1
|
Zhang H, Huang D, Chen E, Cao D, Xu T, Dizdar B, Li G, Chen Y, Payne P, Province M, Li F. mosGraphGPT: a foundation model for multi-omic signaling graphs using generative AI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606222. [PMID: 39149314 PMCID: PMC11326168 DOI: 10.1101/2024.08.01.606222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Generative pretrained models represent a significant advancement in natural language processing and computer vision, which can generate coherent and contextually relevant content based on the pre-training on large general datasets and fine-tune for specific tasks. Building foundation models using large scale omic data is promising to decode and understand the complex signaling language patterns within cells. Different from existing foundation models of omic data, we build a foundation model, mosGraphGPT, for multi-omic signaling (mos) graphs, in which the multi-omic data was integrated and interpreted using a multi-level signaling graph. The model was pretrained using multi-omic data of cancers in The Cancer Genome Atlas (TCGA), and fine-turned for multi-omic data of Alzheimer's Disease (AD). The experimental evaluation results showed that the model can not only improve the disease classification accuracy, but also is interpretable by uncovering disease targets and signaling interactions. And the model code are uploaded via GitHub with link: https://github.com/mosGraph/mosGraphGPT.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Di Huang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Ben Dizdar
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | | | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Asadie M, Miri A, Badri T, Hosseini Nejad J, Gharechahi J. Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer's Disease: Insights from Brain Cortex and Peripheral Blood Analysis. J Mol Neurosci 2024; 74:37. [PMID: 38568322 DOI: 10.1007/s12031-024-02212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (TGF-β) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.
Collapse
Affiliation(s)
- Mohamadreza Asadie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Hosseini Nejad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Gebril HM, Aryasomayajula A, de Lima MRN, Uhrich KE, Moghe PV. Nanotechnology for microglial targeting and inhibition of neuroinflammation underlying Alzheimer's pathology. Transl Neurodegener 2024; 13:2. [PMID: 38173014 PMCID: PMC10765804 DOI: 10.1186/s40035-023-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is considered to have a multifactorial etiology. The hallmark of AD is progressive neurodegeneration, which is characterized by the deepening loss of memory and a high mortality rate in the elderly. The neurodegeneration in AD is believed to be exacerbated following the intercoupled cascades of extracellular amyloid beta (Aβ) plaques, uncontrolled microglial activation, and neuroinflammation. Current therapies for AD are mostly designed to target the symptoms, with limited ability to address the mechanistic triggers for the disease. In this study, we report a novel nanotechnology based on microglial scavenger receptor (SR)-targeting amphiphilic nanoparticles (NPs) for the convergent alleviation of fibril Aβ (fAβ) burden, microglial modulation, and neuroprotection. METHODS We designed a nanotechnology approach to regulate the SR-mediated intracellular fAβ trafficking within microglia. We synthesized SR-targeting sugar-based amphiphilic macromolecules (AM) and used them as a bioactive shell to fabricate serum-stable AM-NPs via flash nanoprecipitation. Using electron microscopy, in vitro approaches, ELISA, and confocal microscopy, we investigated the effect of AM-NPs on Aβ fibrilization, fAβ-mediated microglial inflammation, and neurotoxicity in BV2 microglia and SH-SY5Y neuroblastoma cell lines. RESULTS AM-NPs interrupted Aβ fibrilization, attenuated fAβ microglial internalization via targeting the fAβ-specific SRs, arrested the fAβ-mediated microglial activation and pro-inflammatory response, and accelerated lysosomal degradation of intracellular fAβ. Moreover, AM-NPs counteracted the microglial-mediated neurotoxicity after exposure to fAβ. CONCLUSIONS The AM-NP nanotechnology presents a multifactorial strategy to target pathological Aβ aggregation and arrest the fAβ-mediated pathological progression in microglia and neurons.
Collapse
Affiliation(s)
- Hoda M Gebril
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA.
| | - Aravind Aryasomayajula
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA
| | | | - Kathryn E Uhrich
- Department of Chemistry, University of California, 501 Big Springs Rd., Riverside, CA, 92507, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA.
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Chou V, Pearse RV, Aylward AJ, Ashour N, Taga M, Terzioglu G, Fujita M, Fancher SB, Sigalov A, Benoit CR, Lee H, Lam M, Seyfried NT, Bennett DA, De Jager PL, Menon V, Young-Pearse TL. INPP5D regulates inflammasome activation in human microglia. Nat Commun 2023; 14:7552. [PMID: 38016942 PMCID: PMC10684891 DOI: 10.1038/s41467-023-42819-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
Microglia and neuroinflammation play an important role in the development and progression of Alzheimer's disease (AD). Inositol polyphosphate-5-phosphatase D (INPP5D/SHIP1) is a myeloid-expressed gene genetically-associated with AD. Through unbiased analyses of RNA and protein profiles in INPP5D-disrupted iPSC-derived human microglia, we find that reduction in INPP5D activity is associated with molecular profiles consistent with disrupted autophagy and inflammasome activation. These findings are validated through targeted pharmacological experiments which demonstrate that reduced INPP5D activity induces the formation of the NLRP3 inflammasome, cleavage of CASP1, and secretion of IL-1β and IL-18. Further, in-depth analyses of human brain tissue across hundreds of individuals using a multi-analytic approach provides evidence that a reduction in function of INPP5D in microglia results in inflammasome activation in AD. These findings provide insights into the molecular mechanisms underlying microglia-mediated processes in AD and highlight the inflammasome as a potential therapeutic target for modulating INPP5D-mediated vulnerability to AD.
