1
|
Wolber AR, McKay LS, Mote KB, Johnson RM, Inatsuka CS, Cotter PA. Nuanced differences in adenylate cyclase toxin production, acylation, and secretion may contribute to the evolution of virulence in Bordetella species. mBio 2025:e0108225. [PMID: 40387377 DOI: 10.1128/mbio.01082-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025] Open
Abstract
Bordetella pertussis, which causes the acute human disease whooping cough, evolved from Bordetella bronchiseptica, which causes long-term, chronic infections in a broad range of mammals. Both B. pertussis and B. bronchiseptica produce adenylate cyclase toxin (ACT), a bifunctional protein with adenylate cyclase-mediated cell intoxication and pore-forming activities. CyaC-mediated acylation of ACT is important for cell intoxication and required for pore-forming activity in vitro, but its role in vivo was unknown. Our comparative analysis showed that although ACT secreted by B. pertussis is fully acylated at residues K860 and K983, only a fraction of ACT secreted by B. bronchiseptica is modified. We showed that B. bronchiseptica produces more ACT than B. pertussis and is more efficient at ACT-dependent intoxication of macrophages in vitro than B. pertussis, but for both organisms, acylation of ACT greatly enhances intoxication. Acylation also enhances ACT secretion. Using a natural-host model, we determined that non-acylated ACT is functional during the initial stage of B. bronchiseptica infection, but not at later time points, and that acylation of K860, but not K983, is required for persistence in the lower respiratory tract. These data indicate a role for both acylated and non-acylated ACT during infection. Acylation of ACT was similarly not absolutely required for B. pertussis persistence in the murine lower respiratory tract. Overall, our data revealed nuanced differences in production, acylation, and secretion of ACT between B. pertussis and B. bronchiseptica that may correlate with their different virulence strategies.IMPORTANCEBordetella pertussis causes the acute disease whooping cough and survives only in the human respiratory tract, while Bordetella bronchiseptica causes long-term, chronic infections in a broad range of mammals and can also survive in extra-host environments. These bacteria produce a nearly identical set of virulence factors, including adenylate cyclase toxin (ACT), a protein that is modified by the addition of acyl chains. Acylation is required for ACT to cause hemolysis and for efficient intoxication of host cells in vitro. We found that ACT acylation is also important, but not absolutely required, during infection. We also discovered differences in ACT production, acylation, and secretion between B. bronchiseptica and B. pertussis that may contribute to the different virulence strategies of these species. This study highlights the advantage of conducting comparative analyses between closely related species to better understand the evolution of virulence.
Collapse
Affiliation(s)
- Alexa R Wolber
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liliana S McKay
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katlyn B Mote
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard M Johnson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carol S Inatsuka
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Khaliq H, Osickova A, Lichvarova M, Sulc M, Navarrete KM, Espinosa-Vinals C, Masin J, Osicka R. Structural and functional significance of two conserved lysine residues in acylated sites of Kingella kingae RtxA cytotoxin. Biochimie 2025; 232:105-116. [PMID: 39746438 DOI: 10.1016/j.biochi.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Kingella kingae, an emerging pediatric pathogen, secretes the pore-forming toxin RtxA, which has been implicated in the development of various invasive infections. RtxA is synthesized as a protoxin (proRtxA), which gains its biological activity by fatty acylation of two lysine residues (K558 and K689) by the acyltransferase RtxC. The low acylation level of RtxA at K558 (2-23 %) suggests that the complete acylation at K689 is crucial for toxin activity. Using a bacterial two-hybrid system, we show that substitutions of K558, but not K689, partially reduce the interaction of proRtxA with RtxC and that the acyltransferase interacts independently with each acylated site in vivo. While substitutions of K558 had no effect on the acylation of K689, substitutions of K689 resulted in an average 40 % increase in the acylation of K558. RtxA mutants monoacylated at either K558 or K689 irreversibly bound to erythrocyte membranes, with binding efficiency corresponding to the extent of lysine acylation. However, these mutants lysed erythrocytes with similarly low efficiency as nonacylated proRtxA and showed only residual overall membrane activity in planar lipid bilayers. Interestingly, despite forming fewer pores, the monoacylated mutants exhibited single-pore characteristics, such as conductance and lifetime, similar to those of intact RtxA. These findings indicate that the acylation at either K558 or K689 is sufficient for the irreversible insertion of RtxA into the membrane, but not for the efficient formation of membrane pores. Alternatively, K558 and K689 per se may play a crucial structural role in pore formation, regardless of their acylation status.
