1
|
Xing S, Tang X, Wang L, Wang J, Lv B, Wang X, Guo C, Zhao Y, Feng F, Liu W, Chen Y, Sun H. Optimizing drug-like properties of selective butyrylcholinesterase inhibitors for cognitive improvement: Enhancing aqueous solubility by disrupting molecular plane. Eur J Med Chem 2024; 268:116289. [PMID: 38452730 DOI: 10.1016/j.ejmech.2024.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
Most recently, worldwide interest in butyrylcholinesterase (BChE) as a potential target for treating Alzheimer's disease (AD) has increased. In this study, the previously obtained selective BChE inhibitors with benzimidazole-oxadiazole scaffold were further structurally modified to increase their aqueous solubility and pharmacokinetic (PK) characteristics. S16-1029 showed improved solubility (3280 μM, upgraded by 14 times) and PK parameters, including plasma exposure (AUC0-inf = 1729.95 ng/mL*h, upgraded by 2.6 times) and oral bioavailability (Fpo = 48.18%, upgraded by 2 times). S16-1029 also displayed weak or no inhibition against Cytochrome P450 (CYP450) and human ether a-go-go related gene (hERG) potassium channel. In vivo experiments on tissue distribution revealed that S16-1029 could cross the blood-brain barrier (BBB) and reach the central nervous system (CNS). In vivo cognitive improvement efficacy and good in vitro target inhibitory activity (eqBChE IC50 = 11.35 ± 4.84 nM, hBChE IC50 = 48.1 ± 11.4 nM) were also assured. The neuroprotective effects against several AD pathology characteristics allowed S16-1029 to successfully protect the CNS of progressed AD patients. According to the findings of this study, altering molecular planarity might be a viable strategy for improving the drug-like property of CNS-treating drugs.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xu Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Leyan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Jun Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Xiaolong Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Ye Zhao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
2
|
Dopamine D2 receptor agonist Bromocriptine ameliorates Aβ 1-42-induced memory deficits and neuroinflammation in mice. Eur J Pharmacol 2022; 938:175443. [PMID: 36470446 DOI: 10.1016/j.ejphar.2022.175443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease, which lacks disease-modifying therapeutics so far. Studies have shown that the dysfunction of the dopaminergic system is related to a variety of pathophysiology of AD, and the expression of Dopamine D2 receptor (DRD2) in the brains of AD patients and animal models is significantly downregulated, suggesting that DRD2 may represent a therapeutic target for AD. However, the strategy of targeting DRD2 for AD treatment still lacks some key experimental evidences. Here we show that DRD2 agonist Bromocriptine improved Aβ1-42 induced neuroinflammation, neuronal apoptosis, and memory deficits in mice. For animal study, the mice have injected intracerebroventricularly (i.c.v.) with Aβ1-42(410 pmol/5 μl) to induced AD cognitive deficit model (Mazzola et al., 2003; van der Stelt et al., 2006). After 7 days, Bromocriptine (2.5 mg/kg, 5 mg/kg and 10 mg/kg) or normal saline was administered intragastrically once a day for 30 days. Behavioral tests about the Y maze and Morris water maze in mice were initiated on the twenty-fourth day of drug administration for 7 days. In vivo and in vitro mechanism research revealed that Bromocriptine, via activating DRD2, promoted the recruitment of PP2A and JNK by scaffold protein β-arrestin 2, that repressed JNK-mediated transcription of proinflammatory cytokines and activation of NLRP3 inflammasome in microglia. Collectively, our findings suggest that Bromocriptine can ameliorate Aβ1-42 induced neuroinflammation and memory deficits in mice through DRD2/β-arrestin 2/PP2A/JNK signaling axis, which provides an experimental basis for the development of Bromocriptine as a drug for AD.
Collapse
|
3
|
Fatima S, Ali M, Quadri SN, Beg S, Samim M, Parvez S, Abdin MZ, Mishra P, Ahmad FJ. Crafting ɣ-L-Glutamyl-l-Cysteine layered Human Serum Albumin-nanoconstructs for brain targeted delivery of ropinirole to attenuate cerebral ischemia/reperfusion injury via "3A approach". Biomaterials 2022; 289:121805. [PMID: 36162213 DOI: 10.1016/j.biomaterials.2022.121805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
Treatment of Ischemic Stroke is inordinately challenging due to its complex aetiology and constraints in shuttling therapeutics across blood-brain barrier. Ropinirole hydrochloride (Rp), a propitious neuroprotectant with anti-oxidant, anti-inflammatory, and anti-apoptotic properties (3A) is repurposed for remedying ischemic stroke and reperfusion (I/R) injury. The drug's low bioavailability in brain however, limits its therapeutic efficacy. The current research work has reported sub-100 nm gamma-L-Glutamyl-L-Cysteine coated Human Serum Albumin nanoparticles encapsulating Rp (C-Rp-NPs) for active targeting in ischemic brain to encourage in situ activity and reduce unwanted toxicities. Confocal microscopy and brain distribution studies confirmed the enhanced targeting potentiality of optimized C-Rp-NPs. The pharmacokinetics elucidated that C-Rp-NPs could extend Rp retention in systemic circulation and escalate bioavailability compared with free Rp solution (Rp-S). Additionally, therapeutic assessment in transient middle cerebral occlusion (tMCAO) model suggested that C-Rp-NPs attenuated the progression of I/R injury with boosted therapeutic index at 1000 times less concentration compared to Rp-S via reinstating neurological and behavioral deficits, while reducing ischemic neuronal damage. Moreover, C-Rp-NPs blocked mitochondrial permeability transition pore (mtPTP), disrupted apoptotic mechanisms, curbed oxidative stress and neuroinflammation, and elevated dopamine levels post tMCAO. Thus, our work throws light on fabrication of rationally designed C-Rp-NPs with enormous clinical potential.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Syed Naved Quadri
- Centre for Transgenic Plant Development (CTPD), Department of Biotechnology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Sarwar Beg
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - M Samim
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development (CTPD), Department of Biotechnology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
A highly effective and stable butyrylcholinesterase inhibitor with multi-faceted neuroprotection and cognition improvement. Eur J Med Chem 2022; 239:114510. [DOI: 10.1016/j.ejmech.2022.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
|
5
|
Emerging Roles for the Orphan GPCRs, GPR37 and GPR37 L1, in Stroke Pathophysiology. Int J Mol Sci 2022; 23:ijms23074028. [PMID: 35409385 PMCID: PMC9000135 DOI: 10.3390/ijms23074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shed light on the diverse and complex roles of G-protein coupled receptors (GPCRs) in the pathophysiology of stroke. These receptors constitute a large family of seven transmembrane-spanning proteins that play an intricate role in cellular communication mechanisms which drive both tissue injury and repair following ischemic stroke. Orphan GPCRs represent a unique sub-class of GPCRs for which no natural ligands have been found. Interestingly, the majority of these receptors are expressed within the central nervous system where they represent a largely untapped resource for the treatment of neurological diseases. The focus of this review will thus be on the emerging roles of two brain-expressed orphan GPCRs, GPR37 and GPR37 L1, in regulating various cellular and molecular processes underlying ischemic stroke.
