1
|
Gundogdu B, Chatterjee A, Medved M, Bagci U, Karczmar GS, Oto A. Physics-Informed Autoencoder for Prostate Tissue Microstructure Profiling with Hybrid Multidimensional MRI. Radiol Artif Intell 2025; 7:e240167. [PMID: 39907585 PMCID: PMC11950878 DOI: 10.1148/ryai.240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/28/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Purpose To evaluate the performance of Physics-Informed Autoencoder (PIA), a self-supervised deep learning model, in measuring tissue-based biomarkers for prostate cancer (PCa) using hybrid multidimensional MRI. Materials and Methods This retrospective study introduces PIA, an emerging self-supervised deep learning model that integrates a three-compartment diffusion-relaxation model with hybrid multidimensional MRI. PIA was trained to encode the biophysical model into a deep neural network to predict measurements of tissue-specific biomarkers for PCa without extensive training data requirements. Comprehensive in silico and in vivo experiments, using histopathology measurements as the reference standard, were conducted to validate the model's efficacy in comparison to the traditional nonlinear least squares (NLLS) algorithm. PIA's robustness to noise was tested in in silico experiments with varying signal-to-noise ratio (SNR) conditions, and in vivo performance for estimating volume fractions was evaluated in 21 patients (mean age, 60 years ± 6.6 [SD]; all male) with PCa (71 regions of interest). Evaluation metrics included the intraclass correlation coefficient (ICC) and Pearson correlation coefficient. Results PIA predicted the reference standard tissue parameters with high accuracy, outperforming conventional NLLS methods, especially under noisy conditions (rs = 0.80 vs 0.65, P < .001 for epithelium volume at SNR of 20:1). In in vivo validation, PIA's noninvasive volume fraction estimates matched quantitative histology (ICC, 0.94, 0.85, and 0.92 for epithelium, stroma, and lumen compartments, respectively; P < .001 for all). PIA's measurements strongly correlated with PCa aggressiveness (r = 0.75, P < .001). Furthermore, PIA ran 10 000 faster than NLLS (0.18 second vs 40 minutes per image). Conclusion PIA provided accurate prostate tissue biomarker measurements from MRI data with better robustness to noise and computational efficiency compared with the NLLS algorithm. The results demonstrate the potential of PIA as an accurate, noninvasive, and explainable artificial intelligence method for PCa detection. Keywords: Prostate, Stacked Auto-Encoders, Tissue Characterization, MR-Diffusion-weighted Imaging Supplemental material is available for this article. ©RSNA, 2025 See also commentary by Adams and Bressem in this issue.
Collapse
Affiliation(s)
- Batuhan Gundogdu
- Department of Radiology, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Ill
| | - Aritrick Chatterjee
- Department of Radiology, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Ill
| | - Milica Medved
- Department of Radiology, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Ill
| | - Ulas Bagci
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Gregory S. Karczmar
- Department of Radiology, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Ill
| | - Aytekin Oto
- Department of Radiology, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Ill
| |
Collapse
|
2
|
Perez-Lopez R, Ghaffari Laleh N, Mahmood F, Kather JN. A guide to artificial intelligence for cancer researchers. Nat Rev Cancer 2024; 24:427-441. [PMID: 38755439 DOI: 10.1038/s41568-024-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Artificial intelligence (AI) has been commoditized. It has evolved from a specialty resource to a readily accessible tool for cancer researchers. AI-based tools can boost research productivity in daily workflows, but can also extract hidden information from existing data, thereby enabling new scientific discoveries. Building a basic literacy in these tools is useful for every cancer researcher. Researchers with a traditional biological science focus can use AI-based tools through off-the-shelf software, whereas those who are more computationally inclined can develop their own AI-based software pipelines. In this article, we provide a practical guide for non-computational cancer researchers to understand how AI-based tools can benefit them. We convey general principles of AI for applications in image analysis, natural language processing and drug discovery. In addition, we give examples of how non-computational researchers can get started on the journey to productively use AI in their own work.
Collapse
Affiliation(s)
- Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Narmin Ghaffari Laleh
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Chatterjee A, Gallan A, Fan X, Medved M, Akurati P, Bourne RM, Antic T, Karczmar GS, Oto A. Prostate Cancers Invisible on Multiparametric MRI: Pathologic Features in Correlation with Whole-Mount Prostatectomy. Cancers (Basel) 2023; 15:5825. [PMID: 38136370 PMCID: PMC10742185 DOI: 10.3390/cancers15245825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
We investigated why some prostate cancers (PCas) are not identified on multiparametric MRI (mpMRI) by using ground truth reference from whole-mount prostatectomy specimens. A total of 61 patients with biopsy-confirmed PCa underwent 3T mpMRI followed by prostatectomy. Lesions visible on MRI prospectively or retrospectively identified after correlating with histology were considered "identified cancers" (ICs). Lesions that could not be identified on mpMRI were considered "unidentified cancers" (UCs). Pathologists marked the Gleason score, stage, size, and density of the cancer glands and performed quantitative histology to calculate the tissue composition. Out of 115 cancers, 19 were unidentified on MRI. The UCs were significantly smaller and had lower Gleason scores and clinical stage lesions compared with the ICs. The UCs had significantly (p < 0.05) higher ADC (1.34 ± 0.38 vs. 1.02 ± 0.30 μm2/ms) and T2 (117.0 ± 31.1 vs. 97.1 ± 25.1 ms) compared with the ICs. The density of the cancer glands was significantly (p = 0.04) lower in the UCs. The percentage of the Gleason 4 component in Gleason 3 + 4 lesions was nominally (p = 0.15) higher in the ICs (20 ± 12%) compared with the UCs (15 ± 8%). The UCs had a significantly lower epithelium (32.9 ± 21.5 vs. 47.6 ± 13.1%, p = 0.034) and higher lumen volume (20.4 ± 10.0 vs. 13.3 ± 4.1%, p = 0.021) compared with the ICs. Independent from size and Gleason score, the tissue composition differences, specifically, the higher lumen and lower epithelium in UCs, can explain why some of the prostate cancers cannot be identified on mpMRI.
