, Durham, NC 27710; Center for In Vivo Microscopy, Duke University School of Medicine, Durham, NC 27710
| | - Hongjiang Wei
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710
| | - Nan-Jie Gong
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710
| | - Matthew Cronin
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710
| | - Russel Dibb
- Center for In Vivo Microscopy, Duke University School of Medicine, Durham, NC 27710
| | - Kyle Decker
- Center for In Vivo Microscopy, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
36
|
Aschermann Z, Perlaki G, Orsi G, Nagy SA, Horvath A, Bone B, Bihari K, Acs P, Janszky J, Komoly S, Bogner P. Quantitative assessment of brain iron by R2* relaxometry in patients with cervical dystonia. Mov Disord 2015; 30:1422-6. [PMID: 26230515 DOI: 10.1002/mds.26306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The pathophysiology of cervical dystonia is poorly understood. Increased brain iron deposition has been described in different movement disorders. Our aim was to investigate brain iron content in patients with cervical dystonia, using R2* relaxation rate, a validated MRI marker of brain iron level. METHODS Twelve female patients with primary focal cervical dystonia (mean age: 45.4 ± 8.0 years) and 12 age-matched healthy female subjects (mean age: 45.0 ± 8.0 years) underwent 3T MRI to obtain regional R2* relaxation rates of the thalamus, caudate nucleus, putamen, and globus pallidus (GP). Regions of interest were delineated automatically on T1-weighted MRIs. RESULTS R2* values in the putamen were positively correlated with age. Patients with cervical dystonia showed elevated R2* values in the GP. CONCLUSIONS This pilot study provides the first quantitative support for increased brain iron deposition in cervical dystonia. Further studies are needed to explore the implications of this finding.
Collapse
Affiliation(s)
| | - Gabor Perlaki
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.,Pecs Diagnostic Center, Pecs, Hungary
| | - Gergely Orsi
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.,Pecs Diagnostic Center, Pecs, Hungary
| | - Szilvia Anett Nagy
- Pecs Diagnostic Center, Pecs, Hungary.,Department of Neurosurgery, Section of Experimental Neuroimaging and Clinical Neuroradiology, University of Pecs, Pecs, Hungary
| | - Andrea Horvath
- Pecs Diagnostic Center, Pecs, Hungary.,Department of Neurosurgery, Section of Experimental Neuroimaging and Clinical Neuroradiology, University of Pecs, Pecs, Hungary
| | - Beata Bone
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Katalin Bihari
- National Institute of Clinical Neurosciences, Budapest, Hungary.,Department of Neurology, Bacs-Kiskun County Hospital, Kecskemet, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Jozsef Janszky
- Department of Neurology, University of Pecs, Pecs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Samuel Komoly
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Peter Bogner
- Pecs Diagnostic Center, Pecs, Hungary.,Department of Neurosurgery, Section of Experimental Neuroimaging and Clinical Neuroradiology, University of Pecs, Pecs, Hungary
| |
Collapse
|
37
|
Khalil M, Langkammer C, Pichler A, Pinter D, Gattringer T, Bachmaier G, Ropele S, Fuchs S, Enzinger C, Fazekas F. Dynamics of brain iron levels in multiple sclerosis: A longitudinal 3T MRI study. Neurology 2015; 84:2396-402. [PMID: 25979698 DOI: 10.1212/wnl.0000000000001679] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 12/29/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We investigated longitudinal changes in iron concentration in the subcortical gray matter (caudate nucleus, globus pallidus, putamen, thalamus) of patients with clinically isolated syndrome (CIS) and definite multiple sclerosis (MS) and their relation to clinical and other morphologic variables. METHODS We followed 144 patients (76 CIS; median Expanded Disability Status Scale [EDSS] 1.0 [interquartile range (IQR) 0.0-2.0]; 68 MS; median EDSS 2.0 [IQR 1.0-3.3]) clinically and with 3T MRI over a median period of 2.9 (IQR 1.3-4.0) years. Iron concentration was determined by R2* relaxometry at baseline and last follow-up. RESULTS At baseline, subcortical gray matter iron deposition was higher in MS compared to CIS. In CIS, R2* rates increased in the globus pallidus (p < 0.001), putamen (p < 0.001), and caudate nucleus (p < 0.001), whereas R2* rates in the thalamus decreased (p < 0.05). In MS, R2* rates increased in the putamen (p < 0.05), remained stable in the globus pallidus and caudate nucleus, and decreased in the thalamus (p < 0.01). Changes in R2* relaxation rates were unrelated to changes in the volume of respective structures, of T2 lesion load, and of disability. CONCLUSIONS Iron accumulation in the basal ganglia is more pronounced in the early than later phases of the disease and occurs independent from other morphologic brain changes. Short-term changes in iron concentration are not associated with disease activity or changes in disability.
