1
|
Di F, Yan Y, Yao L, Zhang Z, Song L, Qiu J, Zhang R. Unveiling ODP4: A breakthrough in PCOS treatment via BAT transplantation. Biochem Pharmacol 2025; 236:116871. [PMID: 40090595 DOI: 10.1016/j.bcp.2025.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Women with polycystic ovary syndrome (PCOS) often face infertility due to endocrine disorders affecting their reproductive, metabolic, and endocrine systems. Although brown adipose tissue (BAT) transplantation has been established to treat polycystic ovaries and hyperandrogenism in PCOS rats, the underlying mechanism is still largely unclear owing to lacking effective clinical treatment. Peptides are believed to significantly contribute to PCOS pathogenesis, however, the specific effects of active peptides released by BAT on PCOS remain largely unexplored. This study sought to identify active peptides secreted in the recipient's BAT and investigate their potential biological functions in PCOS. We validated the impact of BAT transplantation and found that an overexpressed ovary derived peptide 4 (ODP4) in BAT transplantation rats could potentiate the inhibitory effect of dehydroepiandrosterone (DHEA) on granulosa cell (GC) development, yield a stimulatory effect on cell apoptosis and regulate ovulation genes and hormone synthesis. In DHEA-induced PCOS rats, ODP4 restored the estrous cycle and reduced cystic follicles, indicating its potential in PCOS treatment. Furthermore, transcriptomic analysis of KGN cells treated with ODP4 and DHEA showed changes in genes related to mitochondrial activity and oxidative damage. The mechanism results showed that ODP4 enhanced mitochondrial functionality, elevated ATP production, and decreased oxidative damage in KGN cells treatment with DHEA, suggesting its preventive role in mitochondrial malfunction and oxidative damage. These findings reveal unrecognized roles of ODP4 in PCOS pathogenesis. Our study substantiates that the connection between BAT transplantation and PCOS is related to peptidomics. Additionally, ODP4 has prospects for clinical application as an innovative therapeutic PCOS target.
Collapse
Affiliation(s)
- Fangfang Di
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Yan
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Yao
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongxiao Zhang
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Song
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jin Qiu
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Runjie Zhang
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Fernandez-Acosta M, Zanini R, Heredia F, A. Volonté Y, Menezes J, Prüger K, Ibarra J, Arana M, Pérez MS, Veenstra JA, Wegener C, Gontijo AM, Garelli A. Triggering and modulation of a complex behavior by a single peptidergic command neuron in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2420452122. [PMID: 40085652 PMCID: PMC11929487 DOI: 10.1073/pnas.2420452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
At the end of their growth phase, Drosophila larvae remodel their bodies, glue themselves to a substrate, and harden their cuticle in preparation for metamorphosis. This process-termed pupariation-is triggered by a surge in the hormone ecdysone. Substrate attachment is achieved by a pupariation subprogram called glue expulsion and spreading behavior (GSB). An epidermis-to-CNS Dilp8-Lgr3 relaxin signaling event that occurs downstream of ecdysone is critical for unlocking progression of the pupariation motor program toward GSB, but the factors and circuits acting downstream of Lgr3 signaling remain unknown. Here, using cell-type-specific RNA interference and behavioral monitoring, we identify Myoinhibiting peptide (Mip) as a neuromodulator of multiple GSB action components, such as tetanic contraction, peristaltic contraction alternation, and head-waving. Mip is required in a pair of brain descending neurons, which act temporally downstream of Dilp8-Lgr3 signaling. Mip modulates GSB via ventral nerve cord neurons expressing its conserved receptor, sex peptide receptor (SPR). Silencing of Mip descending neurons by hyperpolarization completely abrogates GSB, while their optogenetic activation at a restricted competence time window triggers GSB-like behavior. Hence, Mip descending neurons have at least two functions: to act as GSB command neurons and to secrete Mip to modulate GSB action components. Our results provide insight into conserved aspects of Mip-SPR signaling in animals, reveal the complexity of GSB control, and contribute to the understanding of how multistep innate behaviors are coordinated in time and with other developmental processes through command neurons and neuropeptidergic signaling.
Collapse
Affiliation(s)
| | - Rebeca Zanini
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
| | - Fabiana Heredia
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
| | - Yanel A. Volonté
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| | - Juliane Menezes
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
| | - Katja Prüger
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
| | - Julieta Ibarra
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| | - Maite Arana
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| | - María S. Pérez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| | - Jan A. Veenstra
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine UMR 5287 CNRS, Université de Bordeaux, Bordeaux33076, France
| | - Christian Wegener
- Julius-Maximilians-Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg97074, Germany
| | - Alisson M. Gontijo
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
| | - Andrés Garelli
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| |
Collapse
|
3
|
Xia X, Li Y. A high-performance GRAB sensor reveals differences in the dynamics and molecular regulation between neuropeptide and neurotransmitter release. Nat Commun 2025; 16:819. [PMID: 39827209 PMCID: PMC11743212 DOI: 10.1038/s41467-025-56129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters within individual neuron represent a fundamental characteristic observed across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we develop a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution. Furthermore, we investigate the in vivo dynamics and molecular regulation differences between sNPF and acetylcholine (ACh) from the same neurons. Interestingly, our findings reveal distinct spatiotemporal dynamics in the release of sNPF and ACh. Notably, our results indicate that distinct synaptotagmins (Syt) are involved in these two processes, as Syt7 and Sytα for sNPF release, while Syt1 for ACh release. Thus, this high-performance GRAB sensor provides a robust tool for studying neuropeptide release and shedding insights into the unique release dynamics and molecular regulation that distinguish neuropeptides from small molecule neurotransmitters.
Collapse
Affiliation(s)
- Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
4
|
Wang L, Zeng Z, Xue Z, Wang Y. DeepNeuropePred: A robust and universal tool to predict cleavage sites from neuropeptide precursors by protein language model. Comput Struct Biotechnol J 2024; 23:309-315. [PMID: 38179071 PMCID: PMC10764246 DOI: 10.1016/j.csbj.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
Neuropeptides play critical roles in many biological processes such as growth, learning, memory, metabolism, and neuronal differentiation. A few approaches have been reported for predicting neuropeptides that are cleaved from precursor protein sequences. However, these models for cleavage site prediction of precursors were developed using a limited number of neuropeptide precursor datasets and simple precursors representation models. In addition, a universal method for predicting neuropeptide cleavage sites that can be applied to all species is still lacking. In this paper, we proposed a novel deep learning method called DeepNeuropePred, using a combination of pre-trained language model and Convolutional Neural Networks for feature extraction and predicting the neuropeptide cleavage sites from precursors. To demonstrate the model's effectiveness and robustness, we evaluated the performance of DeepNeuropePred and four models from the NeuroPred server in the independent dataset and our model achieved the highest AUC score (0.916), which are 6.9%, 7.8%, 8.8%, and 10.9% higher than Mammalian (0.857), insects (0.850), Mollusc (0.842) and Motif (0.826), respectively. For the convenience of researchers, we provide a web server (http://isyslab.info/NeuroPepV2/deepNeuropePred.jsp).
Collapse
Affiliation(s)
- Lei Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zilu Zeng
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, China
| | - Zhidong Xue
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
5
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
6
|
Medla M, Daubnerová I, Koči J, Roller L, Slovák M, Žitňan D. Identification and expression of short neuropeptide F and its receptors in the tick Ixodes ricinus. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104524. [PMID: 37201579 DOI: 10.1016/j.jinsphys.2023.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
In Europe, the tick Ixodes ricinus is the most important vector of numerous pathogens that are transmitted during blood feeding on their vertebrate hosts. To elucidate mechanisms controlling blood intake and associated transmission of pathogens we identified and described expression of short neuropeptide F (sNPF) and its receptors which are known to regulate feeding in insects. Using in situ hybridization (ISH) and immunohistochemistry (IHC) we stained numerous neurons producing sNPF in the central nervous system (CNS; synganglion), while a few peripheral neurons were detected anteriorly to the synganglion, and on the surface of the hindgut and leg muscles. Apparent sNPF expression was also found in enteroendocrine cells individually scattered in anterior lobes of the midgut. In silico analyses and BLAST search for sNPF receptors revealed two putative G protein-coupled receptors (sNPFR1 and sNPFR2) in the I. ricinus genome. Aequorin-based functional assay in CHO cells showed that both receptors were specific and sensitive to sNPF in nanomolar concentrations. Increased expression levels of these receptors in the gut during blood intake suggest that sNPF signaling may be involved in regulation of feeding and digestion processes of I. ricinus.