Collapse
Affiliation(s)
- Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Gallan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Milica Medved
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | | | - Roger M. Bourne
- Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Gregory S. Karczmar
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Ottaiano A, Ianniello M, Santorsola M, Ruggiero R, Sirica R, Sabbatino F, Perri F, Cascella M, Di Marzo M, Berretta M, Caraglia M, Nasti G, Savarese G. From Chaos to Opportunity: Decoding Cancer Heterogeneity for Enhanced Treatment Strategies. BIOLOGY 2023; 12:1183. [PMID: 37759584 PMCID: PMC10525472 DOI: 10.3390/biology12091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Cancer manifests as a multifaceted disease, characterized by aberrant cellular proliferation, survival, migration, and invasion. Tumors exhibit variances across diverse dimensions, encompassing genetic, epigenetic, and transcriptional realms. This heterogeneity poses significant challenges in prognosis and treatment, affording tumors advantages through an increased propensity to accumulate mutations linked to immune system evasion and drug resistance. In this review, we offer insights into tumor heterogeneity as a crucial characteristic of cancer, exploring the difficulties associated with measuring and quantifying such heterogeneity from clinical and biological perspectives. By emphasizing the critical nature of understanding tumor heterogeneity, this work contributes to raising awareness about the importance of developing effective cancer therapies that target this distinct and elusive trait of cancer.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Raffaella Ruggiero
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Massimiliano Di Marzo
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy;
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| |
Collapse
|
5
|
Monti S, Truppa ME, Albanese S, Mancini M. Radiomics and Radiogenomics in Preclinical Imaging on Murine Models: A Narrative Review. J Pers Med 2023; 13:1204. [PMID: 37623455 PMCID: PMC10455673 DOI: 10.3390/jpm13081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, medical imaging technologies have become increasingly significant in both clinical and preclinical research, leading to a better understanding of disease processes and the development of new diagnostic and theranostic methods. Radiomic and radiogenomic approaches have furthered this progress by exploring the relationship between imaging characteristics, genomic information, and outcomes that qualitative interpretations may have overlooked, offering valuable insights for personalized medicine. Preclinical research allows for a controlled environment where various aspects of a pathology can be replicated in animal models, providing radiomic and radiogenomic approaches with the unique opportunity to investigate the causal connection between imaging and molecular factors. The aim of this review is to present the current state of the art in the application of radiomics and radiogenomics on murine models. This review will provide a brief description of relevant articles found in the literature with a discussion on the implications and potential translational relevance of these findings.
Collapse
Affiliation(s)
| | | | - Sandra Albanese
- National Research Council, Institute of Biostructures and Bioimaging, 80145 Naples, Italy; (S.M.); (M.E.T.); (M.M.)
| | | |
Collapse
|
6
|
Jha AK, Mithun S, Purandare NC, Kumar R, Rangarajan V, Wee L, Dekker A. Radiomics: a quantitative imaging biomarker in precision oncology. Nucl Med Commun 2022; 43:483-493. [PMID: 35131965 DOI: 10.1097/mnm.0000000000001543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer treatment is heading towards precision medicine driven by genetic and biochemical markers. Various genetic and biochemical markers are utilized to render personalized treatment in cancer. In the last decade, noninvasive imaging biomarkers have also been developed to assist personalized decision support systems in oncology. The imaging biomarkers i.e., radiomics is being researched to develop specific digital phenotype of tumor in cancer. Radiomics is a process to extract high throughput data from medical images by using advanced mathematical and statistical algorithms. The radiomics process involves various steps i.e., image generation, segmentation of region of interest (e.g. a tumor), image preprocessing, radiomic feature extraction, feature analysis and selection and finally prediction model development. Radiomics process explores the heterogeneity, irregularity and size parameters of the tumor to calculate thousands of advanced features. Our study investigates the role of radiomics in precision oncology. Radiomics research has witnessed a rapid growth in the last decade with several studies published that show the potential of radiomics in diagnosis and treatment outcome prediction in oncology. Several radiomics based prediction models have been developed and reported in the literature to predict various prediction endpoints i.e., overall survival, progression-free survival and recurrence in various cancer i.e., brain tumor, head and neck cancer, lung cancer and several other cancer types. Radiomics based digital phenotypes have shown promising results in diagnosis and treatment outcome prediction in oncology. In the coming years, radiomics is going to play a significant role in precision oncology.
Collapse
Affiliation(s)
- Ashish Kumar Jha
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital
- Homi Bhabha National Institute (HBNI), Deemed University, Mumbai
| | - Sneha Mithun
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital
- Homi Bhabha National Institute (HBNI), Deemed University, Mumbai
| | - Nilendu C Purandare
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital
- Homi Bhabha National Institute (HBNI), Deemed University, Mumbai
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Science, New Delhi, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital
- Homi Bhabha National Institute (HBNI), Deemed University, Mumbai
| | - Leonard Wee
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| |
Collapse
|
7
|
Zhao J, Zhang W, Zhu YY, Zheng HY, Xu L, Zhang J, Liu SY, Li FY, Song B. Development and Validation of Noninvasive MRI-Based Signature for Preoperative Prediction of Early Recurrence in Perihilar Cholangiocarcinoma. J Magn Reson Imaging 2022; 55:787-802. [PMID: 34296802 DOI: 10.1002/jmri.27846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma is a type of hepatobiliary tumor. For perihilar cholangiocarcinoma (pCCA), patients who experience early recurrence (ER) have a poor prognosis. Preoperative accurate prediction of postoperative ER can avoid unnecessary operation; however, prediction is challenging. PURPOSE To develop a novel signature based on clinical and/or MRI radiomics features of pCCA to preoperatively predict ER. STUDY TYPE Retrospective. POPULATION One hundred eighty-four patients (median age, 61.0 years; interquartile range: 53.0-66.8 years) including 115 men and 69 women. FIELD STRENGTH/SEQUENCE A 1.5 T; volumetric interpolated breath-hold examination (VIBE) sequence. ASSESSMENT The models were developed from the training set (128 patients) and validated in a separate testing set (56 patients). The contrast-enhanced arterial and portal vein phase MR images of hepatobiliary system were used for extracting radiomics features. The correlation analysis, least absolute shrinkage and selection operator (LASSO) logistic regression (LR), backward stepwise LR were mainly used for radiomics feature selection and modeling (Modelradiomic ). The univariate and multivariate backward stepwise LR were used for preoperative clinical predictors selection and modeling (Modelclinic ). The radiomics and preoperative clinical predictors were combined by multivariate LR method to construct clinic-radiomics nomogram (Modelcombine ). STATISTICAL TESTS Chi-squared (χ2 ) test or Fisher's exact test, Mann-Whitney U-test or t-test, Delong test. Two tailed P < 0.05 was considered statistically significant. RESULTS Based on the comparison of area under the curves (AUC) using Delong test, Modelclinic and Modelcombine had significantly better performance than Modelradiomic and tumor-node-metastasis (TNM) system in training set. In the testing set, both Modelclinic and Modelcombine had significantly better performance than TNM system, whereas only Modelcombine was significantly superior to Modelradiomic . However, the AUC values were not significantly different between Modelclinic and Modelcombine (P = 0.156 for training set and P = 0.439 for testing set). DATA CONCLUSION A noninvasive model combining the MRI-based radiomics signature and clinical variables is potential to preoperatively predict ER for pCCA. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 4.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Radiology, Armed Police Force Hospital of Sichuan, Leshan, Sichuan, 614000, China
| | - Wei Zhang
- Department of Radiology, Armed Police Force Hospital of Sichuan, Leshan, Sichuan, 614000, China
| | - Yuan-Yi Zhu
- Department of Radiology, Armed Police Force Hospital of Sichuan, Leshan, Sichuan, 614000, China
| | - Hao-Yu Zheng
- Department of Radiology, Armed Police Force Hospital of Sichuan, Leshan, Sichuan, 614000, China
| | - Li Xu
- Department of Radiology, Armed Police Force Hospital of Sichuan, Leshan, Sichuan, 614000, China
| | - Jun Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Si-Yun Liu