Collapse
Affiliation(s)
- Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy Ashour
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Gizem Terzioglu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Seeley B Fancher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alina Sigalov
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matti Lam
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Carroll JA, Striebel JF, Baune C, Chesebro B, Race B. CD11c is not required by microglia to convey neuroprotection after prion infection. PLoS One 2023; 18:e0293301. [PMID: 37910561 PMCID: PMC10619787 DOI: 10.1371/journal.pone.0293301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Prion diseases are caused by the misfolding of a normal host protein that leads to gliosis, neuroinflammation, neurodegeneration, and death. Microglia have been shown to be critical for neuroprotection during prion infection of the central nervous system (CNS), and their presence extends survival in mice. How microglia impart these benefits to the infected host are unknown. Previous transcriptomics and bioinformatics studies suggested that signaling through the heterodimeric integrin receptor CD11c/CD18, expressed by microglia in the brain, might be important to microglial function during prion disease. Herein, we intracerebrally challenged CD11c-/- mice with prion strain RML and compared them to similarly infected C57BL/6 mice as controls. We initially assessed changes in the brain that are associated with disease such as astrogliosis, microgliosis, prion accumulation, and survival. Targeted qRT-PCR arrays were used to determine alterations in transcription in mice in response to prion infection. We demonstrate that expression of Itgax (CD11c) and Itgb2 (CD18) increases in the CNS in correlation with advancing prion infection. Gliosis, neuropathology, prion deposition, and disease progression in prion infected CD11c deficient mice were comparable to infected C57BL/6 mice. Additionally, both CD11c deficient and C57BL/6 prion-infected mouse cohorts had a similar consortium of inflammatory- and phagocytosis-associated genes that increased as disease progressed to clinical stages. Ingenuity Pathway Analysis of upregulated genes in infected C57BL/6 mice suggested numerous cell-surface transmembrane receptors signal through Spleen Tyrosine Kinase, a potential key regulator of phagocytosis and innate immune activation in the prion infected brain. Ultimately, the deletion of CD11c did not influence prion pathogenesis in mice and CD11c signaling is not involved in the neuroprotection provided by microglia, but our analysis identified a conspicuous phagocytosis pathway in the CNS of infected mice that appeared to be activated during prion pathogenesis.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James F. Striebel
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Chase Baune
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
6
|
Lian P, Cai X, Wang C, Liu K, Yang X, Wu Y, Zhang Z, Ma Z, Cao X, Xu Y. Identification of metabolism-related subtypes and feature genes in Alzheimer's disease. J Transl Med 2023; 21:628. [PMID: 37715200 PMCID: PMC10504766 DOI: 10.1186/s12967-023-04324-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/01/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Owing to the heterogeneity of Alzheimer's disease (AD), its pathogenic mechanisms are yet to be fully elucidated. Evidence suggests an important role of metabolism in the pathophysiology of AD. Herein, we identified the metabolism-related AD subtypes and feature genes. METHODS The AD datasets were obtained from the Gene Expression Omnibus database and the metabolism-relevant genes were downloaded from a previously published compilation. Consensus clustering was performed to identify the AD subclasses. The clinical characteristics, correlations with metabolic signatures, and immune infiltration of the AD subclasses were evaluated. Feature genes were screened using weighted correlation network analysis (WGCNA) and processed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Furthermore, three machine-learning algorithms were used to narrow down the selection of the feature genes. Finally, we identified the diagnostic value and expression of the feature genes using the AD dataset and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. RESULTS Three AD subclasses were identified, namely Metabolism Correlated (MC) A (MCA), MCB, and MCC subclasses. MCA contained signatures associated with high AD progression and may represent a high-risk subclass compared with the other two subclasses. MCA exhibited a high expression of genes related to glycolysis, fructose, and galactose metabolism, whereas genes associated with the citrate cycle and pyruvate metabolism were downregulated and associated with high immune infiltration. Conversely, MCB was associated with citrate cycle genes and exhibited elevated expression of immune checkpoint genes. Using WGCNA, 101 metabolic genes were identified to exhibit the strongest association with poor AD progression. Finally, the application of machine-learning algorithms enabled us to successfully identify eight feature genes, which were employed to develop a nomogram model that could bring distinct clinical benefits for patients with AD. As indicated by the AD datasets and qRT-PCR analysis, these genes were intimately associated with AD progression. CONCLUSION Metabolic dysfunction is associated with AD. Hypothetical molecular subclasses of AD based on metabolic genes may provide new insights for developing individualized therapy for AD. The feature genes highly correlated with AD progression included GFAP, CYB5R3, DARS, KIAA0513, EZR, KCNC1, COLEC12, and TST.
Collapse
Affiliation(s)
- Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cai
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Proteome integral solubility alteration high-throughput proteomics assay identifies Collectin-12 as a non-apoptotic microglial caspase-3 substrate. Cell Death Dis 2023; 14:192. [PMID: 36906641 PMCID: PMC10008626 DOI: 10.1038/s41419-023-05714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Caspases are a family of proteins mostly known for their role in the activation of the apoptotic pathway leading to cell death. In the last decade, caspases have been found to fulfill other tasks regulating the cell phenotype independently to cell death. Microglia are the immune cells of the brain responsible for the maintenance of physiological brain functions but can also be involved in disease progression when overactivated. We have previously described non-apoptotic roles of caspase-3 (CASP3) in the regulation of the inflammatory phenotype of microglial cells or pro-tumoral activation in the context of brain tumors. CASP3 can regulate protein functions by cleavage of their target and therefore could have multiple substrates. So far, identification of CASP3 substrates has been performed mostly in apoptotic conditions where CASP3 activity is highly upregulated and these approaches do not have the capacity to uncover CASP3 substrates at the physiological level. In our study, we aim at discovering novel substrates of CASP3 involved in the normal regulation of the cell. We used an unconventional approach by chemically reducing the basal level CASP3-like activity (by DEVD-fmk treatment) coupled to a Mass Spectrometry screen (PISA) to identify proteins with different soluble amounts, and consequently, non-cleaved proteins in microglia cells. PISA assay identified several proteins with significant change in their solubility after DEVD-fmk treatment, including a few already known CASP3 substrates which validated our approach. Among them, we focused on the Collectin-12 (COLEC12 or CL-P1) transmembrane receptor and uncovered a potential role for CASP3 cleavage of COLEC12 in the regulation of the phagocytic capacity of microglial cells. Taken together, these findings suggest a new way to uncover non-apoptotic substrates of CASP3 important for the modulation of microglia cell physiology.