Collapse
|
6
|
Dagra A, Miller DR, Lin M, Gopinath A, Shaerzadeh F, Harris S, Sorrentino ZA, Støier JF, Velasco S, Azar J, Alonge AR, Lebowitz JJ, Ulm B, Bu M, Hansen CA, Urs N, Giasson BI, Khoshbouei H. α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability. NPJ Parkinsons Dis 2021; 7:76. [PMID: 34408150 PMCID: PMC8373893 DOI: 10.1038/s41531-021-00210-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pathophysiological damages and loss of function of dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease. The presence of aberrant intracellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson's disease. We employed molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein expression alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission in cultured dopamine neurons conditionally expressing GCaMP6f. We found that overexpression of α-synuclein in mouse (male and female) dopaminergic neurons altered neuronal firing properties, calcium dynamics, dopamine release, protein expression, and morphology. Moreover, prolonged exposure to the D2 receptor agonist, quinpirole, rescues many of the alterations induced by α-synuclein overexpression. These studies demonstrate that α-synuclein dysregulation of neuronal activity contributes to the vulnerability of dopaminergic neurons and that modulation of D2 receptor activity can ameliorate the pathophysiology. These findings provide mechanistic insights into the insidious changes in dopaminergic neuronal activity and neuronal loss that characterize Parkinson's disease progression with significant therapeutic implications.
Collapse
Affiliation(s)
- Abeer Dagra
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Douglas R. Miller
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Min Lin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adithya Gopinath
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Fatemeh Shaerzadeh
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Sharonda Harris
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Zachary A. Sorrentino
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Jonatan Fullerton Støier
- grid.5254.60000 0001 0674 042XMolecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Velasco
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Janelle Azar
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adetola R. Alonge
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Joseph J. Lebowitz
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Brittany Ulm
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Mengfei Bu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Carissa A. Hansen
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Nikhil Urs
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Habibeh Khoshbouei
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| |
Collapse
|
7
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
8
|
Huang X, Roet KCD, Zhang L, Brault A, Berg AP, Jefferson AB, Klug-McLeod J, Leach KL, Vincent F, Yang H, Coyle AJ, Jones LH, Frost D, Wiskow O, Chen K, Maeda R, Grantham A, Dornon MK, Klim JR, Siekmann MT, Zhao D, Lee S, Eggan K, Woolf CJ. Human amyotrophic lateral sclerosis excitability phenotype screen: Target discovery and validation. Cell Rep 2021; 35:109224. [PMID: 34107252 PMCID: PMC8209673 DOI: 10.1016/j.celrep.2021.109224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/14/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders. Motor neuron hyperexcitability is observed in both ALS patients and their iPSC-derived neurons. Combining a high-content live imaging excitability phenotypic assay, high-throughput screening against a cross-annotated chemogenomic library, and bioinformatic enrichment analysis, Huang et al. identify targets modulating the hyperexcitability of ALS patient-derived motor neurons in an unbiased manner.
Collapse
Affiliation(s)
- Xuan Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kasper C D Roet
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Liying Zhang
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Amy Brault
- Medicine Design, Pfizer, Groton, CT 06340, USA
| | - Allison P Berg
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Anne B Jefferson
- Pfizer Centers for Therapeutic Innovation (CTI), San Francisco, CA 94080, USA
| | | | - Karen L Leach
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | | | - Hongying Yang
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Anthony J Coyle
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Lyn H Jones
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Devlin Frost
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ole Wiskow
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rie Maeda
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alyssa Grantham
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mary K Dornon
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Marco T Siekmann
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Dongyi Zhao
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Kaushik P, Ali M, Tabassum H, Parvez S. Post-ischemic administration of dopamine D2 receptor agonist reduces cell death by activating mitochondrial pathway following ischemic stroke. Life Sci 2020; 261:118349. [PMID: 32853654 DOI: 10.1016/j.lfs.2020.118349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/21/2022]
Abstract
AIMS Cerebral ischemic stroke leads to mitochondrial alterations which are key factors for initiation of various cascades resulting in neuronal damage. Dopamine D2 receptor (D2R) agonist, Sumanirole (SUM) has been reported to possess anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the role of SUM in ischemic stroke (IS) has not been studied yet. The aim of the present study was to investigate the neuroprotective efficiency of SUM against ischemic injury and its possible effect on mitochondrial restorative mechanisms. MATERIALS AND METHODS Transient middle cerebral artery occlusion (tMCAO) was performed in Wistar rats for 90 min occlusion and 22.5 h reperfusion to mimic ischemic stroke. Post- treatment with Sumanirole (0.1 mg/kg and 1 mg/kg; s.c.) was done at 1 h, 6 h, 12 hand 18 h after surgery. In addition, neurobehavioral analysis, mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometric analysis, mitochondrial complexes analysis, infarct size evaluation and histological analysis were performed. KEY FINDINGS Sumanirole restored behavioural alterations as measured by rotarod performance, grip strength, adhesive tape removal analysis and neurological deficits. In addition, it also refurbished mitochondrial dysfunction by decreasing mitochondrial reactive oxygen species production, elevating mitochondrial membrane potential and by protecting the activity of mitochondrial complexes along with histological alterations. As a result, infarct sizes were markedly reduced in tMCAO surgery animals. SIGNIFICANCE Findings from the study provide evidence that SUM promotes neuronal survival in in vivo model of IS through mitochondria mediated neuroprotective features.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Belkacemi L, Darmani NA. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol Res 2020; 161:105124. [PMID: 32814171 DOI: 10.1016/j.phrs.2020.105124] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Dopamine is a member of the catecholamine family and is associated with multiple physiological functions. Together with its five receptor subtypes, dopamine is closely linked to neurological disorders such as schizophrenia, Parkinson's disease, depression, attention deficit-hyperactivity, and restless leg syndrome. Unfortunately, several dopamine receptor-based agonists used to treat some of these diseases cause nausea and vomiting as impending side-effects. The high degree of cross interactions of dopamine receptor ligands with many other targets including G-protein coupled receptors, transporters, enzymes, and ion-channels, add to the complexity of discovering new targets for the treatment of nausea and vomiting. Using activation status of signaling cascades as mechanism-based biomarkers to foresee drug sensitivity combined with the development of dopamine receptor-based biased agonists may hold great promise and seems as the next step in drug development for the treatment of such multifactorial diseases. In this review, we update the present knowledge on dopamine and dopamine receptors and their potential roles in nausea and vomiting. The pre- and clinical evidence provided in this review supports the implication of both dopamine and dopamine receptor agonists in the incidence of emesis. Besides the conventional dopaminergic antiemetic drugs, potential novel antiemetic targeting emetic protein signaling cascades may offer superior selectivity profile and potency.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
11
|
Khalilzadeh M, Hassanzadeh F, Aghamiri H, Dehpour AR, Shafaroodi H. Aripiprazole prevents from development of vincristine-induced neuropathic nociception by limiting neural NOS overexpression and NF-kB hyperactivation. Cancer Chemother Pharmacol 2020; 86:393-404. [PMID: 32803467 DOI: 10.1007/s00280-020-04127-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Increased nitric oxide (NO) synthesis and NF-kB activation have been shown as critical players in the pathophysiology of vincristine-induced peripheral neuropathy. Consistently, neural nitric oxide synthase (nNOS) inhibitors alleviated the neuropathic pain. Previous studies demonstrated that aripiprazole is capable of modulating NO synthesis and also has been reported its modulatory effect on NF-kB activity. METHODS Aripiprazole was administered daily to the male Wistar rats at the same time with establishing neuropathic model by I.P. injection of vincristine every 2 days, over 2 weeks. Efficacy of aripiprazole in suppressing the development of neuropathy was evaluated by assessing changes in body weight, mechanical threshold, withdrawal latency, sciatic nerve conduction velocity (SNCV), and compound motor action potential (CMAP) characteristics. Expression of nNOS and NF-kB activation were evaluated by western blotting RESULTS: Rats receiving aripiprazole during neuropathy establishment period demonstrated a normal weight gain pattern, a significantly higher mechanical withdrawal threshold, and SNCV compared to vincristine-treated group. Furthermore, the amplitude and area of CMAP were significantly higher in aripiprazole group. Western blotting demonstrated a significantly reduced expression of nNOS and NF-kB activation in dorsal root ganglia of aripiprazole co-treated rats. CONCLUSION In conclusion, aripiprazole effectively prevents from vincristine-induced neuropathy by limiting nNOS overexpression and NF-kB hyperactivation.