- GE Healthcare (China), Beijing, 100176, China
| | - Fu-Yu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
Chatterjee A, Mercado C, Bourne RM, Yousuf A, Hess B, Antic T, Eggener S, Oto A, Karczmar GS. Validation of Prostate Tissue Composition by Using Hybrid Multidimensional MRI: Correlation with Histologic Findings. Radiology 2021; 302:368-377. [PMID: 34751615 PMCID: PMC8805656 DOI: 10.1148/radiol.2021204459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Tissue estimates obtained by using microstructure imaging techniques, such as hybrid multidimensional (HM) MRI, may improve prostate cancer diagnosis but require histologic validation. Purpose To validate prostate tissue composition measured by using HM MRI, with quantitative histologic evaluation from whole-mount prostatectomy as the reference standard. Materials and Methods In this HIPAA-compliant study, from December 2016 to July 2018, prospective participants with biopsy-confirmed prostate cancer underwent 3-T MRI before radical prostatectomy. Axial HM MRI was performed with all combinations of echo times (57, 70, 150, and 200 msec) and b values (0, 150, 750, and 1500 sec/mm2). Data were fitted by using a three-compartment signal model to generate volumes for each tissue component (stroma, epithelium, lumen). Quantitative histologic evaluation was performed to calculate volume fractions for each tissue component for regions of interest corresponding to MRI. Tissue composition measured by using HM MRI and quantitative histologic evaluation were compared (paired t test) and correlated (Pearson correlation coefficient), and agreement (concordance correlation) was assessed. Receiver operating characteristic curve analysis for cancer diagnosis was performed. Results Twenty-five participants (mean age, 60 years ± 7 [standard deviation]; 30 cancers and 45 benign regions of interest) were included. Prostate tissue composition measured with HM MRI and quantitative histologic evaluation did not differ (stroma, 45% ± 11 vs 44% ± 11 [P = .23]; epithelium, 31% ± 15 vs 34% ± 15 [P = .08]; and lumen, 24% ± 13 vs 22% ± 11 [P = .80]). Between HM MRI and histologic evaluation, there was excellent correlation (Pearson r: overall, 0.91; stroma, 0.82; epithelium, 0.93; lumen, 0.90 [all P < .05]) and agreement (concordance correlation coefficient: overall, 0.91; stroma, 0.81; epithelium, 0.90; and lumen, 0.87). High areas under the receiver operating characteristic curve obtained with HM MRI (0.96 for epithelium and 0.94 for lumen, P < .001) and histologic evaluation (0.94 for epithelium and 0.88 for lumen, P < .001) were found for differentiation between benign tissue and prostate cancer. Conclusion Tissue composition measured by using hybrid multidimensional MRI had excellent correlation with quantitative histologic evaluation as the reference standard. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Muglia in this issue.
Collapse
|
9
|
Kalantar R, Lin G, Winfield JM, Messiou C, Lalondrelle S, Blackledge MD, Koh DM. Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges. Diagnostics (Basel) 2021; 11:1964. [PMID: 34829310 PMCID: PMC8625809 DOI: 10.3390/diagnostics11111964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive, non-systematic and clinically-oriented overview of 74 DL-based segmentation studies, published between January 2016 and December 2020, for bladder, prostate, cervical and rectal cancers on computed tomography (CT) and magnetic resonance imaging (MRI), highlighting the key findings, challenges and limitations.
Collapse
Affiliation(s)
- Reza Kalantar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan 333, Taiwan;
| | - Jessica M. Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Susan Lalondrelle
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Matthew D. Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| |
Collapse
|
10
|
Radiomics of diffusion-weighted MRI compared to conventional measurement of apparent diffusion-coefficient for differentiation between benign and malignant soft tissue tumors. Sci Rep 2021; 11:15276. [PMID: 34315971 PMCID: PMC8316538 DOI: 10.1038/s41598-021-94826-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Diffusion-weighted imaging (DWI) is proven useful to differentiate benign and malignant soft tissue tumors (STTs). Radiomics utilizing a vast array of extracted imaging features has a potential to uncover disease characteristics. We aim to assess radiomics using DWI can outperform the conventional DWI for STT differentiation. In 151 patients with 80 benign and 71 malignant tumors, ADCmean and ADCmin were measured on solid portion within the mass by two different readers. For radiomics approach, tumors were segmented and 100 original radiomic features were extracted on ADC map. Eight radiomics models were built with training set (n = 105), using combinations of 2 different algorithms—multivariate logistic regression (MLR) and random forest (RF)—and 4 different inputs: radiomics features (R), R + ADCmin (I), R + ADCmean (E), R + ADCmin and ADCmean (A). All models were validated with test set (n = 46), and AUCs of ADCmean, ADCmin, MLR-R, RF-R, MLR-I, RF-I, MLR-E, RF-E, MLR-A and RF-A models were 0.729, 0.753 0.698, 0.700, 0.773, 0.807, 0.762, 0.744, 0.773 and 0.807, respectively, without statistically significant difference. In conclusion, radiomics approach did not add diagnostic value to conventional ADC measurement for differentiating benign and malignant STTs.
Collapse
|
11
|
Shiri I, Maleki H, Hajianfar G, Abdollahi H, Ashrafinia S, Hatt M, Zaidi H, Oveisi M, Rahmim A. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Mol Imaging Biol 2021; 22:1132-1148. [PMID: 32185618 DOI: 10.1007/s11307-020-01487-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Considerable progress has been made in the assessment and management of non-small cell lung cancer (NSCLC) patients based on mutation status in the epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS). At the same time, NSCLC management through KRAS and EGFR mutation profiling faces challenges. In the present work, we aimed to evaluate a comprehensive radiomics framework that enabled prediction of EGFR and KRAS mutation status in NSCLC patients based on radiomic features from low-dose computed tomography (CT), contrast-enhanced diagnostic quality CT (CTD), and positron emission tomography (PET) imaging modalities and use of machine learning algorithms. METHODS Our study involved NSCLC patients including 150 PET, low-dose CT, and CTD images. Radiomic features from original and preprocessed (including 64 bin discretizing, Laplacian-of-Gaussian (LOG), and Wavelet) images were extracted. Conventional clinically used standard uptake value (SUV) parameters and metabolic tumor volume (MTV) were also obtained from PET images. Highly correlated features were pre-eliminated, and false discovery rate (FDR) correction was performed with the resulting q-values reported for univariate analysis. Six feature selection methods and 12 classifiers were then used for multivariate prediction of gene mutation status (provided by polymerase chain reaction (PCR)) in patients. We performed 10-fold cross-validation for model tuning to improve robustness, and our developed models were assessed on an independent validation set with 68 patients (common in all three imaging modalities). The average area under the receiver operator characteristic curve (AUC) was utilized for performance evaluation. RESULTS The best predictive power for conventional PET parameters was achieved by SUVpeak (AUC 0.69, p value = 0.0002) and MTV (AUC 0.55, p value = 0.0011) for EGFR and KRAS, respectively. Univariate analysis of extracted radiomics features improved AUC performance to 0.75 (q-value 0.003, Short-Run Emphasis feature of GLRLM from LOG preprocessed image of PET with sigma value 1.5) and 0.71 (q-value 0.00005, Large Dependence Low Gray-Level Emphasis feature of GLDM in LOG preprocessed image of CTD with sigma value 5) for EGFR and KRAS, respectively. Furthermore, multivariate machine learning-based AUC performances were significantly improved to 0.82 for EGFR (LOG preprocessed image of PET with sigma 3 with variance threshold (VT) feature selector and stochastic gradient descent (SGD) classifier (q-value = 4.86E-05) and 0.83 for KRAS (LOG preprocessed image of CT with sigma 3.5 with select model (SM) feature selector and SGD classifier (q-value = 2.81E-09). CONCLUSION Our work demonstrated that non-invasive and reliable radiomics analysis can be successfully used to predict EGFR and KRAS mutation status in NSCLC patients. We demonstrated that radiomic features extracted from different image-feature sets could be used for EGFR and KRAS mutation status prediction in NSCLC patients and showed improved predictive power relative to conventional image-derived metrics.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Hasan Maleki
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Hamid Abdollahi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.,Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Ashrafinia
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.,Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mathieu Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.,Geneva University Neurocenter, Geneva University, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mehrdad Oveisi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA. .,Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada. .,Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
12
|