Collapse
Affiliation(s)
- Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic; Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Michaela Lichvarova
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic; Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Miroslav Sulc
- Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Kevin Munoz Navarrete
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Carlos Espinosa-Vinals
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic.
| |
Collapse
|
3
|
Lepesheva A, Grobarcikova M, Osickova A, Jurnecka D, Knoblochova S, Cizkova M, Osicka R, Sebo P, Masin J. Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184311. [PMID: 38570122 DOI: 10.1016/j.bbamem.2024.184311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The acylated pore-forming Repeats in ToXin (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to β2 integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the β2 integrins. We constructed a HlyA1-563/CyaA860-1706 chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.
Collapse
Affiliation(s)
- Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Grobarcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
5
|
Holubova J, Juhasz A, Masin J, Stanek O, Jurnecka D, Osickova A, Sebo P, Osicka R. Selective Enhancement of the Cell-Permeabilizing Activity of Adenylate Cyclase Toxin Does Not Increase Virulence of Bordetella pertussis. Int J Mol Sci 2021; 22:ijms222111655. [PMID: 34769101 PMCID: PMC8583748 DOI: 10.3390/ijms222111655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin–hemolysin (CyaA, ACT, or AC-Hly) that catalyzes the conversion of intracellular ATP to cAMP and through its signaling annihilates the bactericidal activities of host sentinel phagocytes. In parallel, CyaA permeabilizes host cells by the formation of cation-selective membrane pores that account for the hemolytic activity of CyaA. The pore-forming activity contributes to the overall cytotoxic effect of CyaA in vitro, and it has previously been proposed to synergize with the cAMP-elevating activity in conferring full virulence on B. pertussis in the mouse model of pneumonic infection. CyaA primarily targets myeloid phagocytes through binding of their complement receptor 3 (CR3, integrin αMβ2, or CD11b/CD18). However, with a reduced efficacy, the toxin can promiscuously penetrate and permeabilize the cell membrane of a variety of non-myeloid cells that lack CR3 on the cell surface, including airway epithelial cells or erythrocytes, and detectably intoxicates them by cAMP. Here, we used CyaA variants with strongly and selectively enhanced or reduced pore-forming activity that, at the same time, exhibited a full capacity to elevate cAMP concentrations in both CR3-expressing and CR3-non-expressing target cells. Using B. pertussis mutants secreting such CyaA variants, we show that a selective enhancement of the cell-permeabilizing activity of CyaA does not increase the overall virulence and lethality of pneumonic B. pertussis infection of mice any further. In turn, a reduction of the cell-permeabilizing activity of CyaA did not reduce B. pertussis virulence any importantly. These results suggest that the phagocyte-paralyzing cAMP-elevating capacity of CyaA prevails over the cell-permeabilizing activity of CyaA that appears to play an auxiliary role in the biological activity of the CyaA toxin in the course of B. pertussis infections in vivo.
Collapse
Affiliation(s)
- Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.H.); (A.J.); (J.M.); (O.S.); (D.J.); (A.O.); (P.S.)
| | - Attila Juhasz
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.H.); (A.J.); (J.M.); (O.S.); (D.J.); (A.O.); (P.S.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.H.); (A.J.); (J.M.); (O.S.); (D.J.); (A.O.); (P.S.)
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.H.); (A.J.); (J.M.); (O.S.); (D.J.); (A.O.); (P.S.)
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.H.); (A.J.); (J.M.); (O.S.); (D.J.); (A.O.); (P.S.)
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.H.); (A.J.); (J.M.); (O.S.); (D.J.); (A.O.); (P.S.)
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.H.); (A.J.); (J.M.); (O.S.); (D.J.); (A.O.); (P.S.)
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.H.); (A.J.); (J.M.); (O.S.); (D.J.); (A.O.); (P.S.)