Collapse
|
8
|
Corsi GI, Gadekar VP, Haukedal H, Doncheva NT, Anthon C, Ambardar S, Palakodeti D, Hyttel P, Freude K, Seemann SE, Gorodkin J. The transcriptomic landscape of neurons carrying PSEN1 mutations reveals changes in extracellular matrix components and non-coding gene expression. Neurobiol Dis 2023; 178:105980. [PMID: 36572121 DOI: 10.1016/j.nbd.2022.105980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible brain disorder, which can occur either sporadically, due to a complex combination of environmental, genetic, and epigenetic factors, or because of rare genetic variants in specific genes (familial AD, or fAD). A key hallmark of AD is the accumulation of amyloid beta (Aβ) and Tau hyperphosphorylated tangles in the brain, but the underlying pathomechanisms and interdependencies remain poorly understood. Here, we identify and characterise gene expression changes related to two fAD mutations (A79V and L150P) in the Presenilin-1 (PSEN1) gene. We do this by comparing the transcriptomes of glutamatergic forebrain neurons derived from fAD-mutant human induced pluripotent stem cells (hiPSCs) and their individual isogenic controls generated via precision CRISPR/Cas9 genome editing. Our analysis of Poly(A) RNA-seq data detects 1111 differentially expressed coding and non-coding genes significantly altered in fAD. Functional characterisation and pathway analysis of these genes reveal profound expression changes in constituents of the extracellular matrix, important to maintain the morphology, structural integrity, and plasticity of neurons, and in genes involved in calcium homeostasis and mitochondrial oxidative stress. Furthermore, by analysing total RNA-seq data we reveal that 30 out of 31 differentially expressed circular RNA genes are significantly upregulated in the fAD lines, and that these may contribute to the observed protein-coding gene expression changes. The results presented in this study contribute to a better understanding of the cellular mechanisms impacted in AD neurons, ultimately leading to neuronal damage and death.
Collapse
Affiliation(s)
- Giulia I Corsi
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Veerendra P Gadekar
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Nadezhda T Doncheva
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Sheetal Ambardar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; School of Biotechnology, University of Jammu, Jammu and Kashmir 180001, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| |
Collapse
|
9
|
Chou V, Fancher SB, Pearse RV, Lee H, Lam M, Seyfried NT, Bennett DA, De Jager PL, Menon V, Young-Pearse TL. INPP5D/SHIP1 regulates inflammasome activation in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530025. [PMID: 36865139 PMCID: PMC9980181 DOI: 10.1101/2023.02.25.530025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Microglia and neuroinflammation are implicated in the development and progression of Alzheimer's disease (AD). To better understand microglia-mediated processes in AD, we studied the function of INPP5D/SHIP1, a gene linked to AD through GWAS. Immunostaining and single nucleus RNA sequencing confirmed that INPP5D expression in the adult human brain is largely restricted to microglia. Examination of prefrontal cortex across a large cohort revealed reduced full length INPP5D protein levels in AD patient brains compared to cognitively normal controls. The functional consequences of reduced INPP5D activity were evaluated in human induced pluripotent stem cell derived microglia (iMGLs), using both pharmacological inhibition of the phosphatase activity of INPP5D and genetic reduction in copy number. Unbiased transcriptional and proteomic profiling of iMGLs suggested an upregulation of innate immune signaling pathways, lower levels of scavenger receptors, and altered inflammasome signaling with INPP5D reduction. INPP5D inhibition induced the secretion of IL-1ß and IL-18, further implicating inflammasome activation. Inflammasome activation was confirmed through visualization of inflammasome formation through ASC immunostaining in INPP5D-inhibited iMGLs, increased cleaved caspase-1 and through rescue of elevated IL-1ß and IL-18 with caspase-1 and NLRP3 inhibitors. This work implicates INPP5D as a regulator of inflammasome signaling in human microglia.
Collapse
|
10
|
Lin MH, Cheng PC, Hsiao PJ, Chen SC, Hung CH, Kuo CH, Huang SK, Clair Chiou HY. The GLP-1 receptor agonist exenatide ameliorates neuroinflammation, locomotor activity, and anxiety-like behavior in mice with diet-induced obesity through the modulation of microglial M2 polarization and downregulation of SR-A4. Int Immunopharmacol 2023; 115:109653. [PMID: 36587502 DOI: 10.1016/j.intimp.2022.109653] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Obesity is associated with multiple comorbidities, such as metabolic abnormalities and cognitive dysfunction. Moreover, accumulating evidence indicates that neurodegenerative disorders are associated with chronic neuroinflammation. GLP-1 receptor agonists (RAs) have been extensively studied as a treatment for type 2 diabetes. Emerging evidence has demonstrated a protective effect of GLP-1 RAs on neurodegenerative disease, which is independent of its glucose-lowering effects. In this study, we aimed to examine the effects of a long-acting GLP-1 RA, exenatide, on high-fat diet (HFD)-induced neuroinflammation and related brain function impairment. First, mice treated with exenatide exhibited significantly reduced HFD-increased body weight and blood glucose. In an open field test, exenatide treatment ameliorated the reduction in local motor activity and anxiety in HFD-fed mice. Moreover, HFD induced astrogliosis, microgliosis, and upregulation of IL-1β, IL-6 and TNF-α in hippocampus and cortex. Exenatide treatment reduced HFD-induced astrogliosis and IL-1β and TNF-α expressions. Moreover, exenatide increased phosphor-ERK and M2-type microglia marker arginase-1 expression in the hippocampus and cortex. In addition, we found that scavenger receptor-A4 protein expression was induced by HFD and was subsequently inhibited by exenatide. SR-A4 knockout reversed the locomotor activity impairment but not the anxiety behavior caused by HFD consumption. SR-A4 knockout also reduced HFD-induced neuroinflammation, as shown by the reduced expression of GFAP and IBA-1 compared with that in wild-type control mice. These results demonstrate that exenatide decreases HFD-increased neuroinflammation and promotes anti-inflammatory M2 differentiation. The inhibition of SR-A4 by exenatide exerts anti-inflammatory activity.
