1
|
Mei Y, Yang G, Guo Y, Zhao K, Wu S, Xu Z, Zhou S, Yan C, Seeliger E, Niendorf T, Xu Y, Feng Y. Parametric MRI Detects Aristolochic Acid Induced Acute Kidney Injury. Tomography 2022; 8:2902-2914. [PMID: 36548535 PMCID: PMC9786286 DOI: 10.3390/tomography8060243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to aristolochic acid (AA) is of increased concern due to carcinogenic and nephrotoxic effects, and incidence of aristolochic acid nephropathy (AAN) is increasing. This study characterizes renal alterations during the acute phase of AAN using parametric magnetic resonance imaging (MRI). An AAN and a control group of male Wistar rats received administration of aristolochic acid I (AAI) and polyethylene glycol (PEG), respectively, for six days. Both groups underwent MRI before and 2, 4 and 6 days after AAI or PEG administration. T2 relaxation times and apparent diffusion coefficients (ADCs) were determined for four renal layers. Serum creatinine levels (sCr) and blood urea nitrogen (BUN) were measured. Tubular injury scores (TIS) were evaluated based on histologic findings. Increased T2 values were detected since day 2 in the AAN group, but decreased ADCs and increased sCr levels and BUN were not detected until day 4. Significant linear correlations were observed between T2 of the cortex and the outer stripe of outer medulla and TIS. Our results demonstrate that parametric MRI facilitates early detection of renal injury induced by AAI in a rat model. T2 mapping may be a valuable tool for assessing kidney injury during the acute phase of AAN.
Collapse
Affiliation(s)
- Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Guixiang Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Kaixuan Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shuyu Wu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Zhongbiao Xu
- Radiotherapy Center, Guangdong General Hospital, Guangzhou 510080, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528399, China
- Correspondence:
| |
Collapse
|
2
|
Wang B, Wang Y, Tan Y, Guo J, Chen H, Wu PY, Wang X, Zhang H. Assessment of Fasudil on Contrast-Associated Acute Kidney Injury Using Multiparametric Renal MRI. Front Pharmacol 2022; 13:905547. [PMID: 35784704 PMCID: PMC9242620 DOI: 10.3389/fphar.2022.905547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Aims: To evaluate the utility of fasudil in a rat model of contrast-associated acute kidney injury (CA-AKI) and explore its underlying mechanism through multiparametric renal magnetic resonance imaging (mpMRI). Methods: Experimental rats (n = 72) were grouped as follows: controls (n = 24), CA-AKI (n = 24), or CA-AKI + Fasudil (n = 24). All animals underwent two mpMRI studies (arterial spin labeling, T1 and T2 mapping) at baseline and post iopromide/fasudil injection (Days 1, 3, 7, and 13 respectively). Relative change in renal blood flow (ΔRBF), T1 (ΔT1) and T2 (ΔT2) values were assessed at specified time points. Serum levels of cystatin C (CysC) and interleukin-1β (IL-1β), and urinary neutrophil gelatinase-associated lipocalin (NGAL) concentrations were tested as laboratory biomarkers, in addition to examining renal histology and expression levels of various proteins (Rho-kinase [ROCK], α-smooth muscle actin [α-SMA]), hypoxia-inducible factor-1α (HIF-1α), and transforming growth factor-β1 (TGF-β1) that regulate renal fibrosis and hypoxia. Results: Compared with the control group, serum levels of CysC and IL-1β, and urinary NGAL concentrations were clearly increased from Day 1 to Day 13 in the CA-AKI group (all p < 0.05). There were significant reductions in ΔT2 values on Days 1 and 