Collapse
Affiliation(s)
- Matej Medla
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Koči
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Virology, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences SAS, Bratislava, Slovakia
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
7
|
Mochizuki T, Sakamoto M, Tanizawa Y, Seike H, Zhu Z, Zhou YJ, Fukumura K, Nagata S, Nakamura Y. Best Practices for Comprehensive Annotation of Neuropeptides of Gryllus bimaculatus. INSECTS 2023; 14:121. [PMID: 36835690 PMCID: PMC9960350 DOI: 10.3390/insects14020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Genome annotation is critically important data that can support research. Draft genome annotations cover representative genes; however, they often do not include genes that are expressed only in limited tissues and stages, or genes with low expression levels. Neuropeptides are responsible for regulation of various physiological and biological processes. A recent study disclosed the genome draft of the two-spotted cricket Gryllus bimaculatus, which was utilized to understand the intriguing physiology and biology of crickets. Thus far, only two of the nine reported neuropeptides in G. bimaculatus were annotated in the draft genome. Even though de novo assembly using transcriptomic analyses can comprehensively identify neuropeptides, this method does not follow those annotations on the genome locus. In this study, we performed the annotations based on the reference mapping, de novo transcriptome assembly, and manual curation. Consequently, we identified 41 neuropeptides out of 43 neuropeptides, which were reported in the insects. Further, 32 of the identified neuropeptides on the genomic loci in G. bimaculatus were annotated. The present annotation methods can be applicable for the neuropeptide annotation of other insects. Furthermore, the methods will help to generate useful infrastructures for studies relevant to neuropeptides.
Collapse
Affiliation(s)
- Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hitomi Seike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
8
|
Hu J, Zhang R, Chang Q, Ji M, Zhang H, Geng R, Li C, Wang Z. p53: A Regulator of Ferroptosis Induced by Galectin-1 Derived Peptide 3 in MH7A Cells. Front Genet 2022; 13:920273. [PMID: 35860469 PMCID: PMC9289366 DOI: 10.3389/fgene.2022.920273] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/16/2022] [Indexed: 12/21/2022] Open
Abstract
Backgrounds: Rheumatoid arthritis synovial fibroblasts (RASFs) are the primary cells responsible for destruction of marginal cartilage in rheumatoid arthritis (RA). G1dP3, a bioactive peptide derived from galectin-1 domain, possesses potent anti-inflammatory and anti-proliferation properties in RASFs. This study aimed to determine the effects of G1dP3 ferroptosis induction in RASFs and to further clarify the possible mechanisms. Methods: TNF-α was used to establish a RA model in MH7A cells. Cell Counting Kit-8 assays were employed to detect MH7A cell viability with different treatments. The occurrence of ferroptosis was examined by Lipid ROS assay, cellular labile iron pool measurement, reduced glutathione/oxidized glutathione activity, Gpx4 expression and transmission electron microscopy (TEM) morphology observation. Lentiviral-mediated siRNA interference was used to determine the downstream pathway. Results: G1dP3 markedly suppressed MH7A cell viability induced by TNF-α. G1dP3-treated MH7A cells presented the morphological features of ferroptosis. Moreover, G1dP3 triggered ferroptosis in MH7A cells by promoting the accumulation of lipid peroxides as well as iron deposition. Inhibition of ferroptosis alleviated G1dP3-mediated suppression of MH7A cell viability. Furthermore, G1dP3 increased p53 expression, which in turn transcriptionally suppressed SLC7A11, a key component of system Xc− essential for ferroptosis. Knockdown of p53 abrogated the ferroptotic effects of G1dP3 on MH7A cells. Conclusion: Our findings reveal that the bioactive peptide G1dP3 promotes RASFs ferroptosis cell death via a p53/SLC7A11 axis-dependent mechanism, suggesting its potential role in the treatment of RA.
Collapse
Affiliation(s)
- Junzheng Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Rui Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qing Chang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Mingliang Ji
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Haixiang Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Rui Geng
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Chao Li
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhen Wang
- Department of Orthopaedics, The First Hospital Affiliated to China Pharmaceutical University, Nanjing, China
- *Correspondence: Zhen Wang,
| |
Collapse
|
9
|
Hull JJ, Gross RJ, Brent CS, Christie AE. Filling in the gaps: A reevaluation of the Lygus hesperus peptidome using an expanded de novo assembled transcriptome and molecular cloning. Gen Comp Endocrinol 2021; 303:113708. [PMID: 33388363 DOI: 10.1016/j.ygcen.2020.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Roni J Gross
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Scott IM, Hatten G, Tuncer Y, Clarke VC, Jurcic K, Yeung KKC. Proteomic Analyses Detect Higher Expression of C-Type Lectins in Imidacloprid-Resistant Colorado Potato Beetle Leptinotarsa decemlineata Say. INSECTS 2020; 12:insects12010003. [PMID: 33374543 PMCID: PMC7822175 DOI: 10.3390/insects12010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Surveillance and determining the mechanisms of pesticide resistance are key components of resistance management. Mechanisms can be investigated using biochemical, genomic, proteomic and other modern analytical techniques. In the present study, proteomic analyses of Colorado potato beetle (CPB), one of the most adaptable insect pests to both plant toxins and synthetic insecticides, were applied to identify protein differences in insecticide-susceptible and resistant strains. Proteins identified in abdominal and midgut tissues based on separating by 2-dimensional (2-D) gels and mass spectrometry were associated with insect innate immunity. A database search found that the highest match was a C-type lectin (CTL), which is a component in the insect’s innate immune system. The 2-D gel spot identified as a CTL was greater in the insecticide-resistant CPB strain, but the CTL spot size was increased by exposure to imidacloprid in the susceptible strain. This is a novel finding, which suggests that CTLs and insect immunity may respond to certain toxins as well as to pathogens. There may also be a potential application for pest management if insect immunity is targeted. Abstract The Colorado potato beetle (CPB) is one of the most adaptable insect pests to both plant toxins and synthetic insecticides. Resistance in CPB is reported for over 50 classes of insecticides, and mechanisms of insecticide-resistance include enhanced detoxification enzymes, ABC transporters and target site mutations. Adaptation to insecticides is also associated with changes in behaviour, energy metabolism and other physiological processes seemingly unrelated to resistance but partially explained through genomic analyses. In the present study, in place of genomics, we applied 2-dimensional (2-D) gel and mass spectrometry to investigate protein differences in abdominal and midgut tissue of insecticide-susceptible (S) and -resistant (R) CPB. The proteomic analyses measured constitutive differences in several proteins, but the highest match was identified as a C-type lectin (CTL), a component of innate immunity in insects. The constitutive expression of the CTL was greater in the multi-resistant (LI) strain, and the same spot was measured in both midgut and abdominal tissue. Exposure to the neonicotinoid insecticide, imidacloprid, increased the CTL spot found in the midgut but not in the abdominal tissue of the laboratory (Lab) strain. No increase in protein levels in the midgut tissue was observed in the LI or a field strain (NB) tolerant to neonicotinoids. With the exception of biopesticides, such as Bacillus thuringiensis (Bt), no previous studies have documented differences in the immune response by CTLs in insects exposed to synthetic insecticides or the fitness costs associated with expression levels of immune-related genes in insecticide-resistant strains. This study demonstrates again how CPB has been successful at adapting to insecticides, plant defenses as well as pathogens.
Collapse
Affiliation(s)
- Ian M. Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, London ON N5V 4T3, Canada; (G.H.); (Y.T.)
- Correspondence:
| | - Gabrielle Hatten
- London Research and Development Centre, Agriculture and Agri-Food Canada, London ON N5V 4T3, Canada; (G.H.); (Y.T.)
| | - Yazel Tuncer
- London Research and Development Centre, Agriculture and Agri-Food Canada, London ON N5V 4T3, Canada; (G.H.); (Y.T.)
| | - Victoria C. Clarke
- London Regional Proteomics Centre, Biochemistry, Western University, London ON N6A 5C1, Canada; (V.C.C.); (K.J.); (K.K.-C.Y.)
| | - Kristina Jurcic
- London Regional Proteomics Centre, Biochemistry, Western University, London ON N6A 5C1, Canada; (V.C.C.); (K.J.); (K.K.-C.Y.)
| | - Ken K.-C. Yeung
- London Regional Proteomics Centre, Biochemistry, Western University, London ON N6A 5C1, Canada; (V.C.C.); (K.J.); (K.K.-C.Y.)
| |
Collapse
|
11
|
Li W, Zhang Y, Li Y, Cao Y, Zhou J, Sun Z, Wu W, Tan X, Shao Y, Xie K, Yan X. Profiling Analysis Reveals the Crucial Role of the Endogenous Peptides in Bladder Cancer Progression. Onco Targets Ther 2020; 13:12443-12455. [PMID: 33311987 PMCID: PMC7725083 DOI: 10.2147/ott.s281713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022] Open
Abstract
Background Peptide drugs provide promising regimes in bladder cancer. In order to identify potential bioactive peptides involved in bladder cancer, we performed the present study. Methods Liquid chromatography/mass spectrometry assay was used to compare the endogenous peptides between bladder cancer and normal control. The potential biological functions of these dysregulated peptides are assessed by GO analysis and KEGG pathway analysis of their precursors. The SMART and UniProt databases are used to identify the sequences of the dysregulated peptides located in the functional domains. The Open Targets Platform database was used to investigate the precursors related to metabolic diseases. Results A total of 9 up-regulated peptides and 110 down-regulated peptides in bladder cancer compared with normal control were identified (fold change > 1.2, P < 0.05). The MW of these dysregulated peptides ranged from 500 Da to 2500 Da and the MW of all identified peptides was below 3500 Da. The GO and KEGG pathway analysis indicated that these dysregulated peptides could play an important role in bladder cancer. Our further analysis revealed that 45HFNPRFNAHGDAN 57 derived from LGALS1 and those peptides derived from P4HB and SERPINA1 might be the promising diagnostic biomarkers and therapeutic targets of bladder cancer. Conclusion In the present study, we have identified the profile of the peptides significantly dysregulated in bladder cancer. Moreover, using bioinformatic analysis, we found the peptides derived from LGALS1, P4HB and SERPINA1 could be the promising diagnostic biomarkers and therapeutic targets of bladder cancer.