Collapse
Affiliation(s)
- Mina Khalilzadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Hassanzadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
12
|
Weissenrieder JS, Neighbors JD, Mailman RB, Hohl RJ. Cancer and the Dopamine D 2 Receptor: A Pharmacological Perspective. J Pharmacol Exp Ther 2019; 370:111-126. [PMID: 31000578 PMCID: PMC6558950 DOI: 10.1124/jpet.119.256818] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
The dopamine D2 receptor (D2R) family is upregulated in many cancers and tied to stemness. Reduced cancer risk has been correlated with disorders such as schizophrenia and Parkinson's disease, in which dopaminergic drugs are used. D2R antagonists are reported to have anticancer efficacy in cell culture and animal models where they have reduced tumor growth, induced autophagy, affected lipid metabolism, and caused apoptosis, among other effects. This has led to several hypotheses, the most prevalent being that D2R ligands may be a novel approach to cancer chemotherapy. This hypothesis is appealing because of the large number of approved and experimental drugs of this class that could be repurposed. We review the current state of the literature and the evidence for and against this hypothesis. When the existing literature is evaluated from a pharmacological context, one of the striking findings is that the concentrations needed for cytotoxic effects of D2R antagonists are orders of magnitude higher than their affinity for this receptor. Although additional definitive studies will provide further clarity, our hypothesis is that targeting D2-like dopamine receptors may only yield useful ligands for cancer chemotherapy in rare cases.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Jeffrey D Neighbors
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Richard B Mailman
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Raymond J Hohl
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| |
Collapse
|
13
|
Prakash O, Nath Dwivedi U. Identification of repurposed protein kinase B binders from FDA-approved drug library: a hybrid-structure activity relationship and systems modeling based approach. J Biomol Struct Dyn 2019; 38:660-672. [PMID: 30806166 DOI: 10.1080/07391102.2019.1585293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Food and Drug Administration (FDA)-approved drugs may be repurposed against those diseases, for which their therapeutic action has not been described. The present study deals with repurposing FDA-approved drugs for selective targeting of protein kinase B (PKB/Akt) for anti-cancer activity, through a two-tier (Cell and Target) model hybridization protocol implemented with support vector machine-based learning method. The hybridization was done as per rules of reaction kinetics. The hybridization process was facilitated as a standalone application for free access at https://github.com/undwivedi/Akt-Selective.git. The selectivity of the ligands for PKB/Akt binding was also evaluated on the basis of mitophagy system model for anti-apoptotic activity. Screening of the FDA-approved drug library, using the developed H- SAR model, led to identification of four compounds (Cas nos. 94749-08-3, 57808-66-9, 62-13-5, 76-43-7), bearing the selectivity for PKB/Akt. Since, the identified compounds have already crossed the barriers of absorption, distribution, metabolism, excretion, toxicity in clinical trials, therefore are safe to be considered for repurposing individually or in combination with other drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Om Prakash
- Department of Biochemistry, Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics & Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Upendra Nath Dwivedi
- Department of Biochemistry, Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics & Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J. Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 2019; 162:132-146. [DOI: 10.1016/j.ejmech.2018.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
|
15
|
Li Y, Wang W, Wang F, Wu Q, Li W, Zhong X, Tian K, Zeng T, Gao L, Liu Y, Li S, Jiang X, Du G, Zhou Y. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. J Mol Cell Biol 2018; 9:302-314. [PMID: 28486630 DOI: 10.1093/jmcb/mjx017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor with limited therapeutic means and poor prognosis. Recent studies indicate that glioma-initiating cells/glioma stem cells (GICs/GSCs) may be responsible for tumor initiation, infiltration, and recurrence. GICs could aberrantly employ molecular machinery balancing self-renewal and differentiation of embryonic neural precursors. Here, we find that paired related homeobox 1 (PRRX1), a homeodomain transcription factor that was previously reported to control skeletal development, is expressed in cortical neural progenitors and is required for their self-renewal and proper differentiation. Further, PRRX1 is overrepresented in glioma samples and labels GICs. Glioma cells and GICs depleted with PRRX1 could not propagate in vitro or form tumors in the xenograft mouse model. The GIC self-renewal function regulated by PRRX1 is mediated by dopamine D2 receptor (DRD2). PRRX1 directly binds to the DRD2 promoter and transactivates its expression in GICs. Blockage of the DRD2 signaling hampers GIC self-renewal, whereas its overexpression restores the propagating and tumorigenic potential of PRRX1-depleted GICs. Finally, PRRX1 potentiates GICs via DRD2-mediated extracellular signal-related kinase (ERK) and AKT activation. Thus, our study suggests that therapeutic targeting the PRRX1-DRD2-ERK/AKT axis in GICs is a promising strategy for treating GBMs.
Collapse
Affiliation(s)
- Yamu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wen Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Qiushuang Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wei Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Xiaoling Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Kuan Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Tao Zeng
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China.,Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Liang Gao
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China
| | - Ying Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Yan Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
The role of apitoxin in alleviating propionic acid-induced neurobehavioral impairments in rat pups: The expression pattern of Reelin gene. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Awad K, Abushouk AI, AbdelKarim AH, Mohammed M, Negida A, Shalash AS. Bee venom for the treatment of Parkinson's disease: How far is it possible? Biomed Pharmacother 2017; 91:295-302. [PMID: 28477460 DOI: 10.1016/j.biopha.2017.04.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/13/2017] [Accepted: 04/13/2017] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta leading to depletion of striatal dopamine and motor symptoms as bradykinesia, resting tremors, rigidity, and postural instability. Current therapeutic strategies for PD are mainly symptomatic and may cause motor complications, such as motor fluctuations and dyskinesia. Therefore, alternative medicine may offer an effective adjuvant treatment for PD. Bee venom therapy (BVT) has long been used as a traditional therapy for several conditions, such as rheumatoid arthritis, asthma, and skin diseases. Experimental and clinical studies showed that BVT could be an effective adjuvant treatment for PD. Several mechanisms were suggested for these findings including the ability of BVT to attenuate neuroinflammation, inhibit apoptosis of dopaminergic neurons, protect against glutamate-induced neurotoxicity, and restore normal dopamine levels in the nigrostriatal pathway. In this article, we reviewed and summarized the literature regarding the potential of BVT for the treatment of PD.