- Correspondence: ; Tel.: +420-241-062-770
| |
Collapse
|
6
|
Osickova A, Khaliq H, Masin J, Jurnecka D, Sukova A, Fiser R, Holubova J, Stanek O, Sebo P, Osicka R. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J Biol Chem 2020; 295:9268-9280. [PMID: 32461253 DOI: 10.1074/jbc.ra120.014122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
In a wide range of organisms, from bacteria to humans, numerous proteins have to be posttranslationally acylated to become biologically active. Bacterial repeats in toxin (RTX) cytolysins form a prominent group of proteins that are synthesized as inactive protoxins and undergo posttranslational acylation on ε-amino groups of two internal conserved lysine residues by co-expressed toxin-activating acyltransferases. Here, we investigated how the chemical nature, position, and number of bound acyl chains govern the activities of Bordetella pertussis adenylate cyclase toxin (CyaA), Escherichia coli α-hemolysin (HlyA), and Kingella kingae cytotoxin (RtxA). We found that the three protoxins are acylated in the same E. coli cell background by each of the CyaC, HlyC, and RtxC acyltransferases. We also noted that the acyltransferase selects from the bacterial pool of acyl-acyl carrier proteins (ACPs) an acyl chain of a specific length for covalent linkage to the protoxin. The acyltransferase also selects whether both or only one of two conserved lysine residues of the protoxin will be posttranslationally acylated. Functional assays revealed that RtxA has to be modified by 14-carbon fatty acyl chains to be biologically active, that HlyA remains active also when modified by 16-carbon acyl chains, and that CyaA is activated exclusively by 16-carbon acyl chains. These results suggest that the RTX toxin molecules are structurally adapted to the length of the acyl chains used for modification of their acylated lysine residue in the second, more conserved acylation site.
Collapse
Affiliation(s)
- Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Anna Sukova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Membrane-Active Properties of an Amphitropic Peptide from the CyaA Toxin Translocation Region. Toxins (Basel) 2017; 9:toxins9110369. [PMID: 29135925 PMCID: PMC5705984 DOI: 10.3390/toxins9110369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
The adenylate cyclase toxin CyaA is involved in the early stages of infection by Bordetella pertussis, the causative agent of whooping cough. CyaA intoxicates target cells by a direct translocation of its catalytic domain (AC) across the plasma membrane and produces supraphysiological levels of cAMP, leading to cell death. The molecular process of AC translocation remains largely unknown, however. We have previously shown that deletion of residues 375–485 of CyaA selectively abrogates AC translocation into eukaryotic cells. We further identified within this “translocation region” (TR), P454 (residues 454–484), a peptide that exhibits membrane-active properties, i.e., is able to bind and permeabilize lipid vesicles. Here, we analyze various sequences from CyaA predicted to be amphipatic and show that although several of these peptides can bind membranes and adopt a helical conformation, only the P454 peptide is able to permeabilize membranes. We further characterize the contributions of the two arginine residues of P454 to membrane partitioning and permeabilization by analyzing the peptide variants in which these residues are substituted by different amino acids (e.g., A, K, Q, and E). Our data shows that both arginine residues significantly contribute, although diversely, to the membrane-active properties of P454, i.e., interactions with both neutral and anionic lipids, helix formation in membranes, and disruption of lipid bilayer integrity. These results are discussed in the context of the translocation process of the full-length CyaA toxin.
Collapse
|
8
|
Bouchez V, Douché T, Dazas M, Delaplane S, Matondo M, Chamot-Rooke J, Guiso N. Characterization of Post-Translational Modifications and Cytotoxic Properties of the Adenylate-Cyclase Hemolysin Produced by Various Bordetella pertussis and Bordetella parapertussis Isolates. Toxins (Basel) 2017; 9:toxins9100304. [PMID: 28954396 PMCID: PMC5666351 DOI: 10.3390/toxins9100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023] Open
Abstract
Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin produced by B. pertussis. In this study, we compared AC-Hly toxins from various clinical isolates of B. pertussis and B. parapertussis, focusing on (i) the genomic sequences of cyaA genes, (ii) the PTMs of partially purified AC-Hly, and (iii) the cytotoxic activity of the various AC-Hly toxins. The genes encoding the AC-Hly toxins of B. pertussis and B. parapertussis displayed very limited polymorphism in each species. Most of the sequence differences between the two species were found in the C-terminal part of the protein. Both toxins harbored PTMs, mostly corresponding to palmitoylations of the lysine 860 residue and palmoylations and myristoylations of lysine 983 for B. pertussis and AC-Hly and palmitoylations of lysine 894 and myristoylations of lysine 1017 for B. parapertussis AC-Hly. Purified AC-Hly from B. pertussis was cytotoxic to macrophages, whereas that from B. parapertussis was not.
Collapse
Affiliation(s)
- Valérie Bouchez
- Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, CEDEX 15, France.
| | - Thibaut Douché
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie, CNRS/Institut Pasteur USR2000, CITECH, 28 rue du Dr Roux, 75724 Paris, CEDEX 15, France, (T.D.).
| | - Mélody Dazas
- Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, CEDEX 15, France.
| | - Sophie Delaplane
- Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, CEDEX 15, France.