Collapse
Affiliation(s)
- Weijian Li
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Yang Zhang
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China.,Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, People's Republic of China
| | - Youjian Li
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China.,Department of Urology Surgery, The People's Hospital of Xuancheng City, Xuancheng, People's Republic of China
| | - Yuepeng Cao
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, People's Republic of China
| | - Jun Zhou
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Zhongxu Sun
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Wanke Wu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaofang Tan
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Shao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Women's Health Care, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, People's Republic of China
| | - Xiang Yan
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China.,Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Huang J, Ling Z, Zhong H, Yin Y, Qian Y, Gao M, Ding H, Cheng Q, Jia R. Distinct expression profiles of peptides in placentae from preeclampsia and normal pregnancies. Sci Rep 2020; 10:17558. [PMID: 33067549 PMCID: PMC7567870 DOI: 10.1038/s41598-020-74840-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
This study sought to identify potential bioactive peptides from the placenta that are involved in preeclampsia (PE) to obtain information about the prediction, diagnosis and treatment of PE. The liquid chromatography/mass spectrometry was used to perform a comparative analysis of placental peptides in normal and PE pregnancies. Gene ontology (GO), pathway analysis and ingenuity pathway analysis (IPA) were used to evaluate the underlying biological function of the differential peptides based on their protein precursors. Transwell assays and qPCR were used to study the effect of the identified bioactive peptides on the function of HTR-8/SVneo cells. A total of 392 upregulated peptides and 420 downregulated peptides were identified (absolute fold change ≥ 2 and adjusted P value < 0.05). The GO analysis, pathway analysis, and IPA revealed that these differentially expressed peptides play a role in PE. In addition, the up-regulated peptide “DQSATALHFLGRVANPLSTA” derived from Angiotensinogen exhibited effect on the invasiveness of HTR-8/SVneo cells. The current preliminary research not only provides a new research direction for studying the pathogenesis of PE, but also brings new insights for the prediction, diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Jin Huang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China.,Yixing People's Hospital, YiXing, 214200, Jiangsu, China
| | - Zhonghui Ling
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Hong Zhong
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Yadong Yin
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Yating Qian
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Mingming Gao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China.,Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Hongjuan Ding
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Qing Cheng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China.
| | - Ruizhe Jia
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
13
|
Hu J, Lu J, Zhang X, Wang C, Ren K, Chang Q, Ji M, Pan W, Ma B, Fan W. Peptidomic analysis on synovial tissue reveals galectin-1 derived peptide as a potential bioactive molecule against rheumatoid arthritis. Cytokine 2020; 131:155020. [DOI: 10.1016/j.cyto.2020.155020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
|
14
|
Gäde G, Šimek P, Marco HG. The Adipokinetic Peptides in Diptera: Structure, Function, and Evolutionary Trends. Front Endocrinol (Lausanne) 2020; 11:153. [PMID: 32296388 PMCID: PMC7136388 DOI: 10.3389/fendo.2020.00153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Nineteen species of various families of the order Diptera and one species from the order Mecoptera are investigated with mass spectrometry for the presence and primary structure of putative adipokinetic hormones (AKHs). Additionally, the peptide structure of putative AKHs in other Diptera are deduced from data mining of publicly available genomic or transcriptomic data. The study aims to demonstrate the structural biodiversity of AKHs in this insect order and also possible evolutionary trends. Sequence analysis of AKHs is achieved by liquid chromatography coupled to mass spectrometry. The corpora cardiaca of almost all dipteran species contain AKH octapeptides, a decapeptide is an exception found only in one species. In general, the dipteran AKHs are order-specific- they are not found in any other insect order with two exceptions only. Four novel AKHs are revealed by mass spectrometry: two in the basal infraorder of Tipulomorpha and two in the brachyceran family Syrphidae. Data mining revealed another four novel AKHs: one in various species of the infraorder Culicumorpha, one in the brachyceran superfamily Asiloidea, one in the family Diopsidae and in a Drosophilidae species, and the last of the novel AKHs is found in yet another Drosophila. In general, there is quite a biodiversity in the lower Diptera, whereas the majority of the cyclorraphan Brachycera produce the octapeptide Phote-HrTH. A hypothetical molecular peptide evolution of dipteran AKHs is suggested to start with an ancestral AKH, such as Glomo-AKH, from which all other AKHs in Diptera to date can evolve via point mutation of one of the base triplets, with one exception.
Collapse
Affiliation(s)
- Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Petr Šimek
- Biology Centre, Czech Academy of Sciences, Ceské Budejovice, Czechia
| | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Fan Y, Hou W, Xing Y, Zhang L, Zhou C, Gui J, Xu P, Wang A, Fan X, Zeng X, Feng S, Li P. Peptidomics analysis of myometrium tissues in term labor compared with term nonlabor. J Cell Biochem 2019; 121:1890-1900. [PMID: 31709621 DOI: 10.1002/jcb.29424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/08/2019] [Indexed: 11/10/2022]
Abstract
Preterm birth (PTB) is a major cause of neonatal mortality, with a poorly understood etiology. The regular contraction of the myometrium was considered as contributing to the etiology of the onset of labor, especially PTB. Thus, studying the mechanism of myometrium contraction is very important for understanding the initiation of labor and also for preventing PTB. Using liquid chromatography-mass spectrometry, we found 322 significantly differential peptides in myometrium tissues between term nonlabor and term labor groups (absolute fold change ≥ 2 and P < .05). We next analyzed length, molecular weights, isoelectric point, and cleavage site of all the different peptides. We, next, analyzed the functions of different peptides through their precursor proteins by Gene Ontology, enrichment and canonical pathway analysis. The results indicated that the extracellular matrix (ECM) played a major role in biological process, the cellular component, and molecular function categories, and revealed that ECM remodeling played a vital role in myometrial contraction. In addition, some known signaling, such as corticotropin-releasing hormone signaling and calcium signaling were proven to be involved in this process. Ingenuity Pathways Analysis upstream regulator analysis suggested that some of the known molecules, which reportedly were very important in labor onset, were included, for example, nuclear factor κB, tubulin, and phosphoinositide 3-kinase. We also identified 23 peptides derived from the precursor protein TITIN, of which 21 peptides sequences from TITIN were located in functional domains. These results suggested that peptides play an important role in labor onset and provide further insight into PTB therapy.
Collapse
Affiliation(s)
- Yuru Fan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Wenwen Hou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yuan Xing
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Li Zhang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Chunxiu Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jing Gui
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Anming Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xuemei Fan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xin Zeng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Shanwu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ping Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
16
|
Pauls D, Hamarat Y, Trufasu L, Schendzielorz TM, Gramlich G, Kahnt J, Vanselow JT, Schlosser A, Wegener C. Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing required to maintain locomotor activity levels and survival rate. Eur J Neurosci 2019; 50:3502-3519. [PMID: 31309630 DOI: 10.1111/ejn.14516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 11/27/2022]
Abstract
Neuropeptides are processed from larger preproproteins by a dedicated set of enzymes. The molecular and biochemical mechanisms underlying preproprotein processing and the functional importance of processing enzymes are well-characterised in mammals, but little studied outside this group. In contrast to mammals, Drosophila melanogaster lacks a gene for carboxypeptidase E (CPE), a key enzyme for mammalian peptide processing. By combining peptidomics and neurogenetics, we addressed the role of carboxypeptidase D (dCPD) in global neuropeptide processing and selected peptide-regulated behaviours in Drosophila. We found that a deficiency in dCPD results in C-terminally extended peptides across the peptidome, suggesting that dCPD took over CPE function in the fruit fly. dCPD is widely expressed throughout the nervous system, including peptidergic neurons in the mushroom body and neuroendocrine cells expressing adipokinetic hormone. Conditional hypomorphic mutation in the dCPD-encoding gene silver in the larva causes lethality, and leads to deficits in starvation-induced hyperactivity and appetitive gustatory preference, as well as to reduced viability and activity levels in adults. A phylogenomic analysis suggests that loss of CPE is not common to insects, but only occurred in Hymenoptera and Diptera. Our results show that dCPD is a key enzyme for neuropeptide processing and peptide-regulated behaviour in Drosophila. dCPD thus appears as a suitable target to genetically shut down total neuropeptide production in peptidergic neurons. The persistent occurrence of CPD in insect genomes may point to important further CPD functions beyond neuropeptide processing which cannot be fulfilled by CPE.