Collapse
Affiliation(s)
- Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Pi-Jung Hsiao
- Division of Endocrinology and Metabolism, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan; Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hsin-Ying Clair Chiou
- Center of Teaching and Research, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| |
Collapse
|
11
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
12
|
Li Y, Nan B, Zhu J. A Structured Brain-wide and Genome-wide Association Study Using ADNI PET Images. CAN J STAT 2021; 49:182-202. [PMID: 34566241 DOI: 10.1002/cjs.11605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A multi-stage variable selection method is introduced for detecting association signals in structured brain-wide and genome-wide association studies (brain-GWAS). Compared to conventional single-voxel-to-single-SNP approaches, our approach is more efficient and powerful in selecting the important signals by integrating anatomic and gene grouping structures in the brain and the genome, respectively. It avoids large number of multiple comparisons while effectively controls the false discoveries. Validity of the proposed approach is demonstrated by both theoretical investigation and numerical simulations. We apply the proposed method to a brain-GWAS using ADNI PET imaging and genomic data. We confirm previously reported association signals and also find several novel SNPs and genes that either are associated with brain glucose metabolism or have their association significantly modified by Alzheimer's disease status.
Collapse
Affiliation(s)
- Yanming Li
- Department of Biotatistics & Data Science, University of Kansas Medical Center Kansas City, KS 66160
| | - Bin Nan
- Department of Statistics, University of California at Irvine Irvine, CA 92697
| | - Ji Zhu
- Department of Statistics, University of Michigan Ann Arbor, MI 48109
| |
Collapse
|
13
|
Zhang J, Song L, Pedersen DV, Li A, Lambris JD, Andersen GR, Mollnes TE, Ma YJ, Garred P. Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement. eLife 2020; 9:60908. [PMID: 32909942 PMCID: PMC7511233 DOI: 10.7554/elife.60908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 01/11/2023] Open
Abstract
Properdin stabilizes the alternative C3 convertase (C3bBb), whereas its role as pattern-recognition molecule mediating complement activation is disputed for decades. Previously, we have found that soluble collectin-12 (sCL-12) synergizes complement alternative pathway (AP) activation. However, whether this observation is C3 dependent is unknown. By application of the C3-inhibitor Cp40, we found that properdin in normal human serum bound to Aspergillus fumigatus solely in a C3b-dependent manner. Cp40 also prevented properdin binding when properdin-depleted serum reconstituted with purified properdin was applied, in analogy with the findings achieved by C3-depleted serum. However, when opsonized with sCL-12, properdin bound in a C3-independent manner exclusively via its tetrameric structure and directed in situ C3bBb assembly. In conclusion, a prerequisite for properdin binding and in situ C3bBb assembly was the initial docking of sCL-12. This implies a new important function of properdin in host defense bridging pattern recognition and specific AP activation.
Collapse
Affiliation(s)
- Jie Zhang
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lihong Song
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Anna Li
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, and University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, K. G. Jebsen TREC, University of Tromsø, Bodø, Norway.,Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Grajchen E, Wouters E, van de Haterd B, Haidar M, Hardonnière K, Dierckx T, Van Broeckhoven J, Erens C, Hendrix S, Kerdine-Römer S, Hendriks JJA, Bogie JFJ. CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J Neuroinflammation 2020; 17:224. [PMID: 32718316 PMCID: PMC7384221 DOI: 10.1186/s12974-020-01899-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background The presence of foamy macrophages and microglia containing intracellular myelin remnants is a pathological hallmark of neurodegenerative disorders such as multiple sclerosis (MS). Despite the importance of myelin internalization in affecting both central nervous system repair and neuroinflammation, the receptors involved in myelin clearance and their impact on the phagocyte phenotype and lesion progression remain to be clarified. Methods Flow cytometry, quantitative PCR, and immunohistochemistry were used to define the mRNA and protein abundance of CD36 in myelin-containing phagocytes. The impact of CD36 and nuclear factor erythroid 2–related factor 2 (NRF2) on the phagocytic and inflammatory features of macrophages and microglia was assessed using a pharmacological CD36 inhibitor (sulfo-N-succinimidyl oleate) and Nrf2−/− bone marrow-derived macrophages. Finally, the experimental autoimmune encephalomyelitis (EAE) model was used to establish the impact of CD36 inhibition on neuroinflammation and myelin phagocytosis in vivo. Results Here, we show that the fatty acid translocase CD36 is required for the uptake of myelin debris by macrophages and microglia, and that myelin internalization increased CD36 expression through NRF2. Pharmacological inhibition of CD36 promoted the inflammatory properties of myelin-containing macrophages and microglia in vitro, which was paralleled by a reduced activity of the anti-inflammatory lipid-sensing liver X receptors and peroxisome proliferator-activated receptors. By using the EAE model, we provide evidence that CD36 is essential for myelin debris clearance in vivo. Importantly, CD36 inhibition markedly increased the neuroinflammatory burden and disease severity in the EAE model. Conclusion Altogether, we show for the first time that CD36 is crucial for clearing myelin debris and suppressing neuroinflammation in demyelinating disorders such as MS.
Collapse
Affiliation(s)
- Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Britt van de Haterd
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Kévin Hardonnière
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR99, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Celine Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Saadia Kerdine-Römer
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR99, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
15
|
Rapid and Efficient Purification of Functional Collectin-12 and Its Opsonic Activity against Fungal Pathogens. J Immunol Res 2019; 2019:9164202. [PMID: 31482100 PMCID: PMC6701420 DOI: 10.1155/2019/9164202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Collectin-12 (collectin placenta 1, CL-P1, or CL-12) is a newly identified pattern recognition molecule of the innate immune system. Recent evidences show that CL-12 plays important roles not only in innate immune protection against certain clinically important pathogens but also in scavenging of host molecules, leukocyte recruitment, and cancer metastasis. Furthermore, CL-12 has been shown to be associated with the pathogenesis of human diseases such as Alzheimer's disease and multiple sclerosis lesion development. Therefore, the functional consequence of CL-12 remains intriguing and awaits further elucidation. However, available protocols for the purification of recombinant CL-12 with high purity are laborious and inefficient and hamper further functional studies. Here, we report a simple, rapid, and efficient solution to obtain biologically active CL-12 with high purity. We established stable transfected Flp-In™-CHO cells expressing the recombinant CL-12 extracellular domain in high amounts. Recombinant CL-12 was purified from cell culture supernatants using a 3-step rapid purification procedure utilizing disposable affinity and ion exchange minicolumns. Purified recombinant CL-12 adopted an oligomeric structure with monomers, dimers, and trimers and retained its binding capacity towards the A. fumigatus strain that has been described before. Furthermore, we demonstrated the opsonic properties towards eight clinical isolates of A. fumigatus strains and diverse clinically important fungal pathogens. Purified recombinant CL-12 revealed a differential binding capacity towards selected fungal pathogens in vitro. In conclusion, we demonstrate a rapid and efficient purification solution for further biochemical and functional characterization of CL-12 and reveal opsonic properties of CL-12 towards diverse fungal pathogens.