Oerther B, Buren MV, Klein CM, Kirste S, Nicolay NH, Sprave T, Spohn S, Gunashekar DD, Hagele L, Bielak L, Bock M, Grosu AL, Bamberg F, Benndorf M, Zamboglou C. Predicting Biochemical Failure in Irradiated Patients With Prostate Cancer by Tumour Volume Measured by Multiparametric MRI. In Vivo 2021; 34:3473-3481. [PMID: 33144456 DOI: 10.21873/invivo.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM We examined the prognostic value of intraprostatic gross tumour volume (GTV) as measured by multiparametric MRI (mpMRI) in patients with prostate cancer following (primary) external beam radiation therapy (EBRT). PATIENTS AND METHODS In a retrospective monocentric study, we analysed patients with prostate cancer (PCa) after EBRT. GTV was delineated in pre-treatment mpMRI (GTV-MRI) using T2-weighted images. Cox-regression analyses were performed considering biochemical failure recurrence-free survival (BRFS) as outcome variable. RESULTS Among 131 patients, after a median follow-up of 57 months, biochemical failure occurred in 27 (21%). GTV-MRI was not correlated with % of positive biopsy cores, Gleason score and initial PSA (all r<0.2) and only moderately correlated with cT stage (r=0.32). In univariate analysis, cT stage, Gleason score and GTV-MRI were higher in subjects with shorter BRFS (p<0.05). GTV-MRI remained a significant predictor for BRFS in multivariate analyses, independent of Gleason score and cT stage. CONCLUSION GTV, defined using mpMRI, provides incremental prognostic value for BRFS, independent of established risk factors. This supports the implementation of imaging-based GTV for risk-stratification, although further validation is needed.
Collapse
Affiliation(s)
- Benedict Oerther
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Moritz V Buren
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina M Klein
- Department of Radiation Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Simon Spohn
- Department of Radiation Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Deepa Darshini Gunashekar
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leonard Hagele
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lars Bielak
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Shayesteh S, Nazari M, Salahshour A, Sandoughdaran S, Hajianfar G, Khateri M, Yaghobi Joybari A, Jozian F, Fatehi Feyzabad SH, Arabi H, Shiri I, Zaidi H. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer. Med Phys 2021; 48:3691-3701. [PMID: 33894058 DOI: 10.1002/mp.14896] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We evaluate the feasibility of treatment response prediction using MRI-based pre-, post-, and delta-radiomic features for locally advanced rectal cancer (LARC) patients treated by neoadjuvant chemoradiation therapy (nCRT). MATERIALS AND METHODS This retrospective study included 53 LARC patients divided into a training set (Center#1, n = 36) and external validation set (Center#2, n = 17). T2-weighted (T2W) MRI was acquired for all patients, 2 weeks before and 4 weeks after nCRT. Ninety-six radiomic features, including intensity, morphological and second- and high-order texture features were extracted from segmented 3D volumes from T2W MRI. All features were harmonized using ComBat algorithm. Max-Relevance-Min-Redundancy (MRMR) algorithm was used as feature selector and k-nearest neighbors (KNN), Naïve Bayes (NB), Random forests (RF), and eXtreme Gradient Boosting (XGB) algorithms were used as classifiers. The evaluation was performed using the area under the receiver operator characteristic (ROC) curve (AUC), sensitivity, specificity and accuracy. RESULTS In univariate analysis, the highest AUC in pre-, post-, and delta-radiomic features were 0.78, 0.70, and 0.71, for GLCM_IMC1, shape (surface area and volume) and GLSZM_GLNU features, respectively. In multivariate analysis, RF and KNN achieved the highest AUC (0.85 ± 0.04 and 0.81 ± 0.14, respectively) among pre- and post-treatment features. The highest AUC was achieved for the delta-radiomic-based RF model (0.96 ± 0.01) followed by NB (0.96 ± 0.04). Overall. Delta-radiomics model, outperformed both pre- and post-treatment features (P-value <0.05). CONCLUSION Multivariate analysis of delta-radiomic T2W MRI features using machine learning algorithms could potentially be used for response prediction in LARC patients undergoing nCRT. We also observed that multivariate analysis of delta-radiomic features using RF classifiers can be used as powerful biomarkers for response prediction in LARC.
Collapse
Affiliation(s)
- Sajad Shayesteh
- Department of Physiology, Pharmacology and Medical Physics, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Nazari
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salahshour
- Department of Radiology, Alborz University of Medical Sciences, Karaj, Iran
| | - Saleh Sandoughdaran
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Hajianfar
- Rajaie Cardiovascular, Medical & Research Centre, Iran University of Medical Science, Tehran, Iran
| | - Maziar Khateri
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Yaghobi Joybari
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Jozian
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.,Geneva University Neurocenter, Geneva University, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Stanzione A, Gambardella M, Cuocolo R, Ponsiglione A, Romeo V, Imbriaco M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur J Radiol 2020; 129:109095. [PMID: 32531722 DOI: 10.1016/j.ejrad.2020.109095] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiomics have the potential to further increase the value of MRI in prostate cancer management. However, implementation in clinical practice is still far and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the literature to assess the quality of prostate MRI radiomic studies using the radiomics quality score (RQS). METHODS Multiple medical literature archives (PubMed, Web of Science and EMBASE) were searched to retrieve original investigations focused on prostate MRI radiomic approaches up to the end of June 2019. Three researchers independently assessed each paper using the RQS. Data from the most experienced researcher were used for descriptive analysis. Inter-rater reproducibility was assessed using the intraclass correlation coefficient (ICC) on the total RQS score. RESULTS 73 studies were included in the analysis. Overall, the average RQS total score was 7.93 ± 5.13 on a maximum of 36 points, with a final average percentage of 23 ± 13%. Among the most critical items, the lack of feature robustness testing strategies and external validation datasets. The ICC resulted poor to moderate, with an average value of 0.57 and 95% Confidence Intervals between 0.44 and 0.69. CONCLUSIONS Current studies on prostate MRI radiomics still lack the quality required to allow their introduction in clinical practice.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Michele Gambardella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
15
|
Ren C, Wang S, Zhang S. Development and validation of a nomogram based on CT images and 3D texture analysis for preoperative prediction of the malignant potential in gastrointestinal stromal tumors. Cancer Imaging 2020; 20:5. [PMID: 31931874 PMCID: PMC6958787 DOI: 10.1186/s40644-019-0284-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Gastrointestinal stromal tumors (GISTs), which are the most common mesenchymal tumors of the digestive system, are treated varyingly according to the malignancy. The purpose of this study is to develop and validate a nomogram for preoperative prediction of the malignant potential in patients with GIST. Methods A total of 440 patients with pathologically confirmed GIST after surgery in our hospital from January 2011 to July 2019 were retrospectively analyzed. They were randomly divided into the training set (n = 308) and validation set (n = 132). CT signs and texture features of each patient were analyzed and predictive model were developed using the least absolute shrinkage and selection operator (lasso) regression. Then a nomogram based on selected parameters was developed. The predictive effectiveness of nomogram was evaluated by the area under receiver operating characteristic (ROC) curve (AUC). Concordance index (C-index) and calibration plots were formulated to evaluate the reliability and accuracy of the nomogram by bootstrapping based on internal (training set) and external (validation set) validity. The clinical application value of the nomogram was determined through the decision curve analysis (DCA). Results Totally 156 GIST patients with low-malignant (very low and low risk) and 284 ones with high-malignant potential (intermediate and high risk) are enrolled in this study. The prediction nomogram consisting of size, cystoid variation and meanValue had an excellent discrimination both in training and validation sets (AUCs (95% confidence interval(CI)): 0.935 (0.908, 0.961), 0.933 (0.892, 0.974); C-indices (95% CI): 0.941 (0.912, 0.956), 0.935 (0.901, 0.982); sensitivity: 81.4, 90.6%; specificity: 75.0, 75.7%; accuracy: 88.0, 88.6%, respectively). The calibration curves indicated a good consistency between the actual observation and nomogram prediction for differentiating GIST malignancy. Decision curve analysis demonstrated that the nomogram was clinically useful. Conclusion This study presents a prediction nomogram that incorporates the CT signs and texture parameter, which can be conveniently used to facilitate the preoperative individualized prediction of malignancy in GIST patients.