Collapse
Affiliation(s)
- Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Yasin Hamarat
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.,'Santaka' Valley I Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Luisa Trufasu
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim M Schendzielorz
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gertrud Gramlich
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institute of Terrestrial Microbiology, Marburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Ji X, Tang Z, Shuai W, Zhang Z, Li J, Chen L, Cao J, Yin W. Endogenous peptide LYENRL prevents the activation of hypertrophic scar-derived fibroblasts by inhibiting the TGF-β1/Smad pathway. Life Sci 2019; 231:116674. [DOI: 10.1016/j.lfs.2019.116674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
|
18
|
The Exchangeable Apolipoprotein Nplp2 Sustains Lipid Flow and Heat Acclimation in Drosophila. Cell Rep 2019; 27:886-899.e6. [DOI: 10.1016/j.celrep.2019.03.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 11/24/2022] Open
|
19
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
20
|
Schiemann R, Lammers K, Janz M, Lohmann J, Paululat A, Meyer H. Identification and In Vivo Characterisation of Cardioactive Peptides in Drosophila melanogaster. Int J Mol Sci 2018; 20:ijms20010002. [PMID: 30577424 PMCID: PMC6337577 DOI: 10.3390/ijms20010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/22/2018] [Indexed: 12/23/2022] Open
Abstract
Neuropeptides and peptide hormones serve as critical regulators of numerous biological processes, including development, growth, reproduction, physiology, and behaviour. In mammals, peptidergic regulatory systems are complex and often involve multiple peptides that act at different levels and relay to different receptors. To improve the mechanistic understanding of such complex systems, invertebrate models in which evolutionarily conserved peptides and receptors regulate similar biological processes but in a less complex manner have emerged as highly valuable. Drosophila melanogaster represents a favoured model for the characterisation of novel peptidergic signalling events and for evaluating the relevance of those events in vivo. In the present study, we analysed a set of neuropeptides and peptide hormones for their ability to modulate cardiac function in semi-intact larval Drosophila melanogaster. We identified numerous peptides that significantly affected heart parameters such as heart rate, systolic and diastolic interval, rhythmicity, and contractility. Thus, peptidergic regulation of the Drosophila heart is not restricted to chronotropic adaptation but also includes inotropic modulation. By specifically interfering with the expression of corresponding peptides in transgenic animals, we assessed the in vivo relevance of the respective peptidergic regulation. Based on the functional conservation of certain peptides throughout the animal kingdom, the identified cardiomodulatory activities may be relevant not only to proper heart function in Drosophila, but also to corresponding processes in vertebrates, including humans.
Collapse
Affiliation(s)
- Ronja Schiemann
- Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Kay Lammers
- Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Maren Janz
- Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Jana Lohmann
- Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Achim Paululat
- Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Heiko Meyer
- Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| |
Collapse
|
21
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
22
|
Wang X, Xu S, Chen L, Shen D, Cao Y, Tang R, Wang X, Ji C, Li Y, Cui X, Guo X. Profiling Analysis Reveals the Potential Contribution of Peptides to Human Adipocyte Differentiation. Proteomics Clin Appl 2018; 12:e1700172. [PMID: 30009563 DOI: 10.1002/prca.201700172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/15/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Peptide drugs provide promising regimes in anti-obesity treatment. In order to identify potential bioactive peptides involved in adipogenesis. EXPERIMENTAL DESIGN The intracellular peptides between preadipocytes and adipocytes are compared by liquid chromatography/mass spectrometry. The underlying biological function of the identified peptides are evaluated by gene ontology (GO) and pathway analysis of their precursors. To find more potential bioactive peptides, 50 peptide sequences are identified located in the functional domains with the use of the SMART and UniProt databases. Finally, the Open Targets Platform database is used to investigate the precursors related to metabolic diseases. RESULTS A total of 181 downregulated peptides and 89 upregulated peptides after differentiation (fold change > 1.5 and p-value < 0.05) are identified. The GO and pathway analysis indicate that these differentially expressed peptides play a role in adipogenesis. A total of 10 putative peptides 6 to 26 amino acids in length are identified that might have bioactive effects in adipogenesis and metabolic diseases. CONCLUSIONS AND CLINICAL RELEVANCE On one hand, present preliminary research provides a better understanding of the intracellular peptides during adipocyte differentiation. On the other hand, it lays a foundation for discovering new peptide drugs in anti-obesity treatment.
Collapse
Affiliation(s)
- Xingyun Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Siliang Xu
- Center of Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ling Chen
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Dan Shen
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Ranran Tang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yun Li
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xirong Guo
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| |
Collapse
|
23
|
Kang J, Fang Y, Yao P, Li N, Tang Q, Huang J. NeuroPP: A Tool for the Prediction of Neuropeptide Precursors Based on Optimal Sequence Composition. Interdiscip Sci 2018. [DOI: 10.1007/s12539-018-0287-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Lismont E, Mortelmans N, Verlinden H, Vanden Broeck J. Molecular cloning and characterization of the SIFamide precursor and receptor in a hymenopteran insect, Bombus terrestris. Gen Comp Endocrinol 2018; 258:39-52. [PMID: 29127004 DOI: 10.1016/j.ygcen.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 01/09/2023]
Abstract
SIFamides (SIFa) are a family of neuropeptides that are highly conserved among arthropods. In insects, this peptide is mainly expressed in four medial interneurons in the pars intercerebralis and affects sexual behavior, sleep regulation and pupal mortality. Furthermore, an influence on the hatching rate has been observed. The first SIFa receptor (SIFR) was pharmacologically characterized in Drosophila melanogaster and is homologous to the vertebrate gonadotropin-inhibitory hormone (GnIH) receptor (NPFFR). In this study, we pharmacologically characterized the SIFR of the buff-tailed bumblebee Bombus terrestris. We demonstrated an intracellular increase in calcium ions and cyclic AMP (cAMP) upon ligand binding with an EC50 value in the picomolar and nanomolar range, respectively. In addition, we studied the agonistic properties of a range of related and modified peptides. By means of quantitative real time PCR (qPCR), we examined the relative transcript levels of Bomte-SIFa and Bomte-SIFR in a variety of tissues.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Nele Mortelmans
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
25
|
Li J, Chen L, Li Q, Cao J, Gao Y, Li J. Comparative peptidomic profile between human hypertrophic scar tissue and matched normal skin for identification of endogenous peptides involved in scar pathology. J Cell Physiol 2018; 233:5962-5971. [PMID: 29244193 DOI: 10.1002/jcp.26407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2017] [Indexed: 01/28/2023]
Abstract
Endogenous peptides recently attract increasing attention for their participation in various biological processes. Their roles in the pathogenesis of human hypertrophic scar remains poorly understood. In this study, we used liquid chromatography-tandem mass spectrometry to construct a comparative peptidomic profiling between human hypertrophic scar tissue and matched normal skin. A total of 179 peptides were significantly differentially expressed in human hypertrophic scar tissue, with 95 upregulated and 84 downregulated peptides between hypertrophic scar tissue and matched normal skin. Further bioinformatics analysis (Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis) indicated that precursor proteins of these differentially expressed peptides correlate with cellular process, biological regulation, cell part, binding and structural molecule activity ribosome, and PPAR signaling pathway occurring during pathological changes of hypertrophic scar. Based on prediction database, we found that 78 differentially expressed peptides shared homology with antimicrobial peptides and five matched known immunomodulatory peptides. In conclusion, our results show significantly altered expression profiles of peptides in human hypertrophic scar tissue. These peptides may participate in the etiology of hypertrophic scar and provide beneficial scheme for scar evaluation and treatments.