Collapse
Affiliation(s)
- Kamal Awad
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abdelrahman Ibrahim Abushouk
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Ain Shams University, Cairo, Egypt; NovaMed Medical Research Association, Cairo, Egypt
| | - Ahmed Helal AbdelKarim
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maged Mohammed
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Negida
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Ali S Shalash
- Neurology Department, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Abstract
OBJECTIVE In this work, we evaluated the association of human immunodeficiency virus (HIV) infection and methamphetamine (METH) use with mitochondrial injury in the brain and its implication on neurocognitive impairment. DESIGN Mitochondria carry their genome (mtDNA) and play a critical role in cellular processes in the central nervous system. METH is commonly used in HIV-infected populations. HIV infection and METH use can cause damage to mtDNA and lead to neurocognitive morbidity. We evaluated HIV infection and METH use with mitochondrial injury in the brain. METHODS We obtained white and gray matter from Brodmann areas 7, 8, 9, 46 of the following: HIV-infected individuals with history of past METH use (HIV+METH+, n = 16), HIV-infected individuals with no history of past METH use (HIV+METH-, n = 11), and HIV-negative controls (HIV-METH-, n = 30). We used the 'common deletion', a 4977 bp mutation, as a measurement of mitochondrial injury, and quantified levels of mtDNA and 'common deletion' by droplet digital PCR, and evaluated in relation to neurocognitive functioning [Global Deficit Score (GDS)]. RESULTS Levels of mtDNA and mitochondrial injury were highest in white matter of Brodmann area 46. A higher relative proportion of mtDNA carrying the 'common deletion' was associated with lower GDS (P < 0.01) in HIV+METH+ but higher GDS (P < 0.01) in HIV+METH-. CONCLUSIONS Increased mitochondrial injury was associated with worse neurocognitive function in HIV+METH- individuals. Among HIV+METH+ individuals, an opposite effect was seen.
Collapse
|
20
|
Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2015; 1640:15-35. [PMID: 26711850 DOI: 10.1016/j.brainres.2015.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022]
Abstract
Among the many pathophysiologic consequences of traumatic brain injury are changes in catecholamines, including dopamine, epinephrine, and norepinephrine. In the context of TBI, dopamine is the one most extensively studied, though some research exploring epinephrine and norepinephrine have also been published. The purpose of this review is to summarize the evidence surrounding use of drugs that target the catecholaminergic system on pathophysiological and functional outcomes of TBI using published evidence from pre-clinical and clinical brain injury studies. Evidence of the effects of specific drugs that target catecholamines as agonists or antagonists will be discussed. Taken together, available evidence suggests that therapies targeting the catecholaminergic system may attenuate functional deficits after TBI. Notably, it is fairly common for TBI patients to be treated with catecholamine agonists for either physiological symptoms of TBI (e.g. altered cerebral perfusion pressures) or a co-occuring condition (e.g. shock), or cognitive symptoms (e.g. attentional and arousal deficits). Previous clinical trials are limited by methodological limitations, failure to replicate findings, challenges translating therapies to clinical practice, the complexity or lack of specificity of catecholamine receptors, as well as potentially counfounding effects of personal and genetic factors. Overall, there is a need for additional research evidence, along with a need for systematic dissemination of important study details and results as outlined in the common data elements published by the National Institute of Neurological Diseases and Stroke. Ultimately, a better understanding of catecholamines in the context of TBI may lead to therapeutic advancements. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Nursing, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
21
|
Kim KT, Chung KJ, Lee HS, Ko IG, Kim CJ, Na YG, Kim KH. Neuroprotective effects of tadalafil on gerbil dopaminergic neurons following cerebral ischemia. Neural Regen Res 2014; 8:693-701. [PMID: 25206715 PMCID: PMC4146079 DOI: 10.3969/j.issn.1673-5374.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/30/2013] [Indexed: 01/11/2023] Open
Abstract
Impairment of dopamine function, which is known to have major effects on behaviors and cognition, is one of the main problems associated with cerebral ischemia. Tadalafil, a long-acting phosphodiesterase type-5 inhibitor, is known to ameliorate neurologic impairment induced by brain injury, but not in dopaminergic regions. We investigated the neuroprotective effects of treatment with tadalafil on cyclic guanosine monophosphate level and dopamine function following cerebral ischemia. Forty adult Mongolian gerbils were randomly and evenly divided into five groups (n = 8 in each group): Sham-operation group, cerebral ischemia-induced and 0, 0.1, 1, and 10 mg/kg tadalafil-treated groups, respectively. Tadalafil dissolved in distilled water was administered orally for 7 consecutive days, starting 1 day after surgery. Cyclic guanosine monophosphate assay and immunohistochemistry were performed for thyrosine hydroxylase expression and western blot analysis for dopamine D2 receptor expression. A decrease in cyclic guanosine monophosphate level following cerebral ischemia was found with an increase in thyrosine hydroxylase activity and a decrease in dopamine D2 receptor expression in the striatum and substantia nigra region. However, treatment with tadalafil increased cyclic guanosine monophosphate expression, suppressed thyrosine hydroxylase expression and increased dopamine D2 receptor expression in the striatum and substantia nigra region in a dose-dependent manner. Tadalafil might ameliorate cerebral ischemia-induced dopaminergic neuron injury. Therefore, tadalafil has the potential as a new neuroprotective treatment strategy for cerebral ischemic injury.
Collapse
Affiliation(s)
- Kwang Taek Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Kyung Jin Chung
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Han Sae Lee
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Il Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Chang Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yong Gil Na
- Department of Urology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon 301-721, Republic of Korea
| | - Khae Hawn Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| |
Collapse
|
22
|
Zhang J, Saur T, Duke AN, Grant SGN, Platt DM, Rowlett JK, Isacson O, Yao WD. Motor impairments, striatal degeneration, and altered dopamine-glutamate interplay in mice lacking PSD-95. J Neurogenet 2014; 28:98-111. [PMID: 24702501 DOI: 10.3109/01677063.2014.892486] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Excessive activation of the N-methyl-d-aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.