3, and ΔT1 reductions were significantly more pronounced at all time points (Days 1–13) in the CA-AKI + Fasudil group (vs. CA-AKI) (all p < 0.05). Fasudil treatment lowered expression levels of ROCK-1, and p-MYPT1/MYPT1 proteins induced by iopromide, decreasing TGF-β1 expression and suppressing both extracellular matrix accumulation and α-SMA expression relative to untreated status (all p < 0.05). Fasudil also enhanced PHD2 transcription and inhibition of HIF-1α expression after CA-AKI. Conclusions: In the context of CA-AKI, fasudil appears to reduce renal hypoxia, fibrosis, and dysfunction by activating (Rho/ROCK) or inhibiting (TGF-β1, HIF-1α) certain signaling pathways and reducing α-SMA expression. Multiparametric MRI may be a viable noninvasive tool for monitoring CA-AKI pathophysiology during fasudil therapy.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Tan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinxia Guo
- GE Healthcare MR Research China, Beijing, China
| | - Haoyuan Chen
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Pu-Yeh Wu
- GE Healthcare MR Research China, Beijing, China
| | - Xiaochun Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaochun Wang, ; Hui Zhang,
| | - Hui Zhang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaochun Wang, ; Hui Zhang,
| |
Collapse
|
3
|
Zhao F, Zhou X, Messina E, Hu L, Holahan MA, Swaminath G, Hines CDG. Robust arterial spin labeling MRI measurement of pharmacologically induced perfusion change in rat kidneys. NMR IN BIOMEDICINE 2021; 34:e4566. [PMID: 34096123 DOI: 10.1002/nbm.4566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Kidney diseases such as acute kidney injury, diabetic nephropathy and chronic kidney disease (CKD) are related to dysfunctions of the microvasculature in the kidney causing a decrease in renal blood perfusion (RBP). Pharmacological intervention to improve the function of the microvasculature is a viable strategy for the potential treatment of these diseases. The measurement of RBP is a reliable biomarker to evaluate the efficacy of pharmacological agents' actions on the microvasculature, and measurement of RBP responses to different pharmacological agents can also help elucidate the mechanism of hemodynamic regulation in the kidney. Magnetic resonance imaging (MRI) with flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) has been used to measure RBP in humans and animals. However, artifacts caused by respiratory and peristaltic motions limit the potential of FAIR ASL in drug discovery and kidney research. In this study, the combined anesthesia protocol of inactin with a low dose of isoflurane was used to fully suppress peristalsis in rats, which were ventilated with an MRI-synchronized ventilator. FAIR ASL data were acquired in eight axial slices using a single-shot, gradient-echo, echo-planar imaging (EPI) sequence. The artifacts in the FAIR ASL RBP measurement due to respiratory and peristaltic motions were substantially eliminated. The RBP responses to fenoldopam and L-NAME were measured, and the increase and decrease in RBP caused by fenoldopam and L-NAME, respectively, were robustly observed. To further validate FAIR ASL, the renal blood flow (RBF) responses to the same agents were measured by an invasive perivascular flow probe method. The pharmacological agent-induced responses in RBP and RBF are similar. This indicates that FAIR ASL has the sensitivity to measure pharmacologically induced changes in RBP. FAIR ASL with multislice EPI can be a valuable tool for supporting drug discovery, and for elucidating the mechanism of hemodynamic regulation in kidneys.