Collapse
Affiliation(s)
- Michael Khalil
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria.
| | - Christian Langkammer
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| | - Alexander Pichler
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| | - Daniela Pinter
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| | - Thomas Gattringer
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| | - Gerhard Bachmaier
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| | - Stefan Ropele
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| | - Siegrid Fuchs
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| | - Christian Enzinger
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| | - Franz Fazekas
- From the Department of Neurology (M.K., C.L., A.P., D.P., T.G., S.R., S.F., C.E., F.F.), Department of Radiology (Division of Neuroradiology) (C.E.), and Institute for Medical Informatics, Statistics and Documentation (G.B.), Medical University of Graz, Austria
| |
Collapse
|
38
|
Xia S, Zheng G, Shen W, Liu S, Zhang LJ, Haacke EM, Lu GM. Quantitative measurements of brain iron deposition in cirrhotic patients using susceptibility mapping. Acta Radiol 2015; 56:339-46. [PMID: 24646625 DOI: 10.1177/0284185114525374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Susceptibility-weighted imaging (SWI) has been used to detect micro-bleeds and iron deposits in the brain. However, no reports have been published on the application of SWI in studying iron changes in the brain of cirrhotic patients. PURPOSE To compare the susceptibility of different brain structures in cirrhotic patients with that in healthy controls and to evaluate susceptibility as a potential biomarker and correlate the measured susceptibility and cadaveric brain iron concentration for a variety of brain structures. MATERIAL AND METHODS Forty-three cirrhotic patients (27 men, 16 women; mean age, 50 ± 9 years) and 34 age- and sex-matched healthy controls (22 men, 12 women; mean age, 47 ± 7 years) were included in this retrospective study. Susceptibility was measured in the frontal white matter, basal ganglia, midbrain, and dentate nucleus and compared with results gathered from two postmortem brain studies. Correlation between susceptibility and clinical biomarkers and neuropsychiatric tests scores was calculated. RESULTS In cirrhotic patients, the susceptibility of left frontal white matter, bilateral caudate head, and right substantia nigra was higher than that in healthy controls (P < 0.05). There was a positive correlation between susceptibility and iron concentration from one postmortem brain study (r = 0.835, P = 0.01) in eight deep grey matter structures and another in five brain structures (r = 0.900, P = 0.03). The susceptibility of right caudate head (r = 0.402) and left caudate head (r = 0.408) correlated with neuropsychological test scores (both P < 0.05). CONCLUSION Abnormal iron deposits occur in cirrhotic patients and abnormal susceptibility of some brain regions appears to reflect neurocognitive changes.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, PR China
- Department of Medical Imaging, Tianjin First Central Hospital, Tianjin, PR China
| | - Gang Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, PR China
| | - Wen Shen
- Department of Medical Imaging, Tianjin First Central Hospital, Tianjin, PR China
| | - Saifeng Liu
- McMaster University, Hamilton, Ontario, PR China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, PR China
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
39
|
Raz E, Branson B, Jensen JH, Bester M, Babb JS, Herbert J, Grossman RI, Inglese M. Relationship between iron accumulation and white matter injury in multiple sclerosis: a case-control study. J Neurol 2015; 262:402-9. [PMID: 25416468 PMCID: PMC4452503 DOI: 10.1007/s00415-014-7569-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