Collapse
Affiliation(s)
- Jingping Zhang
- New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts , USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Alterations in dopamine (DA) neurotransmission in Parkinson's disease are well known and widely studied. Much less is known about DA changes that accompany and underlie some of the symptoms of Huntington's disease (HD), a dominant inherited neurodegenerative disorder characterized by chorea, cognitive deficits, and psychiatric disturbances. The cause is an expansion in CAG (glutamine) repeats in the HTT gene. The principal histopathology of HD is the loss of medium-sized spiny neurons (MSNs) and, to a lesser degree, neuronal loss in cerebral cortex, thalamus, hippocampus, and hypothalamus. Neurochemical, electrophysiological, and behavioral studies in HD patients and genetic mouse models suggest biphasic changes in DA neurotransmission. In the early stages, DA neurotransmission is increased leading to hyperkinetic movements that can be alleviated by depleting DA stores. In contrast, in the late stages, DA deficits produce hypokinesia that can be treated by increasing DA function. Alterations in DA neurotransmission affect glutamate receptor modulation and could contribute to excitotoxicity. The mechanisms of DA dysfunction, in particular the increased DA tone in the early stages of the disease, are presently unknown but may include initial upregulation of DA neuron activity caused by the genetic mutation, reduced inhibition resulting from striatal MSN loss, increased excitation from cortical inputs, and DA autoreceptor dysfunction. Targeting both DA and glutamate receptor dysfunction could be the best strategy to treat HD symptoms.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kerry P S Murphy
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Buckinghamshire, UK
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Ma Y, Li Y, Zhang C, Zhou X, Wu Y. Neuroprotective Effect of 4-Methylcyclopentadecanone on Focal Cerebral Ischemia/Reperfusion Injury in Rats. J Pharmacol Sci 2014; 125:320-8. [DOI: 10.1254/jphs.14102fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
25
|
Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington's disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 2013; 7:114. [PMID: 23847463 PMCID: PMC3701870 DOI: 10.3389/fnins.2013.00114] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
Dopamine (DA) plays an essential role in the control of coordinated movements. Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson's and Huntington's diseases (HD). HD is a progressive, invariably fatal neurodegenerative disease caused by a genetic mutation producing an expansion of glutamine repeats and is characterized by abnormal dance-like movements (chorea). The principal pathology is the loss of striatal and cortical projection neurons. Changes in brain DA content and receptor number contribute to abnormal movements and cognitive deficits in HD. In particular, during the early hyperkinetic stage of HD, DA levels are increased whereas expression of DA receptors is reduced. In contrast, in the late akinetic stage, DA levels are significantly decreased and resemble those of a Parkinsonian state. Time-dependent changes in DA transmission parallel biphasic changes in glutamate synaptic transmission and may enhance alterations in glutamate receptor-mediated synaptic activity. In this review, we focus on neuronal electrophysiological mechanisms that may lead to some of the motor and cognitive symptoms of HD and how they relate to dysfunction in DA neurotransmission. Based on clinical and experimental findings, we propose that some of the behavioral alterations in HD, including reduced behavioral flexibility, may be caused by altered DA modulatory function. Thus, restoring DA balance alone or in conjunction with glutamate receptor antagonists could be a viable therapeutic approach.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|
26
|
Jiang P, Gan M, Yen SHC. Dopamine prevents lipid peroxidation-induced accumulation of toxic α-synuclein oligomers by preserving autophagy-lysosomal function. Front Cell Neurosci 2013; 7:81. [PMID: 23754979 PMCID: PMC3668273 DOI: 10.3389/fncel.2013.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022] Open
Abstract
The formation of Lewy bodies containing α-synuclein (α-syn), prominent loss of dopaminergic neurons and dopamine (DA) deficiency in substantia nigra and striatum are histopathological and biochemical hallmarks of Parkinson's disease (PD). Multiple lines of evidence have indicated that a critical pathogenic factor causing PD is enhanced production of reactive oxygen species (ROS), which reacts readily with polyunsaturated fatty acids to cause lipid peroxidation (LPO). LPO products have been shown to facilitate assembly of toxic α-syn oligomers in in vitro studies. Since DA is prone to autoxidation and cause ROS, it has been suggested that interactions among DA, LPO, and α-syn play an important role in neuronal loss in PD. However, the exact mechanism(s) remains unclear. We addressed this issue using a neuronal cell model which inducibly expresses human wild-type α-syn by the tetracycline off (Tet-Off) mechanism and stably expresses high levels of DA transporter. Under retinoic acid elicited neuronal differentiation, cells with or without overexpressing α-syn and with or without exposure to LPO inducer-arachidonic acid (AA), plus 0-500 μM of DA were assessed for the levels of LPO, α-syn accumulation, cell viability, and autophagy. AA exposure elicited similar LPO levels in cells with and without α-syn overexpression, but significantly enhanced the accumulation of α-syn oligomers and monomers only in cultures with Tet-Off induction and decreased cell survival in a LPO-dependent manner. Surprisingly, DA at low concentrations (<50 μM) protected cells from AA cytotoxicity and α-syn accumulation. Such effects were attributed to the ability of DA to preserve autophagic-lysosomal function compromised by the AA exposure. At high concentrations (>100 μM), DA exposure enhanced the toxic effects of AA. To our knowledge, this is the first report showing biphasic effects of DA on neuronal survival and α-syn accumulation.
Collapse
Affiliation(s)
- Peizhou Jiang
- Department of Neuroscience, Mayo Clinic College of Medicine Jacksonville, FL, USA
| | | | | |
Collapse
|
27
|
Treatment with low-dose methamphetamine improves behavioral and cognitive function after severe traumatic brain injury. J Trauma Acute Care Surg 2012; 73:S165-72. [PMID: 22847088 DOI: 10.1097/ta.0b013e318260896a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Methamphetamine increases the release and blocks the reuptake of dopamine. The moderate activation of dopamine receptors may elicit neuroprotective effects. We have recently demonstrated that low doses of methamphetamine reduce neuronal loss after ischemic injury. On the basis of this finding, we hypothesized that methamphetamine could also prevent neuronal loss and improve functional behavior after severe traumatic brain injury (TBI). METHODS The rat lateral fluid percussion injury model was used to generate severe TBI. Three hours after injury, animals were treated with saline or methamphetamine. Neurological severity scores and foot fault assessments were used to determine whether treatment enhanced recovery after injury. The potential for methamphetamine treatment to improve cognitive function was assessed using the Morris water maze. Forty-eight hours after injury, paraffin-embedded brain sections were TUNEL stained to measure apoptotic cell death. Sections were also stained with antibody to doublecortin to quantify immature neurons within the dentate gyrus. RESULTS Treatment with low-dose methamphetamine significantly reduced both behavioral and cognitive dysfunction after severe TBI. Methamphetamine-treated animals scored significantly lower on neurological severity scores and had significantly less foot faults after TBI compared with saline-treated control rats. Furthermore, methamphetamine treatment restored learning and memory function to near normal ability after TBI. At 48 hours after injury, apoptotic cell death within the hippocampus was significantly reduced, and the presence of immature neurons was significantly increased in methamphetamine-treated rats compared with saline-treated controls. CONCLUSION Treatment with low-dose methamphetamine after severe TBI elicits a robust neuroprotective response resulting in significant improvements in behavioral and cognitive functions.
Collapse
|
28
|
Kam KY, Jalin AMA, Choi YW, Kaengkan P, Park SW, Kim YH, Kang SG. Ziprasidone attenuates brain injury after focal cerebral ischemia induced by middle cerebral artery occlusion in rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:69-74. [PMID: 22627197 DOI: 10.1016/j.pnpbp.2012.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 04/29/2012] [Accepted: 05/14/2012] [Indexed: 11/29/2022]
Abstract
Ziprasidone is an atypical antipsychotic drug used for the treatment of schizophrenia. Recent studies have reported that atypical antipsychotics have neuroprotective effects against brain injury. In the present study, the effect of ziprasidone on ischemic brain injury was investigated. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. All the animals experienced ischemia for 1h and then underwent reperfusion. The infarct size induced by MCAO was significantly reduced in the animals that received acute treatment with 5mg/kg ziprasidone and subchronic treatment with 2.5mg/kg ziprasidone for 7 days compared with that in the vehicle-treated animals. The acute treatment with ziprasidone significantly improved neurological functions, as measured by the modified neurological severity score, in a dose-dependent manner. The subchronic treatment produced more rapid recovery from functional deficits than the vehicle treatment. The immunohistochemical investigation revealed that the subchronic treatment prevented severe loss of neuronal marker intensity and attenuated the increased in microglial marker intensity in the infarcted cortical area. These results suggest that ziprasidone has neuroprotective effects in a rat model of ischemic stroke and provide new insight for its clinical applications.