Collapse
Affiliation(s)
| | | | | | - Lufei Hu
- Merck & Co. Inc., Kenilworth, New Jersey, USA
| | | | | | | |
Collapse
|
4
|
Ku MC, Fernández-Seara MA, Kober F, Niendorf T. Noninvasive Renal Perfusion Measurement Using Arterial Spin Labeling (ASL) MRI: Basic Concept. Methods Mol Biol 2021; 2216:229-239. [PMID: 33476003 PMCID: PMC9703206 DOI: 10.1007/978-1-0716-0978-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The kidney is a complex organ involved in the excretion of metabolic products as well as the regulation of body fluids, osmolarity, and homeostatic status. These functions are influenced in large part by alterations in the regional distribution of blood flow between the renal cortex and medulla. Renal perfusion is therefore a key determinant of glomerular filtration. Therefore the quantification of regional renal perfusion could provide important insights into renal function and renal (patho)physiology. Arterial spin labeling (ASL) based perfusion MRI techniques, can offer a noninvasive and reproducible way of measuring renal perfusion in animal models. This chapter addresses the basic concept of ASL-MRI.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Frank Kober
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Marseille, France
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
5
|
Bueters R, Bael A, Gasthuys E, Chen C, Schreuder MF, Frazier KS. Ontogeny and Cross-species Comparison of Pathways Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Neonates (Review): Kidney. Drug Metab Dispos 2020; 48:353-367. [PMID: 32114509 DOI: 10.1124/dmd.119.089755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/04/2020] [Indexed: 02/13/2025] Open
Abstract
The kidneys play an important role in many processes, including urine formation, water conservation, acid-base equilibrium, and elimination of waste. The anatomic and functional development of the kidney has different maturation time points in humans versus animals, with critical differences between species in maturation before and after birth. Absorption, distribution, metabolism, and excretion (ADME) of drugs vary depending on age and maturation, which will lead to differences in toxicity and efficacy. When neonate/juvenile laboratory animal studies are designed, a thorough knowledge of the differences in kidney development between newborns/children and laboratory animals is essential. The human and laboratory animal data must be combined to obtain a more complete picture of the development in the kidneys around the neonatal period and the complexity of ADME in newborns and children. This review examines the ontogeny and cross-species differences in ADME processes in the developing kidney in preterm and term laboratory animals and children. It provides an overview of insights into ADME functionality in the kidney by identifying what is currently known and which gaps still exist. Currently important renal function properties such as glomerular filtration rate, renal blood flow, and ability to concentrate are generally well known, while detailed knowledge about transporter and metabolism maturation is growing but is still lacking. Preclinical data in those properties is limited to rodents and generally covers only the expression levels of transporter or enzyme-encoding genes. More knowledge on a functional level is needed to predict the kinetics and toxicity in neonate/juvenile toxicity and efficacy studies. SIGNIFICANCE STATEMENT: This review provides insight in cross-species developmental differences of absorption, distribution, metabolism, and excretion properties in the kidney, which should be considered in neonate/juvenile study interpretation, hypotheses generation, and experimental design.
Collapse
Affiliation(s)
- Ruud Bueters
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - An Bael
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Elke Gasthuys
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Connie Chen
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Michiel F Schreuder
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Kendall S Frazier
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| |
Collapse
|
6
|
Hellms S, Gueler F, Gutberlet M, Schebb NH, Rund K, Kielstein JT, VoChieu V, Rauhut S, Greite R, Martirosian P, Haller H, Wacker F, Derlin K. Single-dose diclofenac in healthy volunteers can cause decrease in renal perfusion measured by functional magnetic resonance imaging. ACTA ACUST UNITED AC 2019; 71:1262-1270. [PMID: 31131893 DOI: 10.1111/jphp.13105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We investigated changes of renal perfusion after topical and oral diclofenac administration in healthy volunteers using functional magnetic resonance imaging (MRI) with arterial spin labelling (ASL). METHODS Twenty-four healthy human participants (21-51 years) underwent 1.5T MRI before and 1 h after a single oral dose of diclofenac (50 mg). Twelve of 24 participants underwent an additional MRI examination following 3-day topical diclofenac administration. For renal perfusion imaging, a flow-sensitive alternating inversion-recovery TrueFISP ASL sequence was applied. Plasma concentrations of diclofenac and serum concentrations of thromboxane were determined. KEY FINDINGS After oral diclofenac application, large interindividual differences in plasma concentrations were observed (range <3-4604 nm). Topical diclofenac application did not result in relevant systemic diclofenac levels (range 5-75 nm). MRI showed a significant reduction of renal perfusion in individuals with diclofenac levels ≥225 nm (baseline: 347 ± 7 vs diclofenac: 323 ± 8 ml/min/100 g, P < 0.01); no significant differences were observed in participants with diclofenac levels <225 nm. Diclofenac levels correlated negatively with thromboxane B2 levels pointing towards target engagement. CONCLUSIONS Single-dose diclofenac caused a decrease in renal perfusion in participants with diclofenac levels ≥225 nm. We demonstrated that even a single dose of diclofenac can impair renal perfusion, which could be detrimental in patients with underlying chronic kidney disease or acute kidney injury.