Collapse
Affiliation(s)
- Caiyue Ren
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201315, China.,Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai, 200032, China
| | - Shengping Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai, 200032, China
| | - Shengjian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai, 200032, China.
| |
Collapse
|
16
|
Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer. Eur Radiol 2019; 30:1297-1305. [DOI: 10.1007/s00330-019-06467-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/20/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
|
17
|
Huang YL, Ueng SH, Chen K, Huang YT, Lu HY, Ng KK, Chang TC, Lai CH, Lin G. Utility of diffusion-weighted and contrast-enhanced magnetic resonance imaging in diagnosing and differentiating between high- and low-grade uterine endometrial stromal sarcoma. Cancer Imaging 2019; 19:63. [PMID: 31514752 PMCID: PMC6739916 DOI: 10.1186/s40644-019-0247-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endometrial stromal sarcoma (ESS) is a rare uterine malignancy that features different prognoses for its high- and low-grade subtypes. We investigated the diagnostic accuracy of magnetic resonance (MR) imaging in diagnosing and differentiating between high- and low-grade ESS. METHODS We retrospectively reviewed the preoperative pelvic MR images of consecutive patients who received histologically confirmed diagnoses of high-grade ESS (n = 11) and low-grade ESS (n = 9) and T2-hyperintense leiomyoma (n = 16). Two radiologists independently evaluated imaging features in T1-, T2-, and diffusion-weighted and contrast-enhanced MR images. Statistical analysis included Mann-Whitney tests and Fisher's exact test, with sensitivity, specificity and diagnostic accuracy of imaging features. RESULTS High-grade ESS was associated with significantly more extensive necrosis and hemorrhage and distinct feather-like enhancement compared with low-grade ESS (P < .05 for all). The feather-like enhancement pattern yielded a diagnostic accuracy of 95%, sensitivity of 91%, and specificity of 100% in differentiating high-grade from low-grade ESS. This imaging characteristic was significantly superior to the necrosis (80%, P = .033) or hemorrhage (75%, P = .007). Both high- and low-grade ESS demonstrated T2 hypointense bands, marginal nodules, intratumoral nodules, and worm-like intra-myometrial nodules, and their tumor apparent diffusion coefficient (ADC) values were significantly lower than those of T2-hyperintense leiomyomas (P < .001). CONCLUSIONS Diffusion-weighted MR imaging is useful in diagnosing ESS against T2-hyperintense leiomyomas, and contrast enhancement aids in further differentiating between high- and low-grade ESS.
Collapse
Affiliation(s)
- Yen-Ling Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382
| | - Shir-Hwa Ueng
- Department of Pathology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382
| | - Kueian Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382
| | - Yu-Ting Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Keelung, 222, Maijin Rd, Keelung, Taiwan, 20401
| | - Hsin-Ying Lu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382
| | - Koon-Kwan Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Keelung, 222, Maijin Rd, Keelung, Taiwan, 20401
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology and Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Clinical Trial Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology and Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.,Clinical Trial Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382. .,Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382. .,Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, Taiwan, 33382.
| |
Collapse
|
18
|
Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives. Korean J Radiol 2019; 20:1124-1137. [PMID: 31270976 PMCID: PMC6609433 DOI: 10.3348/kjr.2018.0070] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023] Open
Abstract
Radiomics, which involves the use of high-dimensional quantitative imaging features for predictive purposes, is a powerful tool for developing and testing medical hypotheses. Radiologic and statistical challenges in radiomics include those related to the reproducibility of imaging data, control of overfitting due to high dimensionality, and the generalizability of modeling. The aims of this review article are to clarify the distinctions between radiomics features and other omics and imaging data, to describe the challenges and potential strategies in reproducibility and feature selection, and to reveal the epidemiological background of modeling, thereby facilitating and promoting more reproducible and generalizable radiomics research.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seo Young Park
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
19
|
Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, Sun K, Li L, Li B, Wang M, Tian J. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019; 9:1303-1322. [PMID: 30867832 PMCID: PMC6401507 DOI: 10.7150/thno.30309] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Medical imaging can assess the tumor and its environment in their entirety, which makes it suitable for monitoring the temporal and spatial characteristics of the tumor. Progress in computational methods, especially in artificial intelligence for medical image process and analysis, has converted these images into quantitative and minable data associated with clinical events in oncology management. This concept was first described as radiomics in 2012. Since then, computer scientists, radiologists, and oncologists have gravitated towards this new tool and exploited advanced methodologies to mine the information behind medical images. On the basis of a great quantity of radiographic images and novel computational technologies, researchers developed and validated radiomic models that may improve the accuracy of diagnoses and therapy response assessments. Here, we review the recent methodological developments in radiomics, including data acquisition, tumor segmentation, feature extraction, and modelling, as well as the rapidly developing deep learning technology. Moreover, we outline the main applications of radiomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalized medicine. Finally, we discuss the challenges in the field of radiomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Shuo Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Jingwei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xuezhi Zhou
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Kai Sun
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Longfei Li
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|
20
|
Fan Y, Hua M, Mou A, Wu M, Liu X, Bao X, Wang R, Feng M. Preoperative Noninvasive Radiomics Approach Predicts Tumor Consistency in Patients With Acromegaly: Development and Multicenter Prospective Validation. Front Endocrinol (Lausanne) 2019; 10:403. [PMID: 31316464 PMCID: PMC6611436 DOI: 10.3389/fendo.2019.00403] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Prediction of tumor consistency before surgery is of vital importance to determine individualized therapeutic schemes for patients with acromegaly. The present study was performed to noninvasively predict tumor consistency based on magnetic resonance imaging and radiomics analysis. Methods: In total, 158 patients with acromegaly were randomized into the primary cohort (n = 100) and validation cohort (n = 58). The consistency of the tumor was classified as soft or firm according to the neurosurgeon's evaluation. The critical radiomics features were determined using the elastic net feature selection algorithm, and the radiomics signature was constructed. The most valuable clinical characteristics were then selected based on the multivariable logistic regression analysis. Next, a radiomics model was developed using the radiomics signature and clinical characteristics, and 30 patients with acromegaly were recruited for multicenter validation of the radiomics model. The model's performance was evaluated based on the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), accuracy, and other associated classification measures. Its calibration, discriminating capacity, and clinical usefulness were also evaluated. Results: The radiomics signature established according to four radiomics features screened in the primary cohort exhibited excellent discriminatory capacity in the validation cohort. The radiomics model, which incorporated both the radiomics signature and Knosp grade, displayed favorable discriminatory capacity and calibration, and the AUC was 0.83 (95% confidence interval, 0.81-0.85) and 0.81 (95% confidence interval, 0.78-0.83) in the primary and validation cohorts, respectively. Furthermore, compared with the clinical characteristics, the as-constructed radiomics model is more effective in prediction of the tumor consistency in patients with acromegaly. Moreover, the multicenter validation and decision curve analysis suggested that the radiomics model was clinically useful. Conclusions: This radiomics model can assist neurosurgeons in predicting tumor consistency in patients with acromegaly before surgery and facilitates the determination of individualized therapeutic schemes.