Collapse
Affiliation(s)
- Kyung-Yoon Kam
- Department of Occupational Therapy, Inje University, Gimhae 621-749, South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation. ASN Neuro 2012; 4:371-82. [PMID: 22909302 PMCID: PMC3449306 DOI: 10.1042/an20120013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.
Collapse
|
30
|
α-Lipoic Acid Interaction with Dopamine D2 Receptor-Dependent Activation of the Akt/GSK-3β Signaling Pathway Induced by Antipsychotics: Potential Relevance for the Treatment of Schizophrenia. J Mol Neurosci 2012; 50:134-45. [DOI: 10.1007/s12031-012-9884-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
|
31
|
PINK1 Overexpression Protects Against C2-ceramide-Induced CAD Cell Death Through the PI3K/AKT Pathway. J Mol Neurosci 2012; 47:582-94. [DOI: 10.1007/s12031-011-9687-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
|
32
|
Delis F, Benveniste H, Xenos M, Grandy D, Wang GJ, Volkow ND, Thanos PK. Loss of dopamine D2 receptors induces atrophy in the temporal and parietal cortices and the caudal thalamus of ethanol-consuming mice. Alcohol Clin Exp Res 2011; 36:815-25. [PMID: 22017419 DOI: 10.1111/j.1530-0277.2011.01667.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The need of an animal model of alcoholism becomes apparent when we consider the genetic diversity of the human populations, an example being dopamine D2 receptor (DRD2) expression levels. Research suggests that low DRD2 availability is associated with alcohol abuse, while higher DRD2 levels may be protective against alcoholism. This study aims to establish whether (i) the ethanol-consuming mouse is a suitable model of alcohol-induced brain atrophy and (ii) DRD2 protect the brain against alcohol toxicity. METHODS Adult Drd2+/+ and Drd2-/- mice drank either water or 20% ethanol solution for 6 months. At the end of the treatment period, the mice underwent magnetic resonance (MR) imaging under anesthesia. MR images were registered to a common space, and regions of interest were manually segmented. RESULTS We found that chronic ethanol intake induced a decrease in the volume of the temporal and parietal cortices as well as the caudal thalamus in Drd2-/- mice. CONCLUSIONS The result suggests that (i) normal DRD2 expression has a protective role against alcohol-induced brain atrophy and (ii) in the absence of Drd2 expression, prolonged ethanol intake reproduces a distinct feature of human brain pathology in alcoholism, the atrophy of the temporal and parietal cortices.
Collapse
Affiliation(s)
- Foteini Delis
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Greene LA, Levy O, Malagelada C. Akt as a victim, villain and potential hero in Parkinson's disease pathophysiology and treatment. Cell Mol Neurobiol 2011; 31:969-78. [PMID: 21547489 PMCID: PMC3678379 DOI: 10.1007/s10571-011-9671-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/24/2011] [Indexed: 12/25/2022]
Abstract
There are two major purposes of this essay. The first is to summarize existing evidence that irrespective of the initiating causes, neuron death and degeneration in Parkinson's disease (PD) are due to the common feature of failure of signaling by Akt, a kinase involved in neuron survival and maintenance of synaptic contacts. The second is to consider possible means by which such a failure of Akt signaling might be benignly prevented or reversed in neurons affected by PD, so as to treat PD symptoms, block disease progression, and potentially, promote recovery.
Collapse
Affiliation(s)
- Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630W. 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
34
|
Effects of bee venom on glutamate-induced toxicity in neuronal and glial cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:368196. [PMID: 21904562 PMCID: PMC3166716 DOI: 10.1155/2012/368196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/02/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022]
Abstract
Bee venom (BV), which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS). Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38) following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.
Collapse
|
35
|
Kurokawa K, Mizuno K, Kiyokage E, Shibasaki M, Toida K, Ohkuma S. Dopamine D1 receptor signaling system regulates ryanodine receptor expression after intermittent exposure to methamphetamine in primary cultures of midbrain and cerebral cortical neurons. J Neurochem 2011; 118:773-83. [DOI: 10.1111/j.1471-4159.2011.07366.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Dopamine receptors and Parkinson's disease. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2011; 2011:403039. [PMID: 25954517 PMCID: PMC4411877 DOI: 10.1155/2011/403039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/04/2011] [Accepted: 04/12/2011] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is a progressive extrapyramidal motor
disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic) neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa) significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS). In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.
Collapse
|
37
|
Rau TF, Kothiwal A, Zhang L, Ulatowski S, Jacobson S, Brooks DM, Cardozo-Pelaez F, Chopp M, Poulsen DJ. Low dose methamphetamine mediates neuroprotection through a PI3K-AKT pathway. Neuropharmacology 2011; 61:677-86. [PMID: 21635908 DOI: 10.1016/j.neuropharm.2011.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/25/2022]
Abstract
High doses of methamphetamine induce the excessive release of dopamine resulting in neurotoxicity. However, moderate activation of dopamine receptors can promote neuroprotection. Therefore, we used in vitro and in vivo models of stroke to test the hypothesis that low doses of methamphetamine could induce neuroprotection. We demonstrate that methamphetamine does induce a robust, dose-dependent, neuroprotective response in rat organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD). A similar dose dependant neuroprotective effect was observed in rats that received an embolic middle cerebral artery occlusion (MCAO). Significant improvements in behavioral outcomes were observed in rats when methamphetamine administration delayed for up to 12 h after MCAO. Methamphetamine-mediated neuroprotection was significantly reduced in slice cultures by the addition of D1 and D2 dopamine receptor antagonist. Treatment of slice cultures with methamphetamine resulted in the dopamine-mediated activation of AKT in a PI3K dependant manner. A similar increase in phosphorylated AKT was observed in the striatum, cortex and hippocampus of methamphetamine treated rats following MCAO. Methamphetamine-mediated neuroprotection was lost in rats when PI3K activity was blocked by wortmannin. Finally, methamphetamine treatment decreased both cleaved caspase 3 levels in slice cultures following OGD and TUNEL staining within the striatum and cortex in rats following transient MCAO. These data indicate that methamphetamine can mediate neuroprotection through activation of a dopamine/PI3K/AKT-signaling pathway.