Collapse
Affiliation(s)
- Jingyun Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ling Chen
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qian Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Cao
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanli Gao
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jun Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
26
|
Jia G, Tao H, Xue Y, Xu S, Xue K, Zhu Q, Chen X, Liu X, Xu S, Li Q, Xu P. Analysis of secreted peptidome from omental adipose tissue in polycystic ovarian syndrome patients. J Cell Physiol 2018; 233:5885-5894. [PMID: 29226956 DOI: 10.1002/jcp.26393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a common endocrinopathy associated with increased risk of metabolic disorders. Prevalence of adiposity and obesity is greater in women suffering from PCOS. Moreover, adipose tissue dysfunction has been demonstrated in PCOS patients, particularly in abdominal adipose tissue. This dysfunction likely aggravates the metabolic and reproductive abnormalities. We used liquid chromatography-mass spectrometry to compare the peptides secreted from PCOS and non-PCOS abdominal adipose tissue. We detected 298 upregulated peptides and 31 downregulated peptides (absolute fold change ≥ 2 and p < 0.05). Twenty-nine peptides were only detected in the PCOS group, while 18 were only detected in the control group. In addition, we demonstrate that these cleavage products are not degradation products of the proteasome based on previous studies reported. Gene Ontology enrichment and pathway analysis were performed to study differentially secreted peptides through their precursor proteins. We identified 12 peptides from 10 precursor proteins associated with PCOS, and 6 peptide sequences were located in the functional domains of their corresponding precursor proteins. These results provide a deeper understanding of adipose tissue-derived peptides in PCOS for future functional studies.
Collapse
Affiliation(s)
- Genmei Jia
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Hongjiang Tao
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Yunping Xue
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Sujuan Xu
- Department of Clinical Laboratory, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Kai Xue
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Qiaoying Zhu
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoyan Chen
- Department of Reproduction, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoguang Liu
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Siliang Xu
- Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qian Li
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
27
|
Predel R, Neupert S, Derst C, Reinhardt K, Wegener C. Neuropeptidomics of the Bed Bug Cimex lectularius. J Proteome Res 2017; 17:440-454. [PMID: 29148801 DOI: 10.1021/acs.jproteome.7b00630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bed bug Cimex lectularius is a globally distributed human ectoparasite with fascinating biology. It has recently acquired resistance against a broad range of insecticides, causing a worldwide increase in bed bug infestations. The recent annotation of the bed bug genome revealed a full complement of neuropeptide and neuropeptide receptor genes in this species. With regard to the biology of C. lectularius, neuropeptide signaling is especially interesting because it regulates feeding, diuresis, digestion, as well as reproduction and also provides potential new targets for chemical control. To identify which neuropeptides are translated from the genome-predicted genes, we performed a comprehensive peptidomic analysis of the central nervous system of the bed bug. We identified in total 144 different peptides from 29 precursors, of which at least 67 likely present bioactive mature neuropeptides. C. lectularius corazonin and myosuppressin are unique and deviate considerably from the canonical insect consensus sequences. Several identified neuropeptides likely act as hormones, as evidenced by the occurrence of respective mass signals and immunoreactivity in neurohemal structures. Our data provide the most comprehensive peptidome of a Heteropteran species so far and in comparison suggest that a hematophageous life style does not require qualitative adaptations of the insect peptidome.
Collapse
Affiliation(s)
- Reinhard Predel
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Susanne Neupert
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Christian Derst
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Klaus Reinhardt
- Applied Zoology, Department of Biology, Technical University of Dresden , Zellescher Weg 20b, D-01062 Dresden, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
28
|
Greening DW, Kapp EA, Simpson RJ. The Peptidome Comes of Age: Mass Spectrometry-Based Characterization of the Circulating Cancer Peptidome. Enzymes 2017; 42:27-64. [PMID: 29054270 DOI: 10.1016/bs.enz.2017.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peptides play a seminal role in most physiological processes acting as neurotransmitters, hormones, antibiotics, and immune regulation. In the context of tumor biology, it is hypothesized that endogenous peptides, hormones, cytokines, growth factors, and aberrant degradation of select protein networks (e.g., enzymatic activities, protein shedding, and extracellular matrix remodeling) are fundamental in mediating cancer progression. Analysis of peptides in biological fluids by mass spectrometry holds promise of providing sensitive and specific diagnostic and prognostic information for cancer and other diseases. The identification of circulating peptides in the context of disease constitutes a hitherto source of new clinical biomarkers. The field of peptidomics can be defined as the identification and comprehensive analysis of physiological and pathological peptides. Like proteomics, peptidomics has been advanced by the development of new separation strategies, analytical detection methods such as mass spectrometry, and bioinformatic technologies. Unlike proteomics, peptidomics is targeted toward identifying endogenous protein and peptide fragments, defining proteolytic enzyme substrate specificity, as well as protease cleavage recognition (degradome). Peptidomics employs "top-down proteomics" strategies where mass spectrometry is applied at the proteoform level to analyze intact proteins and large endogenous peptide fragments. With recent advances in prefractionation workflows for separating peptides, mass spectrometry instrumentation, and informatics, peptidomics is an important field that promises to impact on translational medicine. This review covers the current advances in peptidomics, including top-down and imaging mass spectrometry, comprehensive quantitative peptidome analyses (developments in reproducibility and coverage), peptide prefractionation and enrichment workflows, peptidomic data analyses, and informatic tools. The application of peptidomics in cancer biomarker discovery will be discussed.
Collapse
Affiliation(s)
- David W Greening
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.
| | - Eugene A Kapp
- Systems Biology & Personalised Medicine Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Florey Institute of Neuroscience, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria, Australia
| | - Richard J Simpson
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Gao Y, Wang X, Huang F, Cui X, Li Y, Wang X, Cao Y, Xu P, Xie K, Tang R, Zhang L, Ji C, You L, Guo X. Identification and characterization of metformin on peptidomic profiling in human visceral adipocytes. J Cell Biochem 2017; 119:1866-1878. [PMID: 28802015 DOI: 10.1002/jcb.26347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/11/2017] [Indexed: 12/26/2022]
Abstract
To gain insight into the effect of metformin on losing weight from peptidomic perspective and to screen potential active peptides for reducing fat lipid deposition. After determining the proper concentration of metformin on human primary visceral adipocytes, we constructed a comparative peptidomic profiling between control and metformin treatment group (n = 3) using a stable isobaric labeling strategy involving tandem mass tag reagents, followed by liquid chromatography tandem mass spectrometry. We identified and quantified 3065 non-redundant peptides, 304 of which were differentially expressed after metformin treatment, 206 peptides were up regulated and 98 peptides were down regulated significantly. Gene ontology (GO) enrichment and pathway analysis were performed to study differentially peptides though their precursor proteins. We concluded three peptides located within the functional domains of their precursor proteins could be candidate bioactive peptides for obesity. On one hand, these results confirmed the versatile effects of metformin on adipocyte and advance our current understanding of metformin, on the other hand, these identified peptides might play putative roles in treatment of obesity.
Collapse
Affiliation(s)
- Yao Gao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - XingYun Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - FangYan Huang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - XianWei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Li
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - PengFei Xu
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - KaiPeng Xie
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - RanRan Tang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Le Zhang
- Department of Neonatology, Wuxi Children's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu
| | - ChenBo Ji
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - LiangHui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - XiRong Guo
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Zhang J, Liang D, Cheng Q, Cao L, Wu Y, Wang Y, Han S, Yu Z, Cui X, Xu T, Ma D, Hu P, Xu Z. Peptidomic Analysis of Fetal Heart Tissue for Identification of Endogenous Peptides Involved in Tetralogy of Fallot. DNA Cell Biol 2017; 36:451-461. [PMID: 28304193 DOI: 10.1089/dna.2017.3647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dong Liang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Qing Cheng
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Cao
- Department of Ultrasound, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Department of Ultrasound, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shuping Han
- Department of Pediatrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhangbin Yu
- Department of Pediatrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Tianhui Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dingyuan Ma
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ping Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhengfeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Van Camp KA, Baggerman G, Blust R, Husson SJ. Peptidomics of the zebrafish Danio rerio : In search for neuropeptides. J Proteomics 2017; 150:290-296. [DOI: 10.1016/j.jprot.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022]
|
32
|
Sano H. Coupling of growth to nutritional status: The role of novel periphery-to-brain signaling by the CCHa2 peptide in Drosophila melanogaster. Fly (Austin) 2016; 9:183-7. [PMID: 26980588 DOI: 10.1080/19336934.2016.1162361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The coupling of growth to nutritional status is an important adaptive response of living organisms to their environment. For this ability, animals have evolved various strategies, including endocrine systems that respond to changing nutritional conditions. In animals, nutritional information is mostly perceived by peripheral organs, such as the digestive tract and adipose tissues, and is subsequently transmitted to other peripheral organs or the brain, which integrates the incoming signals and orchestrates physiological and behavioral responses. In Drosophila melanogaster, adipose tissue, known as the fat body, functions as an endocrine organ that communicates with the brain. This fat body-brain axis coordinates growth with nutritional status by regulating the secretion of Drosophila insulin-like peptides (Dilps) from the brain. However, the molecular nature of the fat body-brain axis remains to be elucidated. We recently demonstrated that a small peptide, CCHamide-2 (CCHa2), expressed in the fat body and gut, directly stimulates its receptor (CCHa2-R) in the brain, leading to Dilp production. Notably, the expression of CCHa2 is sensitive to the presence of nutrients, particularly sugars. Our results, together with the results of previous studies, show that signaling between peripheral organs and the brain is a conserved strategy that couples nutritional availability to organismal physiology.