Collapse
Affiliation(s)
- Yanghua Fan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Hua
- School of Electrical Engineering and Automation, East China Jiaotong University, Nanchang, China
| | - Anna Mou
- Department of Radiology, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohai Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Renzhi Wang
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Ming Feng ;
| |
Collapse
|
21
|
Chaddad A, Niazi T, Probst S, Bladou F, Anidjar M, Bahoric B. Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis. Front Oncol 2018; 8:630. [PMID: 30619764 PMCID: PMC6305278 DOI: 10.3389/fonc.2018.00630] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose: Use of quantitative imaging features and encoding the intra-tumoral heterogeneity from multi-parametric magnetic resonance imaging (mpMRI) for the prediction of Gleason score is gaining attention as a non-invasive biomarker for prostate cancer (PCa). This study tested the hypothesis that radiomic features, extracted from mpMRI, could predict the Gleason score pattern of patients with PCa. Methods: This analysis included T2-weighted (T2-WI) and apparent diffusion coefficient (ADC, computed from diffusion-weighted imaging) scans of 99 PCa patients from The Cancer Imaging Archive (TCIA). A total of 41 radiomic features were calculated from a local tumor sub-volume (i.e., regions of interest) that is determined by a centroid coordinate of PCa volume, grouped based on their Gleason score patterns. Kruskal-Wallis and Spearman's rank correlation tests were used to identify features related to Gleason score groups. Random forest (RF) classifier model was used to predict Gleason score groups and identify the most important signature among the 41 radiomic features. Results: Gleason score groups could be discriminated based on zone size percentage, large zone size emphasis and zone size non-uniformity values (p < 0.05). These features also showed a significant correlation between radiomic features and Gleason score groups with a correlation value of -0.35, 0.32, 0.42 for the large zone size emphasis, zone size non-uniformity and zone size percentage, respectively (corrected p < 0.05). RF classifier model achieved an average of the area under the curves of the receiver operating characteristic (ROC) of 83.40, 72.71, and 77.35% to predict Gleason score groups (G1) = 6; 6 < (G2) < (3 + 4) and (G3) ≥ 4 + 3, respectively. Conclusion: Our results suggest that the radiomic features can be used as a non-invasive biomarker to predict the Gleason score of the PCa patients.
Collapse
Affiliation(s)
- Ahmad Chaddad
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada.,Department of Automated Production Engineering, ETS, Montreal, QC, Canada
| | - Tamim Niazi
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada
| | - Stephan Probst
- Division of Nuclear Medicine, McGill University, Montreal, QC, Canada
| | - Franck Bladou
- Depatment of Urology, McGill University, Montreal, QC, Canada
| | - Maurice Anidjar
- Depatment of Urology, McGill University, Montreal, QC, Canada
| | - Boris Bahoric
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Napel S, Mu W, Jardim‐Perassi BV, Aerts HJWL, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer 2018; 124:4633-4649. [PMID: 30383900 PMCID: PMC6482447 DOI: 10.1002/cncr.31630] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/07/2022]
Abstract
Although cancer often is referred to as "a disease of the genes," it is indisputable that the (epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as "radiomics," can be used to quantify and characterize this heterogeneity. Virtually every patient with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images reflect underlying pathophysiologies, and that they can be converted into mineable data for improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this growth, radiomics has established a convention, wherein a large set of annotated image features (1-2000 features) are extracted from segmented regions of interest and used to build classifier models to separate individual patients into their appropriate class (eg, indolent vs aggressive disease). An extension of this conventional radiomics is the application of "deep learning," wherein convolutional neural networks can be used to detect the most informative regions and features without human intervention. A further extension of radiomics involves automatically segmenting informative subregions ("habitats") within tumors, which can be linked to underlying tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision support for the practice of precision oncology.
Collapse
Affiliation(s)
- Sandy Napel
- Department of RadiologyStanford UniversityStanfordCalifornia
| | - Wei Mu
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFlorida
| | | | - Hugo J. W. L. Aerts
- Dana‐Farber Cancer Institute, Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - Robert J. Gillies
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFlorida
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To present a perspective on the current status and future directions of focal therapy for prostate cancer (PCa). RECENT FINDINGS Focal therapy for localized PCa is a rapidly evolving field. Various recent concepts - the index lesion driving prognosis, the enhanced detection of clinically significant PCa using multiparametric MRI and targeted biopsy, improved risk-stratification using novel blood/tissue biomarkers, the recognition that reducing radical treatment-related morbidity (along with reducing pathologic progression) is a clinically meaningful end-point - have all led to a growing interest in focal therapy. Novel focal therapy modalities are being investigated, mostly in phase 1 and 2 studies. Recently, level I prospective randomized data comparing partial gland ablation with a standard-of-care treatment became available from one study. Recent developments in imaging, including 7-T MRI, functional imaging, radiomics and contrast-enhanced ultrasound show early promise. We also discuss emerging concepts in patient selection for focal therapy. SUMMARY PCa focal therapy has evolved considerably in the recent few years. Overall, these novel focal therapy treatments demonstrate safety and feasibility, low treatment-related toxicity and acceptable short-term and in some cases medium-term oncologic outcomes. As imaging techniques evolve, patient selection, detection of clinically significant PCa and noninvasive assessment of therapeutic efficacy will be further optimized. The aspirational goal of achieving oncologic control while reducing radical treatment-related morbidity will drive further innovation in the field.