Collapse
Affiliation(s)
- Susanne Hellms
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Nephrology Hannover Medical School, Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Katharina Rund
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan T Kielstein
- Medical Clinic V (Nephrology, Rheumatology, Blood Purification), Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - VanDai VoChieu
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Robert Greite
- Nephrology Hannover Medical School, Hannover, Germany
| | - Petros Martirosian
- Section on Experimental Radiology, University of Tuebingen, Tübingen, Germany
| | | | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Prasad PV, Li LP, Thacker JM, Li W, Hack B, Kohn O, Sprague SM. Cortical Perfusion and Tubular Function as Evaluated by Magnetic Resonance Imaging Correlates with Annual Loss in Renal Function in Moderate Chronic Kidney Disease. Am J Nephrol 2019; 49:114-124. [PMID: 30669143 PMCID: PMC6387452 DOI: 10.1159/000496161] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic hypoxia is a well-recognized factor in the pathogenesis of chronic kidney disease (CKD). Loss of microcirculation is thought to lead to enhanced renal hypoxia, which in turn results in the development of fibrosis, a hallmark of progressive CKD. To evaluate the role of functional magnetic resonance imaging (MRI), we performed perfusion, oxygenation, and diffusion MRI measurements in individuals with diabetes and stage 3 CKD. METHODS Fifty-four subjects (41 individuals with diabetes and stage 3 CKD and 13 healthy controls) participated in this study. Data with blood oxygenation level dependent (BOLD), arterial spin labeling perfusion and diffusion MRI were acquired using a 3T scanner. RESULTS Renal cortical perfusion was reduced in CKD compared to the controls (109.54 ± 25.38 vs. 203.17 ± 27.47 mL/min/100 g; p < 0.001). Cortical apparent diffusion coefficient showed no significant reduction in CKD compared to controls (1,596.10 ± 196.64 vs. 1,668.72 ± 77.29 × 10-6 mm2/s; p = 0.45) but was significantly associated with perfusion. Cortical R2* values were modestly increased in CKD (20.76 ± 4.08 vs. 18.74 ± 2.37 s-1; p = 0.12). Within the CKD group, R2*_Medulla and R2*_Kidney were moderately and negatively associated with estimated glomerular filtration rate. There was a significant association between cortical perfusion and medullary response to furosemide with annual loss of renal function, used as an estimate of CKD progression. CONCLUSIONS Subjects with a moderate degree of CKD had significantly lower renal perfusion. Diffusion and BOLD MRI showed more modest differences between the groups. Individuals with progressive CKD had lower perfusion and response to furosemide.