Collapse
Affiliation(s)
- Hiroko Sano
- a Department of Molecular Genetics ; Institute of Life Science; Kurume University ; Kurume , Fukuoka , Japan
| |
Collapse
|
33
|
Hallier B, Schiemann R, Cordes E, Vitos-Faleato J, Walter S, Heinisch JJ, Malmendal A, Paululat A, Meyer H. Drosophila neprilysins control insulin signaling and food intake via cleavage of regulatory peptides. eLife 2016; 5. [PMID: 27919317 PMCID: PMC5140268 DOI: 10.7554/elife.19430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
Insulin and IGF signaling are critical to numerous developmental and physiological processes, with perturbations being pathognomonic of various diseases, including diabetes. Although the functional roles of the respective signaling pathways have been extensively studied, the control of insulin production and release is only partially understood. Herein, we show that in Drosophila expression of insulin-like peptides is regulated by neprilysin activity. Concomitant phenotypes of altered neprilysin expression included impaired food intake, reduced body size, and characteristic changes in the metabolite composition. Ectopic expression of a catalytically inactive mutant did not elicit any of the phenotypes, which confirms abnormal peptide hydrolysis as a causative factor. A screen for corresponding substrates of the neprilysin identified distinct peptides that regulate insulin-like peptide expression, feeding behavior, or both. The high functional conservation of neprilysins and their substrates renders the characterized principles applicable to numerous species, including higher eukaryotes and humans. DOI:http://dx.doi.org/10.7554/eLife.19430.001 The hormone insulin and similar molecules called insulin-like peptides act as signals to control many processes in the body, including growth, stress responses and aging. Disrupting these signaling pathways can cause many diseases, with diabetes being the most common of these. Although the roles of the signaling pathways have been well studied, it is less clear how the body controls the production of insulin and insulin-like peptides. Neprilysins are enzymes that can cut other proteins and peptides by a process known as hydrolysis. Their targets (known as “substrates”) include peptides that regulate a range of cell processes, and neprilysins have therefore been linked with many diseases. Fruit flies have at least five different neprilysin enzymes, but their substrates have not yet been identified. One of these, known as Nep4A, is produced in muscle tissue and appears to be important for muscles to work properly. Hallier, Schiemann et al. reveal that Nep4A regulates the production of insulin-like peptides. The experiments used fruit fly larvae that had been genetically engineered so that the level of Nep4A could be altered in muscle tissue. Larvae with very high or very low levels of Nep4A eat less food, have smaller bodies and produce different amounts of insulin-like peptides compared to normal larvae. Further experiments show that Nep4A can hydrolyze a number of peptides that regulate the production and the release of insulin-like peptides. This suggests that the enzymatic activity of neprilysins plays a direct role in controlling the production of insulin. The next challenge is to find out whether these findings apply to humans and other animals that also have neprilysins. DOI:http://dx.doi.org/10.7554/eLife.19430.002
Collapse
Affiliation(s)
- Benjamin Hallier
- Department of Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | - Ronja Schiemann
- Department of Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | - Eva Cordes
- Department of Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | - Jessica Vitos-Faleato
- Department of Biomedical Research, Institute for Research in Biomedicine, Barcelona, Spain
| | - Stefan Walter
- Department of Microbiology, University of Osnabrück, Osnabrück, Germany
| | | | - Anders Malmendal
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Achim Paululat
- Department of Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | - Heiko Meyer
- Department of Developmental Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
34
|
Liang ZQ, Song SY, Liang SK, Wang FH. Analysis of Differential Proteins in Two Wing-Type Females of Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew024. [PMID: 27044649 PMCID: PMC4819851 DOI: 10.1093/jisesa/iew024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
Sogatella furcifera(Horvath) is an important rice pest with the wing dimorphism, including macropterous and brachypterous morphs. The protein expression profiles in two wing-type adults and two wing-type disc fifth-instar nymphs were analyzed using two-dimensional gel protein electrophoresis and mass spectrometry. In adults and fifth-instar nymphs, 127 and 162 protein spots were detected, respectively. Fifty-five differentially expressed protein spots were identified between the long-winged adults and the short-winged adults, and 62 differentially expressed protein spots were found between the long-winged disc fifth-instar nymphs and short-winged disc fifth-instar nymphs. In long-winged and short-winged adults, six and seven specific protein spots were identified, respectively, with five and seven protein spots having more than threefold increased level, respectively. In long-winged and short-winged disc morph nymphs, 8 and 12 specific protein spots were identified, respectively, with 11 and 17 spots containing more than threefold increased level, respectively. Among the 16 identified proteins, five proteins are associated with muscle function, suggesting that muscle is a main tissue where the genes were differentially expressed between the two wing types. In addition, the content of a peptidase with an insulinase domain was higher (by 3.02 ± 0.59 fold) in the short-winged fifth-instar nymphs than in the long-winged fifth-instar nymphs, which suggests that this peptidase may be involved in wing differentiation by regulating insulin receptors. The results of this study provide some genetic clues for the wing differential development inS. furcifera and provide more references for future studies.
Collapse
Affiliation(s)
- Zi-Qiang Liang
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China (; ; ; )
| | - Shao-Yun Song
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China (; ; ; )
| | - Shi-Ke Liang
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China (; ; ; )
| | - Fang-Hai Wang
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China (; ; ; )
| |
Collapse
|
35
|
Derst C, Dircksen H, Meusemann K, Zhou X, Liu S, Predel R. Evolution of neuropeptides in non-pterygote hexapods. BMC Evol Biol 2016; 16:51. [PMID: 26923142 PMCID: PMC4770511 DOI: 10.1186/s12862-016-0621-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/15/2016] [Indexed: 01/29/2023] Open
Abstract
Background Neuropeptides are key players in information transfer and act as important regulators of development, growth, metabolism, and reproduction within multi-cellular animal organisms (Metazoa). These short protein-like substances show a high degree of structural variability and are recognized as the most diverse group of messenger molecules. We used transcriptome sequences from the 1KITE (1K Insect Transcriptome Evolution) project to search for neuropeptide coding sequences in 24 species from the non-pterygote hexapod lineages Protura (coneheads), Collembola (springtails), Diplura (two-pronged bristletails), Archaeognatha (jumping bristletails), and Zygentoma (silverfish and firebrats), which are often referred to as “basal” hexapods. Phylogenetically, Protura, Collembola, Diplura, and Archaeognatha are currently placed between Remipedia and Pterygota (winged insects); Zygentoma is the sistergroup of Pterygota. The Remipedia are assumed to be among the closest relatives of all hexapods and belong to the crustaceans. Results We identified neuropeptide precursor sequences within whole-body transcriptome data from these five hexapod groups and complemented this dataset with homologous sequences from three crustaceans (including Daphnia pulex), three myriapods, and the fruit fly Drosophila melanogaster. Our results indicate that the reported loss of several neuropeptide genes in a number of winged insects, particularly holometabolous insects, is a trend that has occurred within Pterygota. The neuropeptide precursor sequences of the non-pterygote hexapods show numerous amino acid substitutions, gene duplications, variants following alternative splicing, and numbers of paracopies. Nevertheless, most of these features fall within the range of variation known from pterygote insects. However, the capa/pyrokinin genes of non-pterygote hexapods provide an interesting example of rapid evolution, including duplication of a neuropeptide gene encoding different ligands. Conclusions Our findings delineate a basic pattern of neuropeptide sequences that existed before lineage-specific developments occurred during the evolution of pterygote insects. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0621-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Derst
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum A. Koenig, D-53113, Bonn, Germany. .,Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, ACT, 2601, Canberra, Australia.