Collapse
|
24
|
Kang D, Park JE, Kim YH, Kim JH, Oh JY, Kim J, Kim Y, Kim ST, Kim HS. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol 2018; 20:1251-1261. [PMID: 29438500 PMCID: PMC6071659 DOI: 10.1093/neuonc/noy021] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Radiomics is a rapidly growing field in neuro-oncology, but studies have been limited to conventional MRI, and external validation is critically lacking. We evaluated technical feasibility, diagnostic performance, and generalizability of a diffusion radiomics model for identifying atypical primary central nervous system lymphoma (PCNSL) mimicking glioblastoma. Methods A total of 1618 radiomics features were extracted from diffusion and conventional MRI from 112 patients (training set, 70 glioblastomas and 42 PCNSLs). Feature selection and classification were optimized using a machine-learning algorithm. The diagnostic performance was tested in 42 patients of internal and external validation sets. The performance was compared with that of human readers (2 neuroimaging experts), cerebral blood volume (90% histogram cutoff, CBV90), and apparent diffusion coefficient (10% histogram, ADC10) using the area under the receiver operating characteristic curve (AUC). Results The diffusion radiomics was optimized with the combination of recursive feature elimination and a random forest classifier (AUC 0.983, stability 2.52%). In internal validation, the diffusion model (AUC 0.984) showed similar performance with conventional (AUC 0.968) or combined diffusion and conventional radiomics (AUC 0.984) and better than human readers (AUC 0.825-0.908), CBV90 (AUC 0.905), or ADC10 (AUC 0.787) in atypical PCNSL diagnosis. In external validation, the diffusion radiomics showed robustness (AUC 0.944) and performed better than conventional radiomics (AUC 0.819) and similar to combined radiomics (AUC 0.946) or human readers (AUC 0.896-0.930). Conclusion The diffusion radiomics model had good generalizability and yielded a better diagnostic performance than conventional radiomics or single advanced MRI in identifying atypical PCNSL mimicking glioblastoma.
Collapse
Affiliation(s)
- Daesung Kang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Joo Young Oh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jungyoun Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yikyung Kim
- Department of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Sung Tae Kim
- Department of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
25
|
Abstract
Precision medicine is increasingly pushed forward, also with respect to upcoming new targeted therapies. Individual characterization of diseases on the basis of biomarkers is a prerequisite for this development. So far, biomarkers are characterized clinically, histologically or on a molecular level. The implementation of broad screening methods (“Omics”) and the analysis of big data – in addition to single markers – allow to define biomarker signatures. Next to “Genomics”, “Proteomics”, and “Metabolicis”, “Radiomics” gained increasing interest during the last years. Based on radiologic imaging, multiple radiomic markers are extracted with the help of specific algorithms. These are correlated with clinical, (immuno-) histopathological, or genomic data. Underlying structural differences are based on the imaging metadata and are often not visible and therefore not detectable without specific software. Radiomics are depicted numerically or by graphs. The fact that radiomic information can be extracted from routinely performed imaging adds a specific appeal to this method. Radiomics could potentially replace biopsies and additional investigations. Alternatively, radiomics could complement other biomarkers and thus lead to a more precise, multimodal prediction. Until now, radiomics are primarily used to investigate solid tumors. Some promising studies in head and neck cancer have already been published.
Collapse
|
26
|
Yang F, Ford JC, Dogan N, Padgett KR, Breto AL, Abramowitz MC, Dal Pra A, Pollack A, Stoyanova R. Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy. Transl Androl Urol 2018; 7:445-458. [PMID: 30050803 PMCID: PMC6043736 DOI: 10.21037/tau.2018.06.05] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/05/2018] [Indexed: 11/25/2022] Open
Abstract
In radiotherapy (RT) of prostate cancer, dose escalation has been shown to reduce biochemical failure. Dose escalation only to determinate prostate tumor habitats has the potential to improve tumor control with less toxicity than when the entire prostate is dose escalated. Other issues in the treatment of the RT patient include the choice of the RT technique (hypo- or standard fractionation) and the use and length of concurrent/adjuvant androgen deprivation therapy (ADT). Up to 50% of high-risk men demonstrate biochemical failure suggesting that additional strategies for defining and treating patients based on improved risk stratification are required. The use of multiparametric MRI (mpMRI) is rapidly gaining momentum in the management of prostate cancer because of its improved diagnostic potential and its ability to combine functional and anatomical information. Currently, the Prostate Imaging, Reporting and Diagnosis System (PIRADS) is the standard of care for region of interest (ROI) identification and risk classification. However, PIRADS was not designed for 3D tumor volume delineation; there is a large degree of subjectivity and PIRADS does not accurately and reproducibly elucidate inter- and intra-lesional spatial heterogeneity. "Radiomics", as it refers to the extraction and analysis of large number of advanced quantitative radiological features from medical images using high throughput methods, is perfectly suited as an engine to effectively sift through the multiple series of prostate mpMRI sequences and quantify regions of interest. The radiomic efforts can be summarized in two main areas: (I) detection/segmentation of the suspicious lesion; and (II) assessment of the aggressiveness of prostate cancer. As related to RT, the goal of the latter is in particular to identify patients at high risk for metastatic disease; and the aim of the former is to identify and segment cancerous lesions and thus provide targets for radiation boost. The article is structured as follows: first, we describe the radiomic approach; and second, we discuss the radiomic pipeline as tailored for RT of prostate cancer. In this process we summarize the current efforts and progress in integrating mpMRI radiomics into the radiotherapeutic management of prostate cancer with emphasis placed on its role in treatment target definition, treatment plan strategizing, and prognostic assessment. The described concepts, methods and tools are not currently applicable to the radiation oncology practice outside of the research setting. More data are required in the form of clinical trials to assess the robustness of radiomics-based predictive models, and to maximize the efficacy of these models.