Collapse
Affiliation(s)
- Pottumarthi V Prasad
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA,
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA,
| | - Lu-Ping Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jon M Thacker
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Wei Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Bradley Hack
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Orly Kohn
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Stuart M Sprague
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| |
Collapse
|
8
|
Hu G, Yang Z, Liang W, Lai C, Mei Y, Li Y, Xu J, Luo L, Quan X. Intravoxel Incoherent Motion and Arterial Spin Labeling MRI Analysis of Reversible Unilateral Ureteral Obstruction in Rats. J Magn Reson Imaging 2018; 50:288-296. [PMID: 30328247 DOI: 10.1002/jmri.26536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common consequence of chronic kidney disease (CKD) and is the mechanism by which various forms of CKD progress to endstage renal failure. Accurate assessment of renal fibrosis is important for treatment. PURPOSE To measure longitudinal changes of intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) before and after reversible unilateral ureteral obstruction in an animal model. STUDY TYPE Self-controlled animal study. ANIMAL MODEL Surgical obstruction of the ureters was performed and then removed after 5 days. Rats were scanned on Days 0, 1, 3, and 5 after creating the obstruction and on Days 4, 7, and 12 after releasing the obstruction. FIELD STRENGTH/SEQUENCE 3.0T/IVIM/ASL. ASSESSMENT The apparent diffusion coefficient (ADC), pure molecular diffusion (D), perfusion fraction (f), pseudodiffusion (D*), and renal blood flow (RBF) obtained from the ASL were measured. STATISTICAL TESTS Using SPSS v. 20.0 software, P < 0.05 were considered statistically significant. The data from each timepoint were compared using one-way analysis of variance and correlation analysis was applied to various parameters. RESULTS The postobstruction kidneys showed renal tubule swelling and increased collagen fiber content. Renal tubule swelling was relieved after reversing the obstruction, but Masson staining and cell density analysis revealed progressive changes that were primarily localized to the medulla. In general, ADC, D, f, D*, and RBF decreased with time during the 5 days of obstruction, and increased after release of the obstruction. ADC positively correlated with D, f, D*, and RBF (r = 0.415, r = 0.634, r = 0.465 r = 0.586, P < 0.001, respectively) in the cortex in this study. Also, ADC showed a positive correlation with D, f, and D* (r = 0.724, r = 0.749, r = 0.151, P < 0.001, respectively) in the medulla. DATA CONCLUSION Kidney perfusion was the major factor affecting ADC. Functional imaging may be useful for following progression of CKD. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:288-296.
Collapse
Affiliation(s)
- Genwen Hu
- Department of Radiology, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University), Shenzhen, P.R. China
| | - Zhong Yang
- Department of Radiology, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University), Shenzhen, P.R. China
| | - Wen Liang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Caiyong Lai
- Department of Urology, First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Yingjie Mei
- MR Clinical Science, Philips Healthcare, GuangZhou, P.R. China
| | - Yufa Li
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Jianmin Xu
- Department of Radiology, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University), Shenzhen, P.R. China
| | - Liangping Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Xianyue Quan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
9
|
Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, Weale P, Kühn B, O'Regan DP. Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol 2018; 29:232-240. [PMID: 29992384 PMCID: PMC6291439 DOI: 10.1007/s00330-018-5628-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We investigated the feasibility and reproducibility of free-breathing motion-corrected multiple inversion time (multi-TI) pulsed renal arterial spin labelling (PASL), with general kinetic model parametric mapping, to simultaneously quantify renal perfusion (RBF), bolus arrival time (BAT) and tissue T1. METHODS In a study approved by the Health Research Authority, 12 healthy volunteers (mean age, 27.6 ± 18.5 years; 5 male) gave informed consent for renal imaging at 3 T using multi-TI ASL and conventional single-TI ASL. Glyceryl trinitrate (GTN) was used as a vasodilator challenge in six subjects. Flow-sensitive alternating inversion recovery (FAIR) preparation was used with background suppression and 3D-GRASE (gradient and spin echo) read-out, and images were motion-corrected. Parametric maps of RBF, BAT and T1 were derived for both kidneys. Agreement was assessed using Pearson correlation and Bland-Altman plots. RESULTS Inter-study correlation of whole-kidney RBF was good for both single-TI (r2 = 0.90), and multi-TI ASL (r2 = 0.92). Single-TI ASL gave a higher estimate of whole-kidney RBF compared to multi-TI ASL (mean bias, 29.3 ml/min/100 g; p <0.001). Using multi-TI ASL, the median T1 of renal cortex was shorter than that of medulla (799.6 ms vs 807.1 ms, p = 0.01), and mean whole-kidney BAT was 269.7 ± 56.5 ms. GTN had an effect on systolic blood pressure (p < 0.05) but the change in RBF was not significant. CONCLUSIONS Free-breathing multi-TI renal ASL is feasible and reproducible at 3 T, providing simultaneous measurement of renal perfusion, haemodynamic parameters and tissue characteristics at baseline and during pharmacological challenge. KEY POINTS • Multiple inversion time arterial spin labelling (ASL) of the kidneys is feasible and reproducible at 3 T. • This approach allows simultaneous mapping of renal perfusion, bolus arrival time and tissue T 1 during free breathing. • This technique enables repeated measures of renal haemodynamic characteristics during pharmacological challenge.