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie, CNRS/Institut Pasteur USR2000, CITECH, 28 rue du Dr Roux, 75724 Paris, CEDEX 15, France, (T.D.).
| | - Julia Chamot-Rooke
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie, CNRS/Institut Pasteur USR2000, CITECH, 28 rue du Dr Roux, 75724 Paris, CEDEX 15, France, (T.D.).
| | - Nicole Guiso
- Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, CEDEX 15, France.
| |
Collapse
|
9
|
Characterization of Post-Translational Modifications and Cytotoxic Properties of the Adenylate-Cyclase Hemolysin Produced by Various Bordetella pertussis and Bordetella parapertussis Isolates. Toxins (Basel) 2017. [PMID: 28954396 DOI: 10.3390/toxins9100304.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin produced by B. pertussis. In this study, we compared AC-Hly toxins from various clinical isolates of B. pertussis and B. parapertussis, focusing on (i) the genomic sequences of cyaA genes, (ii) the PTMs of partially purified AC-Hly, and (iii) the cytotoxic activity of the various AC-Hly toxins. The genes encoding the AC-Hly toxins of B. pertussis and B. parapertussis displayed very limited polymorphism in each species. Most of the sequence differences between the two species were found in the C-terminal part of the protein. Both toxins harbored PTMs, mostly corresponding to palmitoylations of the lysine 860 residue and palmoylations and myristoylations of lysine 983 for B. pertussis and AC-Hly and palmitoylations of lysine 894 and myristoylations of lysine 1017 for B. parapertussis AC-Hly. Purified AC-Hly from B. pertussis was cytotoxic to macrophages, whereas that from B. parapertussis was not.
Collapse
|
10
|
Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel) 2017; 9:toxins9100300. [PMID: 28946636 PMCID: PMC5666347 DOI: 10.3390/toxins9100300] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.
Collapse
|
11
|
Sebo P, Osicka R, Masin J. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev Vaccines 2014; 13:1215-27. [PMID: 25090574 DOI: 10.1586/14760584.2014.944900] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adenylate cyclase toxin-hemolysin (ACT, AC-Hly or CyaA) is a key virulence factor of Bordetella pertussis. It targets bactericidal activities of phagocytes, such as oxidative burst and complement- or antibody-mediated opsonophagocytic killing of bacteria. Through cAMP signaling, CyaA also skews TLR-triggered maturation of dendritic cells, inhibiting proinflammatory IL-12 and TNF-α secretion and enhancing IL-10 production and Treg expansion, likely hampering induction of adaptive immune responses to Bordetella infections. Non-enzymatic CyaA toxoid is a potent protective antigen and adjuvant that boosts immunogenicity of co-administered B. pertussis antigens and improves potency of acellular pertussis (aP) vaccines in mice. This makes CyaA a prime antigen candidate for inclusion into a next generation of aP vaccines. Moreover, recombinant CyaA toxoids were recently shown to be safe in humans in frame of Phase I clinical evaluation of a CyaA-based immunotherapeutic vaccine that induces Th1-polarized CD8(+) cytotoxic T-lymphocyte responses targeting cervical tumors.
Collapse
Affiliation(s)
- Peter Sebo
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i, Videnska 1083, 142 20, Prague 4, Czech Republic
| | | | | |
Collapse
|
12
|
Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect Immun 2013; 81:4571-82. [PMID: 24082076 DOI: 10.1128/iai.00711-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins.
Collapse
|
13
|
Abstract
Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Fiser R, Masin J, Bumba L, Pospisilova E, Fayolle C, Basler M, Sadilkova L, Adkins I, Kamanova J, Cerny J, Konopasek I, Osicka R, Leclerc C, Sebo P. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog 2012; 8:e1002580. [PMID: 22496638 PMCID: PMC3320606 DOI: 10.1371/journal.ppat.1002580] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/26/2012] [Indexed: 01/29/2023] Open
Abstract
Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC) domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC− toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P) toxoid, unable to conduct Ca2+ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca2+ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca2+ influx promoted by molecules locked in a Ca2+-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux. The adenylate cyclase toxin (CyaA) of pathogenic Bordetellae eliminates the first line of host innate immune defense by inhibiting the oxidative burst and complement-mediated opsonophagocytic killing of bacteria. The toxin penetrates myeloid phagocytes, such as neutrophil, macrophage or dendritic cells, and subverts their signaling by catalyzing a rapid and massive conversion of intracellular ATP to the key signaling molecule cAMP. In parallel, the toxin forms cation-selective pores and permeabilizes the cytoplasmic membrane of phagocytes. This so-called ‘hemolysin’ activity synergizes with the enzymatic AC activity of CyaA in promoting apoptotic or necrotic cell death, depending on the toxin dose. Moreover, the pore-forming activity promotes activation of NALP3 inflammasome and release of interleukin IL-1β. We show here that the capacity of CyaA to permeabilize phagocytes depends on its ability to mediate influx of extracellular calcium ions into cells. This enables bystander CyaA pores to escape rapid macropinocytic removal from cell membrane and exacerbate the permeabilization of cells. These observations set a new paradigm for the mechanism of action of pore-forming RTX leukotoxins on phagocytes.