Collapse
|
16
|
An introduction to innate immunity in the central nervous system. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Detection of susceptibility loci on APOA5 and COLEC12 associated with metabolic syndrome using a genome-wide association study in a Taiwanese population. Oncotarget 2017; 8:93349-93359. [PMID: 29212154 PMCID: PMC5706800 DOI: 10.18632/oncotarget.20967] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Although the association of single nucleotide polymorphisms (SNPs) with metabolic syndrome (MetS) has been reported in various populations in several genome-wide association studies (GWAS), the data is not conclusive. In this GWAS study, we assessed whether SNPs are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. Methods A total of 10,300 Taiwanese subjects were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Results Our data showed an association of MetS at the genome-wide significance level (P < 8.6 x 10-8) with two SNPs, including the rs662799 SNP in the apolipoprotein A5 (APOA5) gene and the rs16944558 SNP in the collectin subfamily member 12 (COLEC12) gene. Moreover, we identified the effect of APOA5 rs662799 on triglyceride and HDL, the effect of rs1106475 in the actin filament associated protein 1 like 2 (AFAP1L2) gene on systolic blood pressure, and the effect of rs17667932 in the mediator complex subunit 30 (MED30) gene on fasting glucose. Additionally, we found that an interaction between the APOA5 rs662799 and COLEC12 rs16944558 SNPs influenced MetS, high triglyceride, and low HDL. Conclusions Our study indicates that the APOA5 and COLEC12 genes may contribute to the risk of MetS and its individual components independently as well as through gene-gene interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc., Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA, USA
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Bogie JFJ, Mailleux J, Wouters E, Jorissen W, Grajchen E, Vanmol J, Wouters K, Hellings N, van Horssen J, Vanmierlo T, Hendriks JJA. Scavenger receptor collectin placenta 1 is a novel receptor involved in the uptake of myelin by phagocytes. Sci Rep 2017; 7:44794. [PMID: 28317919 PMCID: PMC5357964 DOI: 10.1038/srep44794] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
Myelin-containing macrophages and microglia are the most abundant immune cells in active multiple sclerosis (MS) lesions. Our recent transcriptomic analysis demonstrated that collectin placenta 1 (CL-P1) is one of the most potently induced genes in macrophages after uptake of myelin. CL-P1 is a type II transmembrane protein with both a collagen-like and carbohydrate recognition domain, which plays a key role in host defense. In this study we sought to determine the dynamics of CL-P1 expression on myelin-containing phagocytes and define the role that it plays in MS lesion development. We show that myelin uptake increases the cell surface expression of CL-P1 by mouse and human macrophages, but not by primary mouse microglia in vitro. In active demyelinating MS lesions, CL-P1 immunoreactivity was localized to perivascular and parenchymal myelin-laden phagocytes. Finally, we demonstrate that CL-P1 is involved in myelin internalization as knockdown of CL-P1 markedly reduced myelin uptake. Collectively, our data indicate that CL-P1 is a novel receptor involved in myelin uptake by phagocytes and likely plays a role in MS lesion development.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jo Mailleux
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Elien Wouters
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Winde Jorissen
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Elien Grajchen
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jasmine Vanmol
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| |
Collapse
|
19
|
Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 2016; 274:74-97. [PMID: 27782323 DOI: 10.1111/imr.12468] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mannose-binding lectin (MBL), collectin-10, collectin-11, and the ficolins (ficolin-1, ficolin-2, and ficolin-3) are soluble pattern recognition molecules in the lectin complement pathway. These proteins act as mediators of host defense and participate in maintenance of tissue homeostasis. They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature of these molecules is their ability to interact with a set of serine proteases named MASPs (MASP-1, MASP-2, and MASP-3). MASP-1 and -2 trigger the activation of the lectin pathway and MASP-3 may be involved in the activation of the alternative pathway of complement. Furthermore, MASPs mediate processes related to coagulation, bradykinin release, and endothelial and platelet activation. Variant alleles affecting expression and structure of the proteins have been associated with a variety of infectious and non-infectious diseases, most commonly as disease modifiers. Notably, the severe 3MC (Malpuech, Michels, Mingarelli, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
The collectins CL-L1, CL-K1 and CL-P1, and their roles in complement and innate immunity. Immunobiology 2016; 221:1058-67. [DOI: 10.1016/j.imbio.2016.05.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
|
21
|
Degenhardt F, Niklowitz P, Szymczak S, Jacobs G, Lieb W, Menke T, Laudes M, Esko T, Weidinger S, Franke A, Döring F, Onur S. Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases. Hum Mol Genet 2016; 25:2881-2891. [PMID: 27149984 DOI: 10.1093/hmg/ddw134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/15/2016] [Accepted: 04/18/2016] [Indexed: 11/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a lipophilic redox molecule that is present in membranes of almost all cells in human tissues. CoQ10 is, amongst other functions, essential for the respiratory transport chain and is a modulator of inflammatory processes and gene expression. Rare monogenetic CoQ10 deficiencies show noticeable symptoms in tissues (e.g. kidney) and cell types (e.g. neurons) with a high energy demand. To identify common genetic variants influencing serum CoQ10 levels, we performed a fixed effects meta-analysis in two independent cross-sectional Northern German cohorts comprising 1300 individuals in total. We identified two genome-wide significant susceptibility loci. The best associated single nucleotide polymorphism (SNP) was rs9952641 (P value = 1.31 × 10 -8, β = 0.063, CI0.95 [0.041, 0.085]) within the COLEC12 gene on chromosome 18. The SNP rs933585 within the NRXN-1 gene on chromosome 2 also showed genome wide significance (P value = 3.64 × 10 -8, β = -0.034, CI0.95 [-0.046, -0.022]). Both genes have been previously linked to neuronal diseases like Alzheimer's disease, autism and schizophrenia. Among our 'top-10' associated variants, four additional loci with known neuronal connections showed suggestive associations with CoQ10 levels. In summary, this study demonstrates that serum CoQ10 levels are associated with common genetic loci that are linked to neuronal diseases.