Collapse
Affiliation(s)
- Thomas F Rau
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Koprivica V, Regardie K, Wolff C, Fernalld R, Murphy JJ, Kambayashi J, Kikuchi T, Jordan S. Aripiprazole protects cortical neurons from glutamate toxicity. Eur J Pharmacol 2011; 651:73-6. [DOI: 10.1016/j.ejphar.2010.10.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/19/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
|
39
|
Fasano C, Kortleven C, Trudeau LE. Chronic activation of the D2 autoreceptor inhibits both glutamate and dopamine synapse formation and alters the intrinsic properties of mesencephalic dopamine neurons in vitro. Eur J Neurosci 2010; 32:1433-41. [PMID: 20846243 DOI: 10.1111/j.1460-9568.2010.07397.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dysfunctional dopamine (DA)-mediated signaling is implicated in several diseases including Parkinson's disease, schizophrenia and attention deficit and hyperactivity disorder. Chronic treatment with DA receptor agonists or antagonists is often used in pharmacotherapy, but the consequences of these treatments on DA neuron function are unclear. It was recently demonstrated that chronic D2 autoreceptor (D2R) activation in DA neurons decreases DA release and inhibits synapse formation. Given that DA neurons can establish synapses that release glutamate in addition to DA, we evaluated the synapse specificity of the functional and structural plasticity induced by chronic D2R activation. We show that chronic activation of the D2R with quinpirole in vitro caused a parallel decrease in the number of dopaminergic and glutamatergic axon terminals. The capacity of DA neurons to synthesize DA was not altered, as indicated by the lack of change in protein kinase A-mediated Ser(40) phosphorylation of tyrosine hydroxylase. However, the spontaneous firing rate of DA neurons was decreased and was associated with altered intrinsic properties as revealed by a prolonged latency to first spike after release from hyperpolarization. Moreover, D2R function was decreased after its chronic activation. Our results demonstrate that chronic activation of the D2R induces a complex neuronal reorganization involving the inhibition of both DA and glutamate synapse formation and an alteration in electrical activity, but not in DA synthesis. A better understanding of D2R-induced morphological and functional long-term plasticity may lead to improved pharmacotherapy of DA-related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- C Fasano
- Department of Pharmacology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | | | | |
Collapse
|
40
|
|
41
|
Millan MJ. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease. Pharmacol Ther 2010; 128:229-73. [PMID: 20600305 DOI: 10.1016/j.pharmthera.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
Though L-3,4-dihydroxyphenylalanine (L-DOPA) is universally employed for alleviation of motor dysfunction in Parkinson's disease (PD), it is poorly-effective against co-morbid symptoms like cognitive impairment and depression. Further, it elicits dyskinesia, its pharmacokinetics are highly variable, and efficacy wanes upon long-term administration. Accordingly, "dopaminergic agonists" are increasingly employed both as adjuncts to L-DOPA and as monotherapy. While all recognize dopamine D(2) receptors, they display contrasting patterns of interaction with other classes of monoaminergic receptor. For example, pramipexole and ropinirole are high efficacy agonists at D(2) and D(3) receptors, while pergolide recognizes D(1), D(2) and D(3) receptors and a broad suite of serotonergic receptors. Interestingly, several antiparkinson drugs display modest efficacy at D(2) receptors. Of these, piribedil displays the unique cellular signature of: 1), signal-specific partial agonist actions at dopamine D(2)and D(3) receptors; 2), antagonist properties at α(2)-adrenoceptors and 3), minimal interaction with serotonergic receptors. Dopamine-deprived striatal D(2) receptors are supersensitive in PD, so partial agonism is sufficient for relief of motor dysfunction while limiting undesirable effects due to "over-dosage" of "normosensitive" D(2) receptors elsewhere. Further, α(2)-adrenoceptor antagonism reinforces adrenergic, dopaminergic and cholinergic transmission to favourably influence motor function, cognition, mood and the integrity of dopaminergic neurones. In reviewing the above issues, the present paper focuses on the distinctive cellular, preclinical and therapeutic profile of piribedil, comparisons to pramipexole, ropinirole and pergolide, and the core triad of symptoms that characterises PD-motor dysfunction, depressed mood and cognitive impairment. The article concludes by highlighting perspectives for clarifying the mechanisms of action of piribedil and other antiparkinson agents, and for optimizing their clinical exploitation.
Collapse
Affiliation(s)
- Mark J Millan
- Dept of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine (Paris), France.
| |
Collapse
|
42
|
Shirasaki Y, Sugimura M, Sato T. Bromocriptine, an ergot alkaloid, inhibits excitatory amino acid release mediated by glutamate transporter reversal. Eur J Pharmacol 2010; 643:48-57. [PMID: 20599932 DOI: 10.1016/j.ejphar.2010.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/11/2010] [Accepted: 06/04/2010] [Indexed: 11/26/2022]
Abstract
Bromocriptine, a dopamine D(2) receptor agonist, has widely been used for patients with Parkinson's disease. The aim of the present study was to investigate the effect of bromocriptine on glutamate transporter. Since the astroglial glutamate transporter GLT-1 (EAAT2) is the predominant isoform in the forebrain, we generated EAAT2-expressing human embryonic kidney cells and immortalized mouse astrocytes. In the present studies, we observed a GLT-1-immunoreactive band and significant Na(+)-dependent d-[(3)H] aspartate uptake. Furthermore, the glutamate transporter inhibitors, dl-threo-beta-benzyloxyaspartic acid (TBOA) and dihydrokainate (DHK), displayed a dose-dependent reduction of d-[(3)H] aspartate uptake in both types of cells. In contrast, cells exposed to either chemical anoxia or high KCl elicited a marked release of d-[(3)H] aspartate, and the release was inhibited by TBOA and DHK, implying the contribution of glutamate transporter reversal. Interestingly, we found that bromocriptine dose-dependently inhibits d-[(3)H] aspartate release elicited by chemical anoxia or high KCl, while no changes occurred in the uptake. The inhibitory action of bromocriptine was not affected by sulpiride, a dopamine D(2) receptor antagonist. On the other hand, bromocriptine had no effect on swelling-induced d-[(3)H] aspartate release, which is mediated by volume-regulated anion channels. In vivo studies revealed that bromocriptine suppresses the excessive elevation of glutamate levels in gerbils subjected to transient forebrain ischemia in a manner similar to DHK. Taken together, these results provide evidence that bromocriptine inhibits excitatory amino acid release via reversed operation of GLT-1 without altering forward transport.
Collapse
Affiliation(s)
- Yasufumi Shirasaki
- Biological Research Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo, Japan.
| | | | | |
Collapse
|
43
|
Kaewsuk S, Tannenberg RK, Kuo SW, Björkman ST, Govitrapong P, Stadlin A, Dodd PR. Regional expression of dopamine D1 and D2 receptor proteins in the cerebral cortex of asphyxic newborn infants. J Child Neurol 2009; 24:183-93. [PMID: 19182156 DOI: 10.1177/0883073808322669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dopamine D(1) and D(2) receptor protein expression was examined by Western blotting in newborn infants dying from cerebral asphyxia between 31 and 42 weeks' gestation, and matched controls. Frontal, occipital, temporal, and motor cortex tissue samples were obtained at autopsy (median postmortem interval 35 hours) and frozen for storage at -80 degrees C. A total of 2 immunoreactive bands were detected with each primary antibody in infant brain, whereas a single band was present in adult human and rat tissue. Immunoreactivity varied between cortical areas for both receptors, but their regional patterns differed significantly. D(1) protein levels were higher in motor and temporal cortex than in frontal or occipital cortex. D(2) protein showed graded expression frontal > motor > occipital > temporal cortex. Asphyxia cases showed lower expression of the upper D(2) immunoreactive band, but no difference in regional pattern. Lower D(2) receptor expression may attenuate stress responses and underlie increased vulnerability to hypoxia at birth.