Collapse
Affiliation(s)
- Fei Yang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John C. Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kyle R. Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Adrian L. Breto
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matthew C. Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
27
|
Liu Y, Zhang Y, Cheng R, Liu S, Qu F, Yin X, Wang Q, Xiao B, Ye Z. Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation. J Magn Reson Imaging 2018; 49:280-290. [PMID: 29761595 DOI: 10.1002/jmri.26192] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. PURPOSE To determine if there is a difference between radiomics features derived from center-slice 2D versus whole-tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications. STUDY TYPE Prospective. SUBJECTS In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix. FIELD STRENGTH/SEQUENCE Conventional and diffusion-weighted MR images (b values = 0, 800, 1000 s/mm2 ) were acquired on a 3.0T MR scanner. ASSESSMENT Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole-tumor segmentation. A total of 624 radiomics features were derived from T2 -weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis. STATISTICAL TESTS Parameters were compared using Wilcoxon signed rank test, Bland-Altman analysis, t-test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation. RESULTS In all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center-slice and 3D whole-tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076). DATA CONCLUSION Several radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole-tumor volumetric 3D radiomics analysis had a better performance than using the 2D center-slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280-290.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Runfen Cheng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shichang Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fangyuan Qu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoyu Yin
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qin Wang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bohan Xiao
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
28
|
Wang J, Wu CJ, Bao ML, Zhang J, Shi HB, Zhang YD. Using support vector machine analysis to assess PartinMR: A new prediction model for organ-confined prostate cancer. J Magn Reson Imaging 2018; 48:499-506. [PMID: 29437268 DOI: 10.1002/jmri.25961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jing Wang
- Center for Medical Device Evaluation, CFDA; Beijing China
| | - Chen-Jiang Wu
- Department of Radiology; First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Mei-Ling Bao
- Department of Pathology; First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Jing Zhang
- Department of Radiology; First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Hai-Bin Shi
- Department of Radiology; First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Yu-Dong Zhang
- Department of Radiology; First Affiliated Hospital with Nanjing Medical University; Nanjing China
| |
Collapse
|
29
|
Meyer HJ, Garnov N, Surov A. Comparison of Two Mathematical Models of Cellularity Calculation. Transl Oncol 2018; 11:307-310. [PMID: 29413764 PMCID: PMC5884215 DOI: 10.1016/j.tranon.2018.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 11/26/2022] Open
Abstract
OBJECT: Nowadays, there is increasing evidence that functional magnetic resonance imaging (MRI) modalities, namely, diffusion-weighted imaging (DWI) and dynamic-contrast enhanced MRI (DCE MRI), can characterize tumor architecture like cellularity and vascularity. Previously, two formulas based on a logistic tumor growth model were proposed to predict tumor cellularity with DWI and DCE. The purpose of this study was to proof these formulas. METHODS: 16 patients with head and neck squamous cell carcinomas were included into the study. There were 2 women and 14 men with a mean age of 57.0 ± 7.5 years. In every case, tumor cellularity was calculated using the proposed formulas by Atuegwu et al. In every case, also tumor cell count was estimated on histopathological specimens as an average cell count per 2 to 5 high-power fields. RESULTS: There was no significant correlation between the calculated cellularity and histopathologically estimated cell count by using the formula based on apparent diffusion coefficient (ADC) values. A moderate positive correlation (r=0.515, P=.041) could be identified by using the formula including ADC and Ve values. CONCLUSIONS: The formula including ADC and Ve values is more sensitive to predict tumor cellularity than the formula including ADC values only.
Collapse
Affiliation(s)
- Hans Jonas Meyer
- Department of Diagnostic and Interventional radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig
| | - Nikita Garnov
- Department of Diagnostic and Interventional radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig
| | - Alexey Surov
- Department of Diagnostic and Interventional radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig.
| |
Collapse
|
30
|
Park JE, Kim HS. Radiomics as a Quantitative Imaging Biomarker: Practical Considerations and the Current Standpoint in Neuro-oncologic Studies. Nucl Med Mol Imaging 2018; 52:99-108. [PMID: 29662558 DOI: 10.1007/s13139-017-0512-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/29/2017] [Accepted: 12/28/2017] [Indexed: 12/29/2022] Open
Abstract
Radiomics utilizes high-dimensional imaging data to discover the association with diagnostic, prognostic, predictive endpoint or radiogenomics. It is an emerging field of study that potentially depicts the intratumoral heterogeneity from quantitative and classified high-throughput data. The radiomics approach has an analytic pipeline where the imaging features are extracted, processed and analyzed. At this point, special data handling is essential because it faces issues of a high-dimensional biomarker compared to a single biomarker approach. This article describes the potential role of radiomics in oncologic studies, the basic analytic pipeline and special data handling with high-dimensional data to facilitate the radiomics approach as a tool for personalized medicine in oncology.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| |
Collapse
|
31
|
Zhang B, He X, Ouyang F, Gu D, Dong Y, Zhang L, Mo X, Huang W, Tian J, Zhang S. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 2017; 403:21-27. [PMID: 28610955 DOI: 10.1016/j.canlet.2017.06.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/31/2017] [Accepted: 06/03/2017] [Indexed: 02/08/2023]
Abstract
We aimed to identify optimal machine-learning methods for radiomics-based prediction of local failure and distant failure in advanced nasopharyngeal carcinoma (NPC). We enrolled 110 patients with advanced NPC. A total of 970 radiomic features were extracted from MRI images for each patient. Six feature selection methods and nine classification methods were evaluated in terms of their performance. We applied the 10-fold cross-validation as the criterion for feature selection and classification. We repeated each combination for 50 times to obtain the mean area under the curve (AUC) and test error. We observed that the combination methods Random Forest (RF) + RF (AUC, 0.8464 ± 0.0069; test error, 0.3135 ± 0.0088) had the highest prognostic performance, followed by RF + Adaptive Boosting (AdaBoost) (AUC, 0.8204 ± 0.0095; test error, 0.3384 ± 0.0097), and Sure Independence Screening (SIS) + Linear Support Vector Machines (LSVM) (AUC, 0.7883 ± 0.0096; test error, 0.3985 ± 0.0100). Our radiomics study identified optimal machine-learning methods for the radiomics-based prediction of local failure and distant failure in advanced NPC, which could enhance the applications of radiomics in precision oncology and clinical practice.
Collapse
Affiliation(s)
- Bin Zhang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, Guangdong, PR China
| | - Xin He
- Department of Mathematics, City University of Hong Kong, PR China
| | - Fusheng Ouyang
- Department of Radiology, The First People's Hospital of Shunde, Foshan, Guangdong, PR China
| | - Dongsheng Gu
- Key Laboratory of Molecular Imaging, Chinese Academy of Science, Beijing, PR China
| | - Yuhao Dong
- Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China; Shantou University Medical College, Guangdong, PR China
| | - Lu Zhang
- Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China
| | - Xiaokai Mo
- Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China; Shantou University Medical College, Guangdong, PR China
| | - Wenhui Huang
- Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Chinese Academy of Science, Beijing, PR China.
| | - Shuixing Zhang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
32
|
Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget 2017; 8:65022-65041. [PMID: 29029409 PMCID: PMC5630309 DOI: 10.18632/oncotarget.17531] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
Abstract
Recent explosion of biological data brings a great challenge for the traditional methods. With increasing scale of large data sets, much advanced tools are required for the depth interpretation problems. As a rapid-developing technology, metabolomics can provide a useful method to discover the pathogenesis of diseases. This study was explored the dynamic changes of metabolic profiling in cells model and Balb/C nude-mouse model of prostate cancer, to clarify the therapeutic mechanism of berberine, as a case study. Here, we report the findings of comprehensive metabolomic investigation of berberine on prostate cancer by high-throughput ultra performance liquid chromatography-mass spectrometry coupled with pattern recognition methods and network pathway analysis. A total of 30 metabolite biomarkers in blood and 14 metabolites in prostate cancer cell were found from large-scale biological data sets (serum and cell metabolome), respectively. We have constructed a comprehensive metabolic characterization network of berberine to protect against prostate cancer. Furthermore, the results showed that berberine could provide satisfactory effects on prostate cancer via regulating the perturbed pathway. Overall, these findings illustrated the power of the ultra performance liquid chromatography-mass spectrometry with the pattern recognition analysis for large-scale biological data sets may be promising to yield a valuable tool that insight into the drug action mechanisms and drug discovery as well as help guide testable predictions.
Collapse
|