Collapse
Affiliation(s)
- Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Petra Niklowitz
- Children's Hospital Datteln, Witten/Herdecke University, Dr.-Friedrich-Steiner Str. 5, 45711 Datteln, Germany
| | - Silke Szymczak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Gunnar Jacobs
- Institute of Epidemiology and Biobank PopGen, Christian-Albrechts-University of Kiel, Niemannsweg 11, Haus 1, 24105 Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Christian-Albrechts-University of Kiel, Niemannsweg 11, Haus 1, 24105 Kiel, Germany
| | - Thomas Menke
- Children's Hospital Datteln, Witten/Herdecke University, Dr.-Friedrich-Steiner Str. 5, 45711 Datteln, Germany
| | - Matthias Laudes
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 6, 24105 Kiel, Germany
| | - Tõnu Esko
- Estonian Research Center, University of Tartu, Riia 23b, 51010, Tartu, Estland
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstraße 7, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Frank Döring
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Simone Onur
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
22
|
Ma YJ, Hein E, Munthe-Fog L, Skjoedt MO, Bayarri-Olmos R, Romani L, Garred P. Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway. THE JOURNAL OF IMMUNOLOGY 2015; 195:3365-73. [DOI: 10.4049/jimmunol.1500493] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
|
23
|
Yap NVL, Whelan FJ, Bowdish DME, Golding GB. The Evolution of the Scavenger Receptor Cysteine-Rich Domain of the Class A Scavenger Receptors. Front Immunol 2015; 6:342. [PMID: 26217337 PMCID: PMC4491621 DOI: 10.3389/fimmu.2015.00342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022] Open
Abstract
The class A scavenger receptor (cA-SR) family is a group of five evolutionarily related innate immune receptors. The cA-SRs are known for their promiscuous ligand binding; as they have been shown to bind bacteria, such as Streptococcus pneumoniae and Escherichia coli, as well as different modified forms of low-density lipoprotein. Three of the five family members possess a scavenger receptor cysteine-rich (SRCR) domain while the remaining two receptors lack the domain. Previous work has suggested that the macrophage-associated receptor with collagenous structure (MARCO) shares a recent common ancestor with the non-SRCR-containing receptors; however, the origin of the SRCR domain within the cA-SRs remains unknown. We hypothesize that the SRCR domains of the cA-SRs have a common origin that predates teleost fish. Using the newly available sequence data from sea lamprey and ghost shark genome projects, we have shown that MARCO shares a common ancestor with the SRCR-containing proteins. In addition, we explored the evolutionary relationships within the SRCR domain by reconstructing the ancestral SRCR domains of the cA-SRs. We identified a motif that is highly conserved between the cA-SR SRCR domains and the ancestral SRCR domain that consist of WGTVCDD. We also show that the GRAEVYY motif, a functionally important motif within MARCO, is poorly conserved in the other cA-SRs and in the reconstructed ancestral domain. Further, we identified three sites within MARCO's SRCR domain, which are under positive selection. Two of these sites lie adjacent to the conserved WGTVCDD motif, and may indicate a potential biological function for these sites. Together, these findings indicate a common origin of the SRCR domain within the cA-SRs; however, different selective pressures between the proteins may have caused MARCOs SRCR domain to evolve to contain different functional motifs when compared to the other SRCR-containing cA-SRs.
Collapse
Affiliation(s)
| | - Fiona J. Whelan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dawn M. E. Bowdish
- Department of Pathology and Molecular Sciences, McMaster University, Hamilton, ON, Canada
| | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Kelley JL, Ozment TR, Li C, Schweitzer JB, Williams DL. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit Rev Immunol 2015; 34:241-61. [PMID: 24941076 DOI: 10.1615/critrevimmunol.2014010267] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Scavenger receptor A (SR-A), also known as the macrophage scavenger receptor and cluster of differentiation 204 (CD204), plays roles in lipid metabolism, atherogenesis, and a number of metabolic processes. However, recent evidence points to important roles for SR-A in inflammation, innate immunity, host defense, sepsis, and ischemic injury. Herein, we review the role of SR-A in inflammation, innate immunity, host defense, sepsis, cardiac and cerebral ischemic injury, Alzheimer's disease, virus recognition and uptake, bone metabolism, and pulmonary injury. Interestingly, SR-A is reported to be host protective in some disease states, but there is also compelling evidence that SR-A plays a role in the pathophysiology of other diseases. These observations of both harmful and beneficial effects of SR-A are discussed here in the framework of inflammation, innate immunity, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jim L Kelley
- Departments of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Tammy R Ozment
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Chuanfu Li
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - John B Schweitzer
- Departments of Pathology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - David L Williams
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| |
Collapse
|
25
|
Couceiro JR, Gallardo R, De Smet F, De Baets G, Baatsen P, Annaert W, Roose K, Saelens X, Schymkowitz J, Rousseau F. Sequence-dependent internalization of aggregating peptides. J Biol Chem 2014; 290:242-58. [PMID: 25391649 DOI: 10.1074/jbc.m114.586636] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, a number of aggregation disease polypeptides have been shown to spread from cell to cell, thereby displaying prionoid behavior. Studying aggregate internalization, however, is often hampered by the complex kinetics of the aggregation process, resulting in the concomitant uptake of aggregates of different sizes by competing mechanisms, which makes it difficult to isolate pathway-specific responses to aggregates. We designed synthetic aggregating peptides bearing different aggregation propensities with the aim of producing modes of uptake that are sufficiently distinct to differentially analyze the cellular response to internalization. We found that small acidic aggregates (≤500 nm in diameter) were taken up by nonspecific endocytosis as part of the fluid phase and traveled through the endosomal compartment to lysosomes. By contrast, bigger basic aggregates (>1 μm) were taken up through a mechanism dependent on cytoskeletal reorganization and membrane remodeling with the morphological hallmarks of phagocytosis. Importantly, the properties of these aggregates determined not only the mechanism of internalization but also the involvement of the proteostatic machinery (the assembly of interconnected networks that control the biogenesis, folding, trafficking, and degradation of proteins) in the process; whereas the internalization of small acidic aggregates is HSF1-independent, the uptake of larger basic aggregates was HSF1-dependent, requiring Hsp70. Our results show that the biophysical properties of aggregates determine both their mechanism of internalization and proteostatic response. It remains to be seen whether these differences in cellular response contribute to the particular role of specific aggregated proteins in disease.