Despite the increasing development and applications of iron imaging, the pathophysiology of iron accumulation in multiple sclerosis (MS), and its role in disease progression and development of clinical disability, is poorly understood. The aims of our study were to determine the presence and extent of iron in T2 visible lesions and gray and white matter using magnetic field correlation (MFC) MRI and correlate with microscopic white matter (WM) injury as measured by diffusion tensor imaging (DTI). This is a case-control study including a series of 31 patients with clinically definite MS. The mean age was 39 years [standard deviation (SD) = 9.55], they were 11 males and 20 females, with a disease duration average of 3 years (range 0-13) and a median EDSS of 2 (0-4.5). Seventeen healthy volunteers (6 males and 11 females) with a mean age of 36 years (SD = 11.4) were recruited. All subjects underwent MR imaging on a 3T scanner using T2-weighted sequence, 3D T1 MPRAGE, MFC, single-shot DTI and post-contrast T1. T2-lesion volumes, brain volumetry, DTI parameters and iron quantification were calculated and multiple correlations were exploited. Increased MFC was found in the putamen (p = 0.061), the thalamus (p = 0.123), the centrum semiovale (p = 0.053), globus pallidus (p = 0.008) and gray matter (GM) (p = 0.004) of MS patients compared to controls. The mean lesional MFC was 121 s(-2) (SD = 67), significantly lower compared to the GM MFC (<0.0001). The GM mean diffusivity (MD) was inversely correlated with the MFC in the centrum semiovale (p < 0.001), and in the splenium of the corpus callosum (p < 0.001). Patients with MS have increased iron in the globus pallidus, putamen and centrum with a trend toward increased iron in all the brain structures. Quantitative iron evaluation of WM and GM may improve the understanding of MS pathophysiology, and might serve as a surrogate marker of disease progression.
Collapse
Affiliation(s)
- Eytan Raz
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Brittany Branson
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| | - Jens H. Jensen
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Maxim Bester
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
- Department of Diagnostic and Interventional Neuroradiology, University Medical Centre, Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - James S. Babb
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| | - Joseph Herbert
- Department of Neurology, New York University Langone Medical Center, New York, NY, USA
| | - Robert I. Grossman
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| | - Matilde Inglese
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
- Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY
| |
Collapse
|
40
|
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014; 13:1045-60. [PMID: 25231526 DOI: 10.1016/s1474-4422(14)70117-6] [Citation(s) in RCA: 1249] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMMARY In the CNS, iron in several proteins is involved in many important processes such as oxygen transportation, oxidative phosphorylation, myelin production, and the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation and modification of lipids, proteins, carbohydrates, and DNA. During ageing, different iron complexes accumulate in brain regions associated with motor and cognitive impairment. In various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, changes in iron homoeostasis result in altered cellular iron distribution and accumulation. MRI can often identify these changes, thus providing a potential diagnostic biomarker of neurodegenerative diseases. An important avenue to reduce iron accumulation is the use of iron chelators that are able to cross the blood-brain barrier, penetrate cells, and reduce excessive iron accumulation, thereby affording neuroprotection.