Collapse
Affiliation(s)
- Saba Shirvani
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London, UK
| | - Paweł Tokarczuk
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ben Statton
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Marina Quinlan
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alaine Berry
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James Tomlinson
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | - Bernd Kühn
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Declan P O'Regan
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
10
|
Li LP, Thacker J, Li W, Tan H, Wang C, Kohn O, Sprague S, Prasad P. Consistency of Multiple Renal Functional MRI Measurements Over 18 Months. J Magn Reson Imaging 2018. [PMID: 29517835 DOI: 10.1002/jmri.26001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Identification of patients with progressive chronic kidney disease (CKD) and those likely to respond to candidate therapeutics is urgently needed. Functional MRI measurements have shown promise. However, knowledge about the consistency of the measurements is essential to conduct longitudinal studies. PURPOSE/HYPOTHESIS To investigate the consistency of repeated functional MRI measurements in healthy subjects. STUDY TYPE Prospective, longitudinal study. SUBJECTS Seventeen healthy subjects were examined on two different occasions, 18 months apart. FIELD STRENGTH/SEQUENCE Multiple gradient-recalled-echo, 2D navigator-gated flow-sensitive alternating inversion recovery True-FISP and spin-echo planar diffusion-weighted sequences were used on a 3T scanner. Images were acquired on two different scanner configurations. ASSESSMENT Blood oxygenation level-dependent (BOLD) R2*, arterial spin labeling (ASL) perfusion-derived blood flow (BF) and apparent diffusion coefficient (ADC) maps were analyzed using a custom image processing toolbox. Regions of interest (ROIs) were placed on renal cortex, medulla, and whole kidney. Multiple researchers were involved in defining the ROIs. STATISTICAL TESTS Intra- and intersubject coefficients of variation (CV) and Bland-Altman plots were used to measure consistency and evaluate bias in the measurements. A nonparametric Wilcoxon test was used to compare differences between two timepoints. RESULTS The intrasubject CV for R2* and ADC were 6.8% and 5.3% with small (-3.8 and 5.3%) bias, respectively, comparing baseline and 18-month data. Intrasubject CV for renal cortex BF was higher (18.7%) compared to R2* and ADC, but comparable to prior literature values over shorter durations. It also exhibited a larger bias (-15.4%) between two timepoints and significantly lower values (P = 0.022) at 18-month data. DATA CONCLUSION All three MRI parameters over 18 months, even with a scanner upgrade and involving multiple observers, showed good consistency. These results are useful for the interpretation of longitudinal data and support the use of these methods to monitor progression in patients with CKD. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:514-521.