Collapse
Affiliation(s)
- Sukit Kaewsuk
- Neuro-Behavioural Biology Center, Institute of Science and Technology for Research and Development, Mahidol University, Thailand
| | | | | | | | | | | | | |
Collapse
|
44
|
Takeuchi H, Yanagida T, Inden M, Takata K, Kitamura Y, Yamakawa K, Sawada H, Izumi Y, Yamamoto N, Kihara T, Uemura K, Inoue H, Taniguchi T, Akaike A, Takahashi R, Shimohama S. Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson's disease models. J Neurosci Res 2009; 87:576-85. [DOI: 10.1002/jnr.21869] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Takada-Takatori Y, Kume T, Izumi Y, Ohgi Y, Niidome T, Fujii T, Sugimoto H, Akaike A. Roles of Nicotinic Receptors in Acetylcholinesterase Inhibitor-Induced Neuroprotection and Nicotinic Receptor Up-Regulation. Biol Pharm Bull 2009; 32:318-24. [DOI: 10.1248/bpb.32.318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Takada-Takatori
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuta Ohgi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Tetsuhiro Niidome
- Department of Neuroscience for Drug Discovery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College
| | - Hachiro Sugimoto
- Department of Neuroscience for Drug Discovery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
46
|
Ramírez AR, Castro MA, Angulo C, Ramió L, Rivera MM, Torres M, Rigau T, Rodríguez-Gil JE, Concha II. The presence and function of dopamine type 2 receptors in boar sperm: a possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol Reprod 2008; 80:753-61. [PMID: 19074002 DOI: 10.1095/biolreprod.108.070961] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Several studies have shown that dopamine and other catecholamines are present in oviduct luminal fluid. We recently reported that dopamine type 2 receptors (DRD2) are present in a wide range of mammalian sperm, suggesting a role for dopaminergic signaling in events such as fertilization, capacitation, and sperm motility. In the present study, we used Western blot analysis to show that boar sperm express DRD2 and that their activation with dopamine (100 nM) has a positive effect on cell viability that can be correlated with AKT/PKB phosphorylation. Bromocriptine (100 nM) and dopamine (100 nM and 10 muM) increased tyrosine phosphorylation during the capacitation period. Immunofluorescence analysis indicated that DRD2 localization is dynamic and depends on the capacitation stage, colocalizing with tyrosine phosphorylated proteins in the acrosome and midpiece region of capacitated boar sperm. This association was confirmed by coimmunoprecipitation analysis. We also showed that bromocriptine (100 nM) and low-concentration dopamine (100 nM and 10 muM) increased total and progressive motility of sperm. However, high concentrations of dopamine (1 mM) decreased tyrosine phosphorylation and motility in in vitro sperm capacitation assays. This can be explained by the presence of the dopamine transporters (DAT, official symbol SLC6A3) in sperm, as demonstrated by Western blot analysis and immunocytochemistry. Taken together, our results support the idea that dopamine may have a fundamental role during sperm capacitation and motility in situ in the female upper reproductive tract.
Collapse
Affiliation(s)
- Alfredo R Ramírez
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Takada-Takatori Y, Kume T, Ohgi Y, Izumi Y, Niidome T, Fujii T, Sugimoto H, Akaike A. Mechanism of neuroprotection by donepezil pretreatment in rat cortical neurons chronically treated with donepezil. J Neurosci Res 2008; 86:3575-83. [DOI: 10.1002/jnr.21798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Arboleda G, Morales LC, Benítez B, Arboleda H. Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. ACTA ACUST UNITED AC 2008; 59:333-46. [PMID: 18996148 DOI: 10.1016/j.brainresrev.2008.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 12/14/2022]
Abstract
The present review explores the role of ceramides in neuronal apoptosis, as well as the recent discovery of the signaling pathways involved in this process placing particular emphasis on the correlation between cellular metabolism and neuronal death. Endogenous levels of ceramides are increased following various pro-apoptotic stimuli which have been identified as potential causes of chronic and acute neurodegenerative diseases. Ceramides induce changes in multiple enzymes and cell signaling components. The early inhibition of the neuronal survival pathway regulated by phosphatidil-inositol-3-kinase/protein kinase B or AKT mediated by ceramide may be a relevant early event in the decision of neuronal survival/death. It may perturb several molecular and metabolic functions. In particular it might decrease glycolysis through rapid modulation of hexokinase activity. This would in turn generate limited amounts of mitochondrial substrates leading to mitochondrial dysfunction and neuronal apoptosis. Subtle and early metabolic alterations caused by inhibition of the PI3K/AKT pathway mediated by ceramide may potentially work with genes associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Together they may be determinant steps in downstream events leading to neuronal apoptosis. Therefore, reinforcement of the PI3K/AKT pathway could constitute an important neuroprotective strategy.
Collapse
Affiliation(s)
- Gonzalo Arboleda
- Grupo de Neurociencias, Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | |
Collapse
|
49
|
Zhang F, Zheng W, Pi R, Mei Z, Bao Y, Gao J, Tang W, Chen S, Liu P. Cryptotanshinone protects primary rat cortical neurons from glutamate-induced neurotoxicity via the activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Exp Brain Res 2008; 193:109-18. [DOI: 10.1007/s00221-008-1600-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 09/26/2008] [Indexed: 11/28/2022]
|
50
|
Zheng F, Soellner D, Nunez J, Wang H. The basal level of intracellular calcium gates the activation of phosphoinositide 3-kinase-Akt signaling by brain-derived neurotrophic factor in cortical neurons. J Neurochem 2008; 106:1259-74. [PMID: 18485103 DOI: 10.1111/j.1471-4159.2008.05478.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) mediates survival and neuroplasticity through the activation of phosphoinositide 3-kinase-Akt pathway. Although previous studies suggested the roles of mitogen-activated protein kinase, phospholipase C-gamma-mediated intracellular calcium ([Ca2+]i) increase, and extracellular calcium influx in regulating Akt activation, the cellular mechanisms are largely unknown. We demonstrated that sub-nanomolar BDNF significantly induced Akt activation in developing cortical neurons. The TrkB-dependent Akt phosphorylation at S473 and T308 required only phosphoinositide 3-kinase, but not phospholipase C and mitogen-activated protein kinase activity. Blocking NMDA receptors, L-type voltage-gated calcium channels, and chelating extracellular calcium by EGTA failed to block BDNF-induced Akt phosphorylation. In contrast, chelating [Ca2+]i by 1,2-bis(o-aminophenoxy)ethane-N,N,N ',N '-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) abolished Akt phosphorylation. Interestingly, sub-nanomolar BDNF did not stimulate [Ca2+]i increase under our culture conditions. Together with that NMDA- and membrane depolarization-induced [Ca2+]i increase did not activate Akt, we conclude that the basal level of [Ca2+]i gates BDNF function. Furthermore, inhibiting calmodulin by W13 suppressed Akt phosphorylation. On the other hand, inhibition of protein phosphatase 1 by okadaic acid and tautomycin rescued Akt phosphorylation in BAPTA-AM and W13-treated neurons. We further demonstrated that the phosphorylation of phosphoinositide-dependent kinase-1 did not correlate with Akt phosphorylation at T308. Our results suggested novel roles of basal [Ca2+]i, rather than activity-induced calcium elevation, in BDNF-Akt signaling.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | |
Collapse
|