Collapse
Affiliation(s)
- José R Couceiro
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Rodrigo Gallardo
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Frederik De Smet
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Greet De Baets
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Pieter Baatsen
- the Electron Microscopy Facility (EMoNe), KU Leuven Centre for Human Genetics, B-3000 Leuven, Belgium, the VIB BIO Imaging Core, VIB, B-3000 Leuven, Belgium
| | - Wim Annaert
- the Laboratory for Membrane Trafficking, KU Leuven and VIB-Centre for the Biology of Disease, B-3000 Leuven, Belgium
| | - Kenny Roose
- the VIB Inflammation Research Center, 9052 Ghent, Belgium, and the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Xavier Saelens
- the VIB Inflammation Research Center, 9052 Ghent, Belgium, and the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Joost Schymkowitz
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Frederic Rousseau
- From the Switch Laboratory, VIB, Leuven, Belgium, the Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium,
| |
Collapse
|
26
|
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 2013; 124:307-21. [DOI: 10.3109/00207454.2013.833510] [Citation(s) in RCA: 444] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Biological functions of the novel collectins CL-L1, CL-K1, and CL-P1. J Biomed Biotechnol 2012; 2012:493945. [PMID: 22570530 PMCID: PMC3336186 DOI: 10.1155/2012/493945] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/17/2022] Open
Abstract
Collectins are characterized by a collagen-like sequence and a carbohydrate recognition domain and are members of the vertebrate C-type lectin superfamily. Recently, “novel collectins”, different from “classical collectins” consisting of mannan-binding lectin (MBL) and surfactant proteins A and D (SP-A and SP-D), have been found by reverse genetics. These “novel collectins” consist of collectin liver 1 (CL-L1), collectin kidney 1 (CL-K1), and collectin placenta 1 (CL-P1) and are encoded by three separate genes. Experimental findings on human and animal collectins have shown that both novel collectins and classical collectins play an important role in innate immunity. Based on our recent results and those of others, in this paper, we summarize the new biological functions of these novel collectins in embryonic morphogenesis and development.
Collapse
|
28
|
Kurronen A, Pihlaja R, Pollari E, Kanninen K, Storvik M, Wong G, Koistinaho M, Koistinaho J. Adult and neonatal astrocytes exhibit diverse gene expression profiles in response to beta amyloid <i>ex vivo</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/wjns.2012.22009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Brunskill EW, Georgas K, Rumballe B, Little MH, Potter SS. Defining the molecular character of the developing and adult kidney podocyte. PLoS One 2011; 6:e24640. [PMID: 21931791 PMCID: PMC3169617 DOI: 10.1371/journal.pone.0024640] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023] Open
Abstract
Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells.
Collapse
Affiliation(s)
- Eric W. Brunskill
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Kylie Georgas
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bree Rumballe
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Melissa H. Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - S. Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kim YU, Ohtani K, Mori K, Jang SJ, Suzuki Y, Wakamiya N. Gene regulation function of the three specificity protein-1 (Sp1) within the human collectin placenta-1 proximal promoter. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0001-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci 2010; 30:3326-38. [PMID: 20203192 DOI: 10.1523/jneurosci.5098-09.2010] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.
Collapse
|
32
|
Obayashi S, Tabunoki H, Kim SU, Satoh JI. Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation. Cell Mol Neurobiol 2009; 29:423-38. [PMID: 19130216 PMCID: PMC11506025 DOI: 10.1007/s10571-008-9338-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 12/10/2008] [Indexed: 12/17/2022]
Abstract
Neural stem cells (NSC) with self-renewal and multipotent properties could provide an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. However, the majority of transplanted NSC and neural progenitor cells (NPC) differentiate into astrocytes in vivo under pathological environments in the central nervous system, which potentially cause reactive gliosis. Because the serum is a potent inducer of astrocyte differentiation of rodent NPC in culture, we studied the effect of the serum on gene expression profile of cultured human NPC to identify the gene signature of astrocyte differentiation of human NPC. Human NPC spheres maintained in the serum-free culture medium were exposed to 10% fetal bovine serum (FBS) for 72 h, and processed for analyzing on a Whole Human Genome Microarray of 41,000 genes, and the microarray data were validated by real-time RT-PCR. The serum elevated the levels of expression of 45 genes, including ID1, ID2, ID3, CTGF, TGFA, METRN, GFAP, CRYAB and CSPG3, whereas it reduced the expression of 23 genes, such as DLL1, DLL3, PDGFRA, SOX4, CSPG4, GAS1 and HES5. Thus, the serum-induced astrocyte differentiation of human NPC is characterized by a counteraction of ID family genes on Delta family genes. Coimmunoprecipitation analysis identified ID1 as a direct binding partner of a proneural basic helix-loop-helix (bHLH) transcription factor MASH1. Luciferase assay indicated that activation of the DLL1 promoter by MASH1 was counteracted by ID1. Bone morphogenetic protein 4 (BMP4) elevated the levels of ID1 and GFAP expression in NPC under the serum-free culture conditions. Because the serum contains BMP4, these results suggest that the serum factor(s), most probably BMP4, induces astrocyte differentiation by upregulating the expression of ID family genes that repress the proneural bHLH protein-mediated Delta expression in human NPC.