Collapse
Affiliation(s)
- Radovan Fiser
- Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Eva Pospisilova
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | | | - Marek Basler
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Lenka Sadilkova
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Irena Adkins
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Jana Kamanova
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Jan Cerny
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivo Konopasek
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Claude Leclerc
- Institut Pasteur, Paris, France
- INSERM U1041, Paris, France
| | - Peter Sebo
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
- Institute of Biotechnology of the ASCR, v.v.i., Prague, Czech Republic
- * E-mail:
| |
Collapse
|
15
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol Microbiol 2010; 75:1550-62. [DOI: 10.1111/j.1365-2958.2010.07077.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Thamwiriyasati N, Powthongchin B, Kittiworakarn J, Katzenmeier G, Angsuthanasombat C. Esterase activity of Bordetella pertussis CyaC-acyltransferase against synthetic substrates: implications for catalytic mechanism in vivo. FEMS Microbiol Lett 2010; 304:183-90. [PMID: 20132307 DOI: 10.1111/j.1574-6968.2010.01896.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Adenylate cyclase-hemolysin toxin (CyaA) produced from the human respiratory tract pathogen Bordetella pertussis requires fatty-acyl modification by CyaC-acyltransferase to become an active toxin. Previously, the recombinant CyaA pore-forming (CyaA-PF) fragment expressed in Escherichia coli was shown to be hemolytically active upon palmitoylation in vivo by cosynthesized CyaC. Here, the 21-kDa CyaC enzyme separately expressed in E. coli as an inclusion body was solubilized in 8 M urea and successfully refolded into an enzymatically active monomer. In addition to the capability of activating CyaA-PF in vitro, CyaC showed esterase activity against p-nitrophenyl acetate (pNPA) and p-nitrophenyl palmitate (pNPP), with preferential hydrolysis toward pNPP when compared with chymotrypsin. A homology-based CyaC structure suggested a conceivable role of a catalytic triad including Ser(30), His(33) and Tyr(66) in substrate catalysis. Alanine substitutions of these individual residues caused a drastic decrease in specific activities of all three mutant enzymes (S30A, H33A and Y66A) toward pNPP, signifying that CyaC-acyltransferase shares a similar mechanism of hydrolysis with a serine esterase in which Ser(30) is part of the catalytic triad.
Collapse
Affiliation(s)
- Niramon Thamwiriyasati
- Laboratory of Molecular Biophysics and Structural Biochemistry, Bacterial Protein Toxin Research Unit, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | | | | | | | | |
Collapse
|
18
|
Chenal-Francisque V, Caro V, Boursaux-Eude C, Guiso N. Genomic analysis of the adenylate cyclase-hemolysin C-terminal region of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Res Microbiol 2009; 160:330-6. [PMID: 19379809 DOI: 10.1016/j.resmic.2009.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/11/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
Adenylate cyclase-hemolysin plays an important role in the virulence of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica species. Its C-terminal region carries protective epitopes and receptor binding site for human cells. Genomic analyses of this region indicate no polymorphism in B. pertussis and B. parapertussis regions, but substantial variability in B. bronchiseptica that might be linked to the various niches of this species.
Collapse
|
19
|
Schubert P, Hoffman MD, Sniatynski MJ, Kast J. Advances in the analysis of dynamic protein complexes by proteomics and data processing. Anal Bioanal Chem 2006; 386:482-93. [PMID: 16933131 DOI: 10.1007/s00216-006-0609-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 06/05/2006] [Accepted: 06/08/2006] [Indexed: 01/12/2023]
Abstract
Signal transduction governs virtually every cellular function of multicellular organisms, and its deregulation leads to a variety of diseases. This intricate network of molecular interactions is mediated by proteins that are assembled into complexes within individual signaling pathways, and their composition and function is often regulated by different post-translational modifications. Proteomic approaches are commonly used to analyze biological complexes and networks, but often lack the specificity to address the dynamic and hence transient nature of the interactions and the influence of the multiple post-translational modifications that govern these processes. Here we review recent developments in proteomic research to address these limitations, and discuss several technologies that have been developed for this purpose. The synergy between these proteomic and computational tools, when applied together with global methods to the analysis of individual proteins, complexes and pathways, may allow researchers to unravel the underlying mechanisms of signaling networks in greater detail than previously possible.