Collapse
Affiliation(s)
- Lu-Ping Li
- Radiology, Northshore University HealthSystem, Evanston, Illinois, USA.,Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jon Thacker
- Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Wei Li
- Radiology, Northshore University HealthSystem, Evanston, Illinois, USA.,Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Huan Tan
- Radiology, Northshore University HealthSystem, Evanston, Illinois, USA
| | - Chi Wang
- Center for Biomedical Research & Informatics, Northshore University HealthSystem, Evanston, Illinois, USA
| | - Orly Kohn
- Medicine, University of Chicago, Chicago, Illinois, USA
| | - Stuart Sprague
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA.,Medicine, Northshore University HealthSystem, Evanston, Illinois, USA
| | - Pottumarthi Prasad
- Radiology, Northshore University HealthSystem, Evanston, Illinois, USA.,Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Romero CA, Cabral G, Knight RA, Ding G, Peterson EL, Carretero OA. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats. Am J Physiol Renal Physiol 2017; 314:F99-F106. [PMID: 28978533 DOI: 10.1152/ajprenal.00332.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Renal blood flow (RBF) provides important information regarding renal physiology and nephropathies. Arterial spin labeling-magnetic resonance imaging (ASL-MRI) is a noninvasive method of measuring blood flow without exogenous contrast media. However, low signal-to-noise ratio and respiratory motion artifacts are challenges for RBF measurements in small animals. Our objective was to evaluate the feasibility and reproducibility of RBF measurements by ASL-MRI using respiratory-gating and navigator correction methods to reduce motion artifacts. ASL-MRI images were obtained from the kidneys of Sprague-Dawley (SD) rats on a 7-Tesla Varian MRI system with a spin-echo imaging sequence. After 4 days, the study was repeated to evaluate its reproducibility. RBF was also measured in animals under unilateral nephrectomy and in renal artery stenosis (RST) to evaluate the sensitivity in high and low RBF models, respectively. RBF was also evaluated in Dahl salt-sensitive (SS) rats and spontaneous hypertensive rats (SHR). In SD rats, the cortical RBFs (cRBF) were 305 ± 59 and 271.8 ± 39 ml·min-1·100 g tissue-1 in the right and left kidneys, respectively. Retest analysis revealed no differences ( P = 0.2). The test-retest reliability coefficient was 92 ± 5%. The cRBFs before and after the nephrectomy were 296.8 ± 30 and 428.2 ± 45 ml·min-1·100 g tissue-1 ( P = 0.02), respectively. The kidneys with RST exhibited a cRBF decrease compared with sham animals (86 ± 17.6 vs. 198 ± 33.7 ml·min-1·100 g tissue-1; P < 0.01). The cRBFs in SD, Dahl-SS, and SHR rats were not different ( P = 0.35). We conclude that ASL-MRI performed with navigator correction and respiratory gating is a feasible and reliable noninvasive method for measuring RBF in rats.
Collapse
Affiliation(s)
- Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Glauber Cabral
- Department of Neurology-NMR Research, Henry Ford Hospital , Detroit, Michigan
| | - Robert A Knight
- Department of Neurology-NMR Research, Henry Ford Hospital , Detroit, Michigan
| | - Guangliang Ding
- Department of Neurology-NMR Research, Henry Ford Hospital , Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital , Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
12
|
Becker AS, Rossi C. Renal Arterial Spin Labeling Magnetic Resonance Imaging. Nephron Clin Pract 2016; 135:1-5. [PMID: 27760424 DOI: 10.1159/000450797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Arterial spin labeling (ASL) MRI allows the quantification of tissue perfusion without administration of exogenous contrast agents. Patients with reduced renal function or other contraindications to Gadolinium-based contrast media may benefit from the non-invasive monitoring of tissue microcirculation. So far, only few studies have investigated the sensitivity, the specificity and the reliability of the ASL techniques for the assessment of renal perfusion. Moreover, only little is known about the interplay between ASL markers of perfusion and functional renal filtration parameters. In this editorial, we discuss the main technical issues related to the quantification of renal perfusion by ASL and, in particular, the latest results in patients with kidney disorders.
Collapse
Affiliation(s)
- Anton S Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Lanzman RS, Notohamiprodjo M, Wittsack HJ. [Functional magnetic resonance imaging of the kidneys]. Radiologe 2015; 55:1077-87. [PMID: 26628260 DOI: 10.1007/s00117-015-0044-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interest in functional renal magnetic resonance imaging (MRI) has significantly increased in recent years. This review article provides an overview of the most important functional imaging techniques and their potential clinical applications for assessment of native and transplanted kidneys, with special emphasis on the clarification of renal tumors.
Collapse
|