Collapse
Affiliation(s)
- Roberta J Ward
- Centre for Neuroinflammation and Neurodegeneration, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK; Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Robert R Crichton
- Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
41
|
Iron and multiple sclerosis. Neurobiol Aging 2014; 35 Suppl 2:S51-8. [DOI: 10.1016/j.neurobiolaging.2014.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 11/23/2022]
|
42
|
Ciccarelli O, Barkhof F, Bodini B, Stefano ND, Golay X, Nicolay K, Pelletier D, Pouwels PJW, Smith SA, Wheeler-Kingshott CAM, Stankoff B, Yousry T, Miller DH. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol 2014; 13:807-22. [DOI: 10.1016/s1474-4422(14)70101-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 2014; 10:459-68. [PMID: 25002107 DOI: 10.1038/nrneurol.2014.118] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MRI and histological studies have shown global alterations in iron levels in the brains of patients with multiple sclerosis (MS), including increases in the iron stored by macrophages and microglia. Excessive free iron can be toxic, and accumulation of iron in MS has generally been thought to be detrimental. However, iron maintains the integrity of oligodendrocytes and myelin, and facilitates their regeneration following injury. The extracellular matrix, a key regulator of remyelination, might also modulate iron levels. This Review highlights key histological and MRI studies that have investigated changes in iron distribution associated with MS. Potential sources of iron, as well as iron regulatory proteins and the detrimental roles of excessive iron within the CNS, are also discussed, with emphasis on the importance of iron within cells for oxidative metabolism, proliferation and differentiation of oligodendrocytes, and myelination. In light of the beneficial and detrimental properties of iron within the CNS, we present considerations for treatments that target iron in MS. Such treatments must balance trophic and toxic properties of iron, by providing sufficient iron levels for remyelination and repair while avoiding excesses that might overwhelm homeostatic mechanisms and contribute to damage.
Collapse
Affiliation(s)
- Erin Stephenson
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Health Medical Research Centre, Room 187, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Nabeela Nathoo
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Health Medical Research Centre, Room 187, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Yasamin Mahjoub
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Health Medical Research Centre, Room 187, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Health Medical Research Centre, Room 187, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Health Medical Research Centre, Room 187, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
44
|
Seixas D, Foley P, Palace J, Lima D, Ramos I, Tracey I. Pain in multiple sclerosis: a systematic review of neuroimaging studies. NEUROIMAGE-CLINICAL 2014; 5:322-31. [PMID: 25161898 PMCID: PMC4141976 DOI: 10.1016/j.nicl.2014.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/26/2022]
Abstract
Introduction While pain in multiple sclerosis (MS) is common, in many cases the precise mechanisms are unclear. Neuroimaging studies could have a valuable role in investigating the aetiology of pain syndromes. The aim of this review was to synthesise and appraise the current literature on neuroimaging studies of pain syndromes in MS. Methods We systematically searched PubMed and Scopus from their inception dates to the 2nd of April 2013. Studies were selected by predefined inclusion and exclusion criteria. Methodological quality was appraised. Descriptive statistical analysis was conducted. Results We identified 38 studies of variable methodology and quality. All studies but one used conventional structural magnetic resonance imaging, and the majority reported a positive association between location of demyelinating lesions and specific neuropathic pain syndromes. Most investigated headache and facial pain, with more common pain syndromes such as limb pain being relatively understudied. We identified a number of methodological concerns, which along with variable study design and reporting limit our ability to synthesise data. Higher quality studies were however less likely to report positive associations of lesion distribution to pain syndromes. Conclusions Further high quality hypothesis-driven neuroimaging studies of pain syndromes in MS are required to clarify pain mechanisms, particularly for the commonest pain syndromes. We reviewed neuroimaging studies of pain syndromes in multiple sclerosis (MS). All studies investigated neuropathic pain or headache, mainly using structural MRI. Most reported associations between location of demyelinating lesions and pain. Culprit lesions were most commonly reported in the brainstem. High quality hypothesis-driven neuroimaging studies of pain in MS are still needed.