Collapse
Affiliation(s)
- Peter Schubert
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
20
|
Vojtová J, Kofronová O, Sebo P, Benada O. Bordetella adenylate cyclase toxin induces a cascade of morphological changes of sheep erythrocytes and localizes into clusters in erythrocyte membranes. Microsc Res Tech 2006; 69:119-29. [PMID: 16456835 DOI: 10.1002/jemt.20277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adenylate cyclase toxin (CyaA) of Bordetella pertussis penetrates the membrane of eukaryotic cells, producing high levels of intracellular cAMP, as well as hemolysis that results from the formation of cation-selective toxin channels in the membrane. Using several microscopical approaches we studied the effects of CyaA action on the morphology of sheep erythrocytes during early phases preceding lysis and examined localization of CyaA molecules within the erythrocyte membrane. CyaA induced a cascade of morphological changes of erythrocytes, such as shrinkage, formation of membrane projections, and blebs and swelling. The use of an enzymatically inactive CyaA-AC- toxoid that is unable to produce cAMP and of a CyaA-E581K mutant exhibiting higher hemolytic activity than with CyaA showed that the hemolytic activity is responsible for the induction of morphological changes of erythrocytes. Further, immunolabeling of inserted CyaA-232/FLAG molecules with specific anti-FLAG antibodies and IgG-gold particles indicated a clustered distribution of CyaA molecules in erythrocyte membrane. This was confirmed by immunofluorescence and confocal microscopy, which revealed uniform stoichiometry of CyaA clusters, suggesting CyaA binding into specific domains in erythrocyte membrane. Indeed, a decrease of CyaA binding after cholesterol depletion of erythrocytes suggests toxin targeting and binding to membrane microdomains (rafts).
Collapse
Affiliation(s)
- Jana Vojtová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic
| | | | | | | |
Collapse
|
21
|
Basler M, Masin J, Osicka R, Sebo P. Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect Immun 2006; 74:2207-14. [PMID: 16552051 PMCID: PMC1418931 DOI: 10.1128/iai.74.4.2207-2214.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella adenylate cyclase (AC) toxin-hemolysin (CyaA) targets myeloid phagocytes expressing the alphaMbeta2 integrin (CD11b/CD18) and delivers into their cytosol an AC enzyme that converts ATP into cyclic AMP (cAMP). In parallel, CyaA acts as a hemolysin, forming small membrane pores. Using specific mutations, we dissected the contributions of the two activities to cytolytic potency of CyaA on J774A.1 murine monocytes. The capacity of AC to penetrate cells and deplete cytosolic ATP was essential for promoting lysis and the enzymatically inactive but fully hemolytic CyaA-AC- toxoid exhibited a 15-fold-lower cytolytic capacity on J774A.1 cells than intact CyaA. Moreover, a two- or fourfold drop of specific hemolytic activity of the CyaA-E570Q and CyaA-E581P mutants was overpowered by an intact capacity to dissipate cytosolic ATP into cAMP, allowing the less hemolytic proteins to promote lysis of J774A.1 cells as efficiently as intact CyaA. However, an increased hemolytic activity, due to lysine substitutions of glutamates 509, 516, and 581 in the pore-forming domain, conferred on AC- toxoids a correspondingly enhanced cytolytic potency. Moreover, a threefold increase in hemolytic activity could override a fourfold drop in capacity to convert cellular ATP to cAMP, conferring on the CyaA-E581K construct an overall twofold increased cytolytic potency. Hence, although appearing auxiliary in cytolytic action of the toxin on nucleated cells, the pore-forming activity can synergize with ATP-depleting activity of the cell-invasive AC enzyme and complement its action toward maximal cytotoxicity.