| | - Xin Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Reinhard Predel
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| |
Collapse
|
36
|
Audsley N, Down RE. G protein coupled receptors as targets for next generation pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:27-37. [PMID: 26226649 DOI: 10.1016/j.ibmb.2015.07.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
There is an on-going need for the discovery and development of new pesticides due to the loss of existing products through the continuing development of resistance, the desire for products with more favourable environmental and toxicological profiles and the need to implement the principles of integrated pest management. Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behaviour, including reproduction, osmoregulation, growth and development. Modifying normal receptor function by blocking or over stimulating its actions may either result in the death of a pest or disrupt its normal fitness or reproductive capacity to reduce pest populations. Hence GPCRs offer potential targets for the development of next generation pesticides providing opportunities to discover new chemistries for invertebrate pest control. Such receptors are important targets for pharmaceutical drugs, but are under-exploited by the agro-chemical industry. The octopamine receptor agonists are the only pesticides with a recognized mode of action, as described in the classification scheme developed by the Insecticide Resistance Action Committee, that act via a GPCR. The availability of sequenced insect genomes has facilitated the characterization of insect GPCRs, but the development and utilization of screening assays to identify lead compounds has been slow. Various studies using knock-down technologies or applying the native ligands and/or neuropeptide analogues to pest insects in vivo, have however demonstrated that modifying normal receptor function can have an insecticidal effect. This review presents examples of potential insect neuropeptide receptors that are potential targets for lead compound development, using case studies from three representative pest species, Tribolium castaneum, Acyrthosiphon pisum, and Drosophila suzukii. Functional analysis studies on T. castaneum suggest that GPCRs involved in growth and development (eclosion hormone, ecdysis triggering hormone and crustacean cardioacceleratory peptide receptors) as well as the dopamine-2 like, latrophilin-like, starry night, frizzled-like, methuselah-like and the smoothened receptors may be suitable pesticide targets. From in vivo studies using native ligands and peptide analogues, receptors which appear to have a role in the regulation of feeding in the pea aphid, such as the PISCF-allatostatin and the various "kinin" receptors, are also potential targets. In Drosophila melanogaster various neuropeptides and their signalling pathways have been studied extensively. This may provide insights into potential pesticide targets that could be exploited in D. suzukii. Examples include the sex peptide receptor, which is involved in reproduction and host seeking behaviours, and those responsible for osmoregulation such as the diuretic hormone receptors. However the neuropeptides and their receptors in insects are often poorly characterized, especially in pest species. Although data from closely related species may be transferable (e.g. D. melanogaster to D. suzukii), peptides and receptors may have different roles in different insects, and hence a target in one insect may not be appropriate in another. Hence fundamental knowledge of the roles and functions of receptors is vital for development to proceed.
Collapse
|
37
|
Caers J, Boonen K, Van Den Abbeele J, Van Rompay L, Schoofs L, Van Hiel MB. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2024-2038. [PMID: 26463237 DOI: 10.1007/s13361-015-1248-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Neuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380-386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca-corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Laboratory of Zoophysiology, Department of Physiology, University of Ghent, 9000, Ghent, Belgium
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
38
|
Choi MY, Sanscrainte ND, Estep AS, Vander Meer RK, Becnel JJ. Identification and expression of a new member of the pyrokinin/pban gene family in the sand fly Phlebotomus papatasi. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:55-62. [PMID: 26050919 DOI: 10.1016/j.jinsphys.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
The major family of neuropeptides (NPs) derived from the pk (pyrokinin)/pban (pheromone biosynthesis activating neuropeptide) gene are defined by a common FXPRL-NH2 or similar sequence at the C-termini. This family of peptides has been found in all insect groups investigated to date and is implicated in regulating various physiological functions, including pheromone biosynthesis and diapause, but other functions are still largely unknown in specific life stages. Here we identify two isoforms of pk/pban cDNA encoding the PBAN domain from the sand fly Phlebotomus papatasi. The two pk/pban isoforms have the same sequence except for a 63 nucleotide difference between the long and short forms, and contain no alternative mRNA splicing site. Two NP homologues, DASGDNGSDSQRTRPPFAPRLamide and SLPFSPRLamide are expected, however, sequence corresponding to the diapause hormone was not found in the P. papatasi pk/pban gene. The PBAN-like amino acid sequence homologue SNKYMTPRL is conserved in the gene, but there is no cleavage site for processing a functional peptide. Characterizing the expression of the isoforms in developmental stages and adults indicates that the short form is differentially transcribed depending on the life stage. The P. papatasi pk/pban gene is the only known pk/pban gene with two transcriptional isoforms and from examination of endoproteolytic cleavage sites is expected to produce fewer peptides than most of the pk/pban genes elucidated to date; only Drosophila melanogaster is simpler with a single NP detected by mass spectroscopy. A phylogenetic analysis showed P. papatasi pk/pban grouped more closely with other nematoceran flies rather than higher flies.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Neil D Sanscrainte
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Alden S Estep
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA; Navy Entomology Center of Excellence, Box 43, Naval Air Station, Jacksonville, FL 32212-0043, USA
| | - Robert K Vander Meer
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James J Becnel
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| |
Collapse
|
39
|
Felix RC, Trindade M, Pires IRP, Fonseca VG, Martins RS, Silveira H, Power DM, Cardoso JCR. Unravelling the Evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor Gene Families in Bilaterians: Insights from Anopheles Mosquitoes. PLoS One 2015; 10:e0130347. [PMID: 26135459 PMCID: PMC4489612 DOI: 10.1371/journal.pone.0130347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anopheles mosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa2+-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Anopheles/classification
- Anopheles/genetics
- Anopheles/metabolism
- Calcium Signaling
- Evolution, Molecular
- Fat Body/chemistry
- Fat Body/metabolism
- Female
- Gene Expression
- Genome, Insect
- Glucose/metabolism
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Intestinal Mucosa/metabolism
- Intestines/chemistry
- Mice
- Molecular Sequence Data
- Multigene Family
- Ovary/chemistry
- Ovary/metabolism
- Phylogeny
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Galanin/chemistry
- Receptors, Galanin/genetics
- Receptors, Galanin/metabolism
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Reproduction/genetics
- Sequence Alignment
- Synteny
Collapse
Affiliation(s)
- Rute C. Felix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Isa R. P. Pires
- Centro de Malária e outras Doenças Tropicais, UEI Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349–008, Lisboa, Portugal
| | - Vera G. Fonseca
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Rute S. Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Henrique Silveira
- Centro de Malária e outras Doenças Tropicais, UEI Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349–008, Lisboa, Portugal
| | - Deborah M. Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - João C. R. Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
- * E-mail:
| |
Collapse
|
40
|
Audsley N, Down RE, Isaac RE. Genomic and peptidomic analyses of the neuropeptides from the emerging pest, Drosophila suzukii. Peptides 2015; 68:33-42. [PMID: 25158078 DOI: 10.1016/j.peptides.2014.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023]
Abstract
Drosophila suzukii is a highly polyphagous invasive pest which has been recently introduced into Europe and North America, where it is causing severe economic losses through larval infestations of stone and berry fruits. The peptidome of the selected nervous tissues of adult D. suzukii was investigated as a first step in identifying potential targets for the development of novel insecticides. Through in silico analyses of the D. suzukii genome databases 28 neuropeptide families, comprising more than 70 predicted peptides were identified. Using a combination of liquid chromatography and mass spectrometry of tissue extracts, 33 predicted peptides, representing 15 different peptide families were identified by their molecular masses and a total of 17 peptide sequences were confirmed by ion fragmentation. A comparison between the peptides and precursors of D. suzukii and D. melanogaster shows they are highly conserved, with differences only identified in the amino acid sequences of the peptides encoded in the FMRFamide, hugin and ecydysis triggering hormone precursors. All other peptides predicted and identified from D. suzukii appear to be identical to those previously characterized from D. melanogaster. Adipokinetic hormone was only identified in the corpus cardiacum, other peptides present included short neuropeptide F, a pyrokinin and myosuppressin, the latter of which was the only peptide identified from the crop nerve bundle. Peptides present in extracts of the brain and/or thoracico-abdominal ganglion included allatostatins, cardioacceleratory peptide 2b, corazonin, extended FMRFamides, pyrokinins, myoinihibitory peptides, neuropeptide-like precursor 1, SIFamide, short neuropeptide F, kinin, sulfakinins and tachykinin related peptides.
Collapse
Affiliation(s)
- Neil Audsley
- The Food and Environmental Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | - Rachel E Down
- The Food and Environmental Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
41
|
Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 2015; 15:1026-38. [PMID: 25429922 PMCID: PMC4371869 DOI: 10.1002/pmic.201400310] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/08/2014] [Accepted: 11/24/2014] [Indexed: 12/28/2022]
Abstract
Peptidomics is an emerging field branching from proteomics that targets endogenously produced protein fragments. Endogenous peptides are often functional within the body-and can be both beneficial and detrimental. This review covers the use of peptidomics in understanding digestion, and identifying functional peptides and biomarkers. Various techniques for peptide and glycopeptide extraction, both at analytical and preparative scales, and available options for peptide detection with MS are discussed. Current algorithms for peptide sequence determination, and both analytical and computational techniques for quantification are compared. Techniques for statistical analysis, sequence mapping, enzyme prediction, and peptide function, and structure prediction are explored.