Collapse
Affiliation(s)
- D Seixas
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, UK ; Department of Experimental Biology, Faculty of Medicine, Porto University, Portugal ; Nuffield Division Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK ; IBMC - Instituto de Biologia Molecular e Celular, Porto University, Portugal
| | - P Foley
- Department of Clinical Neurosciences, University of Edinburgh, UK ; Department of Palliative Medicine, University of Edinburgh, UK
| | - J Palace
- Division of Clinical Neurology, University of Oxford, UK ; Oxford Radcliffe Hospitals NHS Trust, UK
| | - D Lima
- Department of Experimental Biology, Faculty of Medicine, Porto University, Portugal ; IBMC - Instituto de Biologia Molecular e Celular, Porto University, Portugal
| | - I Ramos
- Department of Radiology, Centro Hospitalar São João, Portugal ; Medical Imaging Group, Faculty of Medicine, Porto University, Portugal
| | - I Tracey
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, UK ; Nuffield Division Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
45
|
Dimov AV, Liu T, Spincemaille P, Ecanow JS, Tan H, Edelman RR, Wang Y. Joint estimation of chemical shift and quantitative susceptibility mapping (chemical QSM). Magn Reson Med 2014; 73:2100-10. [PMID: 24947227 DOI: 10.1002/mrm.25328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this work is to address the unsolved problem of quantitative susceptibility mapping (QSM) of tissue with fat where both fat and susceptibility change the MR signal phase. THEORY AND METHODS The chemical shift of fat was treated as an additional unknown and was estimated jointly with susceptibility to provide the best data fitting using an automated and iterative algorithm. A simplified susceptibility model was used to calculate an updated value of the chemical shift based on the local magnetic field in each iteration. Numerical simulation, phantom experiments and in vivo imaging were performed. Artifacts were assessed by measuring the susceptibility variance in uniform regions. Accuracy was assessed by comparison with ground truth in simulation, and using a susceptibility matching approach in phantom. RESULTS Using the proposed method, artifacts on the QSM image were markedly suppressed in all tested datasets compared with results generated using fixed chemical shifts. Accuracy of the estimated susceptibility was also improved in numerical simulation and phantom experiments. CONCLUSION A joint estimation of fat content and magnetic susceptibility using an iterative chemical shift update was shown to improve image quality and accuracy on QSM images.
Collapse
Affiliation(s)
- Alexey V Dimov
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Tian Liu
- Medimagemetric, LLC, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Jacob S Ecanow
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA.,University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Huan Tan
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA.,Department of Surgery (Neurosurgery), University of Chicago, Chicago, Illinois, USA
| | - Robert R Edelman
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA.,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
46
|
Miyagawa M, Maeda M, Umino M, Kagawa K, Nakamichi K, Sakuma H, Tomimoto H. Low signal intensity in U-fiber identified by susceptibility-weighted imaging in two cases of progressive multifocal leukoencephalopathy. J Neurol Sci 2014; 344:198-202. [PMID: 24972818 DOI: 10.1016/j.jns.2014.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) is a useful tool for diagnosing and monitoring progressive multifocal leukoencephalopathy (PML). Although characteristic MRI findings of PML are well known, we noted a potential new finding for this disease on susceptibility-weighted imaging (SWI). Two patients with PML were studied and followed using MRI. SWI revealed low signal intensities in U-fibers adjacent to the white matter lesions of PML. These findings progressed along with the disease progression. The cause underlying these findings remains unclear. This new finding suggests that SWI is useful for the diagnosis of PML. It can provide a helpful clue in a clinical setting.
Collapse
Affiliation(s)
- Mai Miyagawa
- Department of Radiology, Mie University School of Medicine, Japan
| | - Masayuki Maeda
- Department of Radiology, Mie University School of Medicine, Japan.