Collapse
Affiliation(s)
- Marek Basler
- Institute of Microbiology CAS, Videnska 1083, CZ-142 20 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
22
|
Hoffman MD, Kast J. Mass spectrometric characterization of lipid-modified peptides for the analysis of acylated proteins. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:229-41. [PMID: 16421873 DOI: 10.1002/jms.981] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The analysis of acylated proteins by mass spectrometry (MS) has largely been overshadowed in proteomics by the analysis of glycosylated and phosphorylated proteins; however, lipid modifications on proteins are proving to be of increasing importance in biomedical research. In order to identify the marker ions and/or neutral loss fragments that are produced upon collision-induced dissociation, providing a means to identify the common lipid modifications on proteins, peptides containing an N-terminally myristoylated glycine, a palmitoylated cysteine and a farnesylated cysteine were chemically synthesized. Matrix-assisted laser desorption/ionization time-of-flight time-of-flight (MALDI-TOF-TOF), electrospray ionization quadrupole time-of-flight (ESI Q-TOF), and electrospray ionization hybrid triple-quadrupole/linear ion trap (ESI QqQ(LIT)) mass spectrometers were used for the analysis. The peptide containing the N-terminally myristoylated glycine, upon CID, produced the characteristic fragments a1 (240.4 Th) and b1 (268.4 Th) ions as well as a low-intensity neutral loss of 210 Da (C14H26O). The peptides containing a farnesylated cysteine residue fragmented to produce a marker ion at a m/z of 205 Th (C15H25) as well as other intense farnesyl fragment ions, and a neutral loss of 204 Da (C15H24). The peptides containing a palmitoylated cysteine moiety generated neutral losses of 238 Da (C16H30O) and 272 Da (C16H32OS); however, no marker ions were produced. The neutral losses were more prominent in the MALDI-TOF-TOF spectra, whereas the marker ions were more abundant in the ESI QqQ(LIT) and Q-TOF mass spectra.
Collapse
Affiliation(s)
- Michael D Hoffman
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
23
|
Masin J, Basler M, Knapp O, El-Azami-El-Idrissi M, Maier E, Konopasek I, Benz R, Leclerc C, Sebo P. Acylation of Lysine 860 Allows Tight Binding and Cytotoxicity of Bordetella Adenylate Cyclase on CD11b-Expressing Cells. Biochemistry 2005; 44:12759-66. [PMID: 16171390 DOI: 10.1021/bi050459b] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Bordetella adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) forms cation-selective membrane channels and delivers into the cytosol of target cells an adenylate cyclase domain (AC) that catalyzes uncontrolled conversion of cellular ATP to cAMP. Both toxin activities were previously shown to depend on post-translational activation of proCyaA to CyaA by covalent palmitoylation of the internal Lys983 residue (K983). CyaA, however, harbors a second RTX acylation site at residue Lys860 (K860), and the role of K860 acylation in toxin activity is unclear. We produced in E. coli the CyaA-K860R and CyaA-K983R toxin variants having the Lys860 and Lys983 acylation sites individually ablated by arginine substitutions. When examined for capacity to form membrane channels and to penetrate sheep erythrocytes, the CyaA-K860R acylated on Lys983 was about 1 order of magnitude more active than CyaA-K983R acylated on Lys860, although, in comparison to intact CyaA, both monoacylated constructs exhibited markedly reduced activities in erythrocytes. Channels formed in lipid bilayers by CyaA-K983R were importantly less selective for cations than channels formed by CyaA-K860R, intact CyaA, or proCyaA, showing that, independent of its acylation status, the Lys983 residue may play a role in toxin structures that determine the distribution of charged residues at the entry or inside of the CyaA channel. While necessary for activity on erythrocytes, acylation of Lys983 was also sufficient for the full activity of CyaA on CD11b+ J774A.1 monocytes. In turn, acylation of Lys860 alone did not permit toxin activity on erythrocytes, while it fully supported the high-affinity binding of CyaA-K983R to the toxin receptor CD11b/CD18 and conferred on CyaA-K983R a reduced but substantial capacity to penetrate and kill the CD11b+ cells. This is the first evidence that acylation of Lys860 may play a role in the biological activity of CyaA, even if redundant to the acylation of Lys983.
Collapse
Affiliation(s)
- Jiri Masin
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee SJ, Gray MC, Zu K, Hewlett EL. Oligomeric behavior of Bordetella pertussis adenylate cyclase toxin in solution. Arch Biochem Biophys 2005; 438:80-7. [PMID: 15878155 DOI: 10.1016/j.abb.2005.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/31/2005] [Accepted: 04/02/2005] [Indexed: 10/25/2022]
Abstract
Adenylate cyclase (AC) toxin from Bordetella pertussis inserts into eukaryotic cells, producing intracellular cAMP, as well as hemolysis and cytotoxicity. Concentration dependence of hemolysis suggests oligomers as the functional unit and inactive deletion mutants permit partial restoration of intoxication and/or hemolysis, when added in pairs [M. Iwaki, A. Ullmann, P. Sebo, Mol. Microbiol. 17 (1995) 1015-1024], suggesting dimerization/oligomerization. Using affinity co-precipitation and fluorescence resonance energy transfer (FRET), we demonstrate specific self-association of AC toxin molecules in solution. Flag-tagged AC toxin mixed with biotinylated-AC toxin, followed by streptavidin beads, yields both forms of the toxin. FRET measurements of toxin, labeled with different fluorophores, demonstrate association in solution, requiring post-translational acylation, but not calcium. AC toxin mixed with DeltaR, an inactive mutant, results in enhancement of hemolysis over that with wild type alone, suggesting that oligomers are functional. Dimers and perhaps higher molecular mass forms of AC toxin occur in solution in a manner that is relevant to toxin action.