Collapse
Affiliation(s)
- David C. Dallas
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Andres Guerrero
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Evan A. Parker
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Junai Gan
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
42
|
Davies SA, Cabrero P, Overend G, Aitchison L, Sebastian S, Terhzaz S, Dow JAT. Cell signalling mechanisms for insect stress tolerance. ACTA ACUST UNITED AC 2014; 217:119-28. [PMID: 24353211 DOI: 10.1242/jeb.090571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insects successfully occupy most environmental niches and this success depends on surviving a broad range of environmental stressors including temperature, desiccation, xenobiotic, osmotic and infection stress. Epithelial tissues play key roles as barriers between the external and internal environments and therefore maintain homeostasis and organismal tolerance to multiple stressors. As such, the crucial role of epithelia in organismal stress tolerance cannot be underestimated. At a molecular level, multiple cell-specific signalling pathways including cyclic cAMP, cyclic cGMP and calcium modulate tissue, and hence, organismal responses to stress. Thus, epithelial cell-specific signal transduction can be usefully studied to determine the molecular mechanisms of organismal stress tolerance in vivo. This review will explore cell signalling modulation of stress tolerance in insects by focusing on cell signalling in a fluid transporting epithelium--the Malpighian tubule. Manipulation of specific genes and signalling pathways in only defined tubule cell types can influence the survival outcome in response to multiple environmental stressors including desiccation, immune, salt (ionic) and oxidative stress, suggesting that studies in the genetic model Drosophila melanogaster may reveal novel pathways required for stress tolerance.
Collapse
Affiliation(s)
- Shireen A Davies
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Sturm S, Predel R. Serine phosphorylation of CAPA pyrokinin in cockroaches-a taxon-specific posttranslational modification. Peptides 2014; 57:52-8. [PMID: 24793144 DOI: 10.1016/j.peptides.2014.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
In insects, posttranslational modifications of neuropeptides are largely restricted to C- and N-terminal amino acids. The most common modifications, N-terminal pyroglutamate formation and C-terminal α-amidation, may prevent a fast degradation of these messenger molecules. This is particularly important for peptide hormones. Other common posttranslational modifications of proteins such as glycosylation and phosphorylation seem to be very rare in insect neuropeptides. To check this assumption, we used a computer algorithm to search an extensive data set of MALDI-TOF mass spectra from cockroach tissues for ion signal patterns indicating peptide phosphorylation. The results verify that phosphorylation is indeed very rare. However, a candidate was found and experimentally verified as phosphorylated CAPA pyrokinin (GGGGpSGETSGMWFGPRL-NH2) in the cockroach Lamproblatta albipalpus (Blattidae, Lamproblattinae). Tandem mass spectrometry revealed the phosphorylation site as Ser(5). Phosphorylated CAPA pyrokinin was then also detected in most other cockroach lineages (e.g. Blaberidae, Polyphagidae) but not in closely related blattid species such as Periplaneta americana. This is remarkable since the sequence of CAPA pyrokinin is identical in Lamproblatta and Periplaneta. A consensus sequence of CAPA pyrokinins of cockroaches revealed a conserved motif that suggests phosphorylation by a Four-jointed/FAM20C related kinase.
Collapse
Affiliation(s)
- Sebastian Sturm
- Cologne Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Cologne Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
44
|
Husson SJ, Reumer A, Temmerman L, De Haes W, Schoofs L, Mertens I, Baggerman G. Worm peptidomics. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Schrader M, Schulz-Knappe P, Fricker LD. Historical perspective of peptidomics. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Crappé J, Van Criekinge W, Menschaert G. Little things make big things happen: A summary of micropeptide encoding genes. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Pauls D, Chen J, Reiher W, Vanselow JT, Schlosser A, Kahnt J, Wegener C. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Salisbury JP, Boggio KJ, Hsu YWA, Quijada J, Sivachenko A, Gloeckner G, Kowalski PJ, Easterling ML, Rosbash M, Agar JN. A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics. Mol Brain 2013; 6:60. [PMID: 24373546 PMCID: PMC4022047 DOI: 10.1186/1756-6606-6-60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neuropeptides are a diverse category of signaling molecules in the nervous system regulating a variety of processes including food intake, social behavior, circadian rhythms, learning, and memory. Both the identification and functional characterization of specific neuropeptides are ongoing fields of research. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of nervous tissues from a variety of organisms allows direct detection and identification of neuropeptides. Here, we demonstrate an analysis workflow that allows for the detection of differences in specific neuropeptides amongst a variety of neuropeptides being simultaneously measured. For sample preparation, we describe a straight-forward and rapid (minutes) method where individual adult Drosophila melanogaster brains are analyzed. Using a MATLAB-based data analysis workflow, also compatible with MALDI-TOF mass spectra obtained from other sample preparations and instrumentation, we demonstrate how changes in neuropeptides levels can be detected with this method. RESULTS Over fifty isotopically resolved ion signals in the peptide mass range are reproducibly observed across experiments. MALDI-TOF MS profile spectra were used to statistically identify distinct relative differences in organ-wide endogenous levels of detected neuropeptides between biological conditions. In particular, three distinct levels of a particular neuropeptide, pigment dispersing factor, were detected by comparing groups of preprocessed spectra obtained from individual brains across three different D. melanogaster strains, each of which express different amounts of this neuropeptide. Using the same sample preparation, MALDI-TOF/TOF tandem mass spectrometry confirmed that at least 14 ion signals observed across experiments are indeed neuropeptides. Among the identified neuropeptides were three products of the neuropeptide-like precursor 1 gene previously not identified in the literature. CONCLUSIONS Using MALDI-TOF MS and preprocessing/statistical analysis, changes in relative levels of a particular neuropeptide in D. melanogaster tissue can be statistically detected amongst a variety of neuropeptides. While the data analysis methods should be compatible with other sample preparations, the presented sample preparation method was sufficient to identify previously unconfirmed D. melanogaster neuropeptides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jeffrey N Agar
- Depts of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 140 The Fenway, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Zhang YL, Xue RY, Cao GL, Zhu YX, Pan ZH, Gong CL. Shotgun proteomic analysis of wing discs from the domesticated silkworm (Bombyx mori) during metamorphosis. Amino Acids 2013; 45:1231-41. [PMID: 24005483 DOI: 10.1007/s00726-013-1588-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022]
Abstract
Proteomic profiles from the wing discs of silkworms at the larval, pupal, and adult moth stages were determined using shotgun proteomics and MS sequencing. We identified 241, 218, and 223 proteins from the larval, pupal, and adult moth stages, respectively, of which 139 were shared by all three stages. In addition, there were 55, 37, and 43 specific proteins identified at the larval, pupal, and adult moth stages, respectively. More metabolic enzymes were identified among the specific proteins expressed in the wing disc of larvae compared with pupae and moths. The identification of FKBP45 and the chitinase-like protein EN03 as two proteins solely expressed at the larval stage indicate these two proteins may be involved in the immunological functions of larvae. The myosin heavy chain was identified in the pupal wing disc, suggesting its involvement in the formation of wing muscle. Some proteins, such as proteasome alpha 3 subunits and ribosomal proteins, specifically identified from the moth stage may be involved in the degradation of old cuticle proteins and new cuticle protein synthesis. Gene ontology analysis of proteins specific to each of these three stages enabled their association with cellular component, molecular function, and biological process categories. The analysis of similarities and differences in these identified proteins will greatly further our understanding of wing disc development in silkworm and other insects.
Collapse
Affiliation(s)
- Yi-ling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Chen W, Shi W, Li L, Zheng Z, Li T, Bai W, Zhao Z. Regulation of sleep by the short neuropeptide F (sNPF) in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:809-819. [PMID: 23796436 DOI: 10.1016/j.ibmb.2013.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/02/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
The short neuropeptide F (sNPF), a neuropeptide in the central nervous system (CNS) of Drosophila melanogaster, is expressed in a large population of diverse neurons of brain. Most of these neurons are intrinsic interneurons of the mushroom bodies, which are the most prominent insect bilateral CNS structures that regulate memory and sleep. However, its role in sleep regulation still remains elusive. Here, we showed that sNPF-deficient female and male flies exhibit sleep enhancement with an increase of sleep bout duration. Loss of function of sNPF and sNPFR1 also elevated sleep. Moreover, the homeostatic regulation of flies after sleep deprivation was disrupted by aberrant sNPF signaling, since sleep deprivation increased transcription of sNPF and wakefulness at night in control flies but not in the sNPF mutant flies, suggesting that sNPF autoregulation plays an important role in sleep homeostasis. We further verified that sNPF signal elevated cAMP levels, and subsequently activated the downstream CREB transcription factor. The duration of sleep was found to be inversely related to cAMP signaling and CREB activity in the mushroom bodies. Thus, we concluded that sleep might be regulated by sNPF through modulating the cAMP-PKA-CREB signal pathway in vivo.
Collapse
Affiliation(s)
- Wenfeng Chen
- Department of Entomology, College of Agronomy and Biotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | | | | | | | | | | | | |
Collapse
|