| | - Maki Umino
- Department of Radiology, Mie University School of Medicine, Japan
| | - Ken Kagawa
- Department of Neurology, Mie University School of Medicine, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, Japan
| | | |
Collapse
|
47
|
Bonnier G, Roche A, Romascano D, Simioni S, Meskaldji D, Rotzinger D, Lin YC, Menegaz G, Schluep M, Du Pasquier R, Sumpf TJ, Frahm J, Thiran JP, Krueger G, Granziera C. Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Ann Clin Transl Neurol 2014; 1:423-32. [PMID: 25356412 PMCID: PMC4184670 DOI: 10.1002/acn3.68] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/27/2014] [Accepted: 04/28/2014] [Indexed: 01/16/2023] Open
Abstract
Introduction In patients with multiple sclerosis (MS), conventional magnetic resonance imaging (MRI) provides only limited insights into the nature of brain damage with modest clinic-radiological correlation. In this study, we applied recent advances in MRI techniques to study brain microstructural alterations in early relapsing-remitting MS (RRMS) patients with minor deficits. Further, we investigated the potential use of advanced MRI to predict functional performances in these patients. Methods Brain relaxometry (T1, T2, T2*) and magnetization transfer MRI were performed at 3T in 36 RRMS patients and 18 healthy controls (HC). Multicontrast analysis was used to assess for microstructural alterations in normal-appearing (NA) tissue and lesions. A generalized linear model was computed to predict clinical performance in patients using multicontrast MRI data, conventional MRI measures as well as demographic and behavioral data as covariates. Results Quantitative T2 and T2* relaxometry were significantly increased in temporal normal-appearing white matter (NAWM) of patients compared to HC, indicating subtle microedema (P = 0.03 and 0.004). Furthermore, significant T1 and magnetization transfer ratio (MTR) variations in lesions (mean T1 z-score: 4.42 and mean MTR z-score: −4.09) suggested substantial tissue loss. Combinations of multicontrast and conventional MRI data significantly predicted cognitive fatigue (P = 0.01, Adj-R2 = 0.4), attention (P = 0.0005, Adj-R2 = 0.6), and disability (P = 0.03, Adj-R2 = 0.4). Conclusion Advanced MRI techniques at 3T, unraveled the nature of brain tissue damage in early MS and substantially improved clinical–radiological correlations in patients with minor deficits, as compared to conventional measures of disease.
Collapse
Affiliation(s)
- Guillaume Bonnier
- Advanced Clinical Imaging Technology group, Siemens Healthcare IM BM PI Lausanne, Switzerland ; Neuro-immunology and Laboratoire de recherché en neuroimagérie, Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne, Switzerland ; LTS5, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Alexis Roche
- Advanced Clinical Imaging Technology group, Siemens Healthcare IM BM PI Lausanne, Switzerland ; LTS5, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne, Switzerland
| | - David Romascano
- Advanced Clinical Imaging Technology group, Siemens Healthcare IM BM PI Lausanne, Switzerland ; LTS5, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Samanta Simioni
- Neuro-immunology and Laboratoire de recherché en neuroimagérie, Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne, Switzerland
| | - Djalel Meskaldji
- LTS5, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - David Rotzinger
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne, Switzerland
| | - Ying-Chia Lin
- Department of Computer Science, University of Verona Verona, Italy
| | - Gloria Menegaz
- Department of Computer Science, University of Verona Verona, Italy
| | - Myriam Schluep
- Neuro-immunology and Laboratoire de recherché en neuroimagérie, Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne, Switzerland
| | - Renaud Du Pasquier
- Neuro-immunology and Laboratoire de recherché en neuroimagérie, Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne, Switzerland
| | - Tilman Johannes Sumpf
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry Goettingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry Goettingen, Germany
| | | | - Gunnar Krueger
- Advanced Clinical Imaging Technology group, Siemens Healthcare IM BM PI Lausanne, Switzerland ; Healthcare Sector IM&WS S, Siemens Schweiz AG Renens, Switzerland
| | - Cristina Granziera
- Advanced Clinical Imaging Technology group, Siemens Healthcare IM BM PI Lausanne, Switzerland ; Neuro-immunology and Laboratoire de recherché en neuroimagérie, Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne, Switzerland ; LTS5, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
48
|
Ropele S, Kilsdonk ID, Wattjes MP, Langkammer C, de Graaf WL, Frederiksen JL, Larsson HB, Yiannakas M, Wheeler-Kingshott CA, Enzinger C, Khalil M, Rocca MA, Sprenger T, Amann M, Kappos L, Filippi M, Rovira A, Ciccarelli O, Barkhof F, Fazekas F. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Mult Scler 2014; 20:1692-8. [PMID: 24787429 DOI: 10.1177/1352458514531085] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Iron accumulation in deep grey matter (GM) structures is a consistent finding in multiple sclerosis (MS) patients. This study focused on the identification of independent determinants of iron accumulation using R2* mapping. SUBJECTS AND METHODS Ninety-seven MS patients and 81 healthy controls were included in this multicentre study. R2* mapping was performed on 3T MRI systems. R2*in deep GM was corrected for age and was related to disease duration, disability, T2 lesion load and brain volume. RESULTS Compared to controls, R2* was increased in all deep GM regions of MS patients except the globus pallidus and the substantia nigra. R2* increase was most pronounced in the progressive stage of the disease and independently predicted by disease duration and disability. Reduced cortical volume was not associated with iron accumulation in the deep GM with the exception of the substantia nigra and the red nucleus. In lesions, R2* was inversely correlated with disease duration and higher total lesion load. CONCLUSION Iron accumulation in deep GM of MS patients is most strongly and independently associated with duration and severity of the disease. Additional associations between cortical GM atrophy and deep GM iron accumulation appear to exist in a region specific manner.