Collapse
Affiliation(s)
- Sang-Jin Lee
- University of Virginia, Department of Pharmacology, Charlottesville, VA 22903, USA
| | | | | | | |
Collapse
|
25
|
Haselmann KF, Nielsen PF, Zubarev RA. Characterization of an N-acylated glucagon-like peptide-1 derivative by electron capture dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:548-552. [PMID: 15792724 DOI: 10.1016/j.jasms.2005.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 01/12/2005] [Accepted: 01/12/2005] [Indexed: 05/24/2023]
Abstract
An N-acylated glucagon-like peptide 1 derivative was characterized by Fourier transform ion cyclotron resonance mass spectrometry. Both electron capture dissociation (ECD) and sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD) were employed. While ECD revealed full sequence coverage, site of modification, branching point, structure of the palmitoylated modification, SORI-CAD produced less complete and more ambiguous information attributable to facile losses of the fatty acid group from both parent and fragments. Thus, ECD showed a superior characterization performance over SORI-CAD in analysis of N-acylated polypeptides.
Collapse
Affiliation(s)
- Kim F Haselmann
- Department of Chemistry, University of Southern Denmark, Odense, Denmark.
| | | | | |
Collapse
|
26
|
Mašín J, Konopásek I, Svobodová J, Šebo P. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004. [DOI: 10.1016/j.bbamem.2003.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Guan Z. Identification and localization of the fatty acid modification in ghrelin by electron capture dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:1443-1447. [PMID: 12484464 DOI: 10.1016/s1044-0305(02)00707-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electron capture dissociation (ECD) has been demonstrated to be an effective fragmentation technique for characterizing the site and structure of the fatty acid modification in ghrelin, a 28-residue growth-hormone-releasing peptide that has an unusual ester-linked n-octanoyl (C8:0) modification at Ser-3. ECD cleaves 21 of 23 possible backbone amine bonds, with the product ions (c and z* ions) covering a greater amino acid sequence than those obtained by collisionally activated dissociation (CAD). Consistent with the ECD nonergodic mechanism, the ester-linked octanoyl group is retained on all backbone cleavage product ions, allowing for direct localization of this labile modification. In addition, ECD also induces the ester bond cleavage to cause the loss of octanoic acid from the ghrelin molecular ion; the elimination process is initiated by the capture of an electron at the protonated ester group, which is followed by the radical-site-initiated reaction known as alpha-cleavage. The chemical composition of the attached fatty acid can be directly obtained from the accurate Fourier transform ion cyclotron resonance (FTICR) mass measurement of the ester bond cleavage product ions.
Collapse
Affiliation(s)
- Ziqiang Guan
- Molecular Profiling Proteomics, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| |
Collapse
|
28
|
Basar T, Havlícek V, Bezousková S, Hackett M, Sebo P. Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J Biol Chem 2001; 276:348-54. [PMID: 11031260 DOI: 10.1074/jbc.m006463200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The capacity of adenylate cyclase toxin (ACT) to penetrate into target cells depends on post-translational fatty-acylation by the acyltransferase CyaC, which can palmitoylate the conserved lysines 983 and 860 of ACT. Here, the in vivo acylating capacity of a set of mutated CyaC acyltransferases was characterized by two-dimensional gel electrophoresis and mass spectrometric analyses of the ACT product. Substitutions of the potentially catalytic serine 20 and histidine 33 residues ablated acylating activity of CyaC. Conservative replacements of alanine 140 by glycine (A140G) and valine (A140V) residues, however, affected selectivity of CyaC for the two acylation sites on ACT. Activation by the A140G variant of CyaC generated a mixture of bi- and monoacylated ACT molecules, modified either at both Lys-860 and Lys-983, or only at Lys-860, respectively. In contrast, the A140V CyaC produced a nearly 1:1 mixture of nonacylated pro-ACT with ACT monoacylated almost exclusively at Lys-983. The respective proportion of toxin molecules acylated at Lys-983 correlated well with the cell-invasive activity of both ACT mixtures, which was about half of that of ACT fully acylated on Lys-983 by intact CyaC. These results show that acylation of Lys-860 alone does not confer cell-invasive activity on ACT, whereas acylation of Lys-983 is necessary and sufficient.
Collapse
Affiliation(s)
- T Basar
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, 14220 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|