Collapse
Affiliation(s)
- Stefan Ropele
- Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | - Maria A Rocca
- Institute of Experimental Neurology, Vita-Salute San Raffaele University, Italy
| | | | | | | | - Massimo Filippi
- Institute of Experimental Neurology, Vita-Salute San Raffaele University, Italy
| | | | - Olga Ciccarelli
- UCL Institute of Neurology, UK/NIHR UCL-UCLH Biomedical Research Centre, UK
| | | | | |
Collapse
|
49
|
Morphological features of MS lesions on FLAIR* at 7 T and their relation to patient characteristics. J Neurol 2014; 261:1356-64. [DOI: 10.1007/s00415-014-7351-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 01/10/2023]
|
50
|
Khalil M, Riedlbauer B, Langkammer C, Enzinger C, Ropele S, Stojakovic T, Scharnagl H, Culea V, Petzold A, Teunissen C, Archelos JJ, Fuchs S, Fazekas F. Cerebrospinal fluid transferrin levels are reduced in patients with early multiple sclerosis. Mult Scler 2014; 20:1569-77. [PMID: 24777275 DOI: 10.1177/1352458514530020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Previous magnetic resonance imaging (MRI) studies have demonstrated increased iron deposition in the basal ganglia of multiple sclerosis (MS) patients. However, it is not clear whether these alterations are associated with changes of iron metabolism in body fluids. OBJECTIVES The purpose of this study was to investigate if iron metabolism markers in cerebrospinal fluid (CSF) and serum of clinically isolated syndrome (CIS) and MS patients differ from controls and how they relate to clinical and imaging parameters. METHODS We analysed serum ferritin, transferrin and soluble transferrin-receptor and CSF ferritin and transferrin by nephelometry in non-anaemic CIS (n=60) or early MS (n=14) patients and 68 controls. In CIS/MS we additionally assessed the T2 lesion load. RESULTS CSF transferrin was significantly decreased in CIS/MS compared to controls (p<0.001), while no significant differences were seen in serum. Higher CSF transferrin levels correlated with lower physical disability scores (r= -0.3, p<0.05). CSF transferrin levels did not correlate with other clinical data and the T2 lesion load. CONCLUSION Our biochemical study provides evidence that altered iron homeostasis within the brain occurs in the very early phases of the disease, and suggests that the transporter protein transferrin may play a role in the increased iron deposition known to occur in the brain of MS patients.
Collapse
Affiliation(s)
- M Khalil
- Medical University of Graz, Auenbruggerplatz 22, A-8036 Graz, Austria
| | | | | | | | - S Ropele
- Medical University of Graz, Austria
| | - T Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - H Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - V Culea
- Medical University of Graz, Austria
| | - A Petzold
- MS Center Amsterdam, Free University Medical Center, The Netherlands
| | - Ce Teunissen
- Neurochemistry Lab and Biobank, VU University Medical Center Amsterdam, The Netherlands
| | | | - S Fuchs
- Medical University of Graz, Austria
| | | |
Collapse
|