Collapse
Affiliation(s)
- Shinya Obayashi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| | - Hiroko Tabunoki
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| |
Collapse
|
33
|
Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K, Nakamura T. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain 2009; 2:8. [PMID: 19323847 PMCID: PMC2673217 DOI: 10.1186/1756-6606-2-8] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/27/2009] [Indexed: 04/19/2023] Open
Abstract
Although nutrients, including amino acids and their metabolites such as serotonin (5-HT), are strong modulators of anxiety-related behavior, the metabolic pathway(s) responsible for this physiological modulation is not fully understood. Regarding tryptophan (Trp), the initial rate-limiting enzymes for the kynurenine pathway of tryptophan metabolism are tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Here, we generated mice deficient for tdo (Tdo-/-). Compared with wild-type littermates, Tdo-/- mice showed increased plasma levels of Trp and its metabolites 5-hydroxyindoleacetic acid (5-HIAA) and kynurenine, as well as increased levels of Trp, 5-HT and 5-HIAA in the hippocampus and midbrain. These mice also showed anxiolytic modulation in the elevated plus maze and open field tests, and increased adult neurogenesis, as evidenced by double staining of BrdU and neural progenitor/neuronal markers. These findings demonstrate a direct molecular link between Trp metabolism and neurogenesis and anxiety-related behavior under physiological conditions.
Collapse
Affiliation(s)
- Masaaki Kanai
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kanai M, Nakamura T, Funakoshi H. Identification and characterization of novel variants of the tryptophan 2,3-dioxygenase gene: differential regulation in the mouse nervous system during development. Neurosci Res 2009; 64:111-7. [PMID: 19428689 DOI: 10.1016/j.neures.2009.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 01/07/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO), an initial and rate-limiting enzyme for the kynurenine pathway of tryptophan (Trp) metabolism, is thought to play an important role in systemic Trp metabolism as well as in emotional and psychiatric status. In contrast to its predominant expression in the liver, expression of TDO in the brain is poorly understood. Here, we show that tdo mRNA is expressed in various nervous tissues, including the hippocampus, cerebellum, striatum and brainstem. During development, tdo mRNA was differentially regulated in brain tissues. Further, we identified two novel variants of the tdo gene, termed tdo variant1 and variant2. Similar tetramer formation and enzymatic activity were obtained when these forms were expressed in wheat germ and COS-7 cells, respectively. Quantitative real-time RT-PCR revealed that tdo variants were expressed in various nervous tissues, with high expression in the cerebellum and hippocampus, followed by the midbrain. tdo variant2 was the only variant expressed in the cerebellum from postnatal day 4 (P4) to P7, suggesting a unique role for this variant during early postnatal development. Our findings indicate that tdo and its novel variants may play an important role in not only the liver but also in local areas in developing and adult brain.
Collapse
Affiliation(s)
- Masaaki Kanai
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | |
Collapse
|
35
|
Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer's disease: Amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 2009; 87:181-94. [DOI: 10.1016/j.pneurobio.2009.01.001] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Tokay T, Hachem R, Masmoudi-Kouki O, Gandolfo P, Desrues L, Leprince J, Castel H, Diallo M, Amri M, Vaudry H, Tonon MC. Beta-amyloid peptide stimulates endozepine release in cultured rat astrocytes through activation of N-formyl peptide receptors. Glia 2009; 56:1380-9. [PMID: 18512251 DOI: 10.1002/glia.20705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astroglial cells synthesize and release endozepines, a family of neuropeptides derived from diazepam-binding inhibitor (DBI). The authors have recently shown that beta-amyloid peptide (Abeta) stimulates DBI gene expression and endozepine release. The purpose of this study was to determine the mechanism of action of Abeta in cultured rat astrocytes. Abeta(25-35) and the N-formyl peptide receptor (FPR) agonist N-formyl-Met-Leu-Phe (fMLF) increased the secretion of endozepines in a dose-dependent manner with EC(50) value of approximately 2 microM. The stimulatory effects of Abeta(25-35) and the FPR agonists fMLF and N-formyl-Met-Met-Met (fMMM) on endozepine release were abrogated by the FPR antagonist N-t-Boc-Phe-Leu-Phe-Leu-Phe. In contrast, Abeta(25-35) increased DBI mRNA expression through a FPR-independent mechanism. Abeta(25-35) induced a transient stimulation of cAMP formation and a sustained activation of polyphosphoinositide turnover. The stimulatory effect of Abeta(25-35) on endozepine release was blocked by the adenylyl cyclase inhibitor somatostatin, the protein kinase A (PKA) inhibitor H89, the phospholipase C inhibitor U73122, the protein kinase C (PKC) inhibitor chelerythrine and the ATP binding cassette transporter blocker glyburide. Taken together, these data demonstrate for the first time that Abeta(25-35) stimulates endozepine release from rat astrocytes through a FPR receptor positively coupled to PKA and PKC.
Collapse
Affiliation(s)
- Tursonjan Tokay
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Expression and tissue localization of collectin placenta 1 (CL-P1, SRCL) in human tissues. Mol Immunol 2008; 45:3278-88. [PMID: 18423602 DOI: 10.1016/j.molimm.2008.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/22/2022]
Abstract
Collectin placenta-1 (CL-P1), also known as scavenger receptor with C-type lectin (SRCL), is a type II membrane glycoprotein that shares structural features with both collectins and type A scavenger receptors. CL-P1 was originally cloned from the placenta and found to be associated with endothelial cells. It binds via its lectin domain to desialyated Lewis X containing glycoproteins and it is able to facilitate internalization of bound ligands. Via positively charged residues in the collagen-like region it binds to negatively charged components of microbial membranes. It has previously been proposed that CL-P1 plays a role in the host defense system and in the clearance of glycoproteins from the blood. With the aims of determining the detailed tissue expression of human CL-P1 we expressed CL-P1 recombinantly in both E. coli and CHO cells, and raised monoclonal antibodies against human CL-P1. Three monoclonal antibodies were characterized and used in immunohistochemical analyses of a panel of cryo- and formalin-fixed sections. We find that CL-P1 mainly associates with cytotrophoblasts and syncytiotrophoblasts of the placenta, alveolar macrophages and to a less degree with macrophage-like and stromal cells of the tonsils. By real-time RT-PCR we verified that the placenta is also the main organ of CL-P1 synthesis. The only source of endothelial cells whereto CL-P1 associates are umbilical cord vein endothelial cells (human umbilical vein endothelial cells, HUVEC). In vitro cultured HUVECs express both the CL-P1 mRNA and show anti-CL-P1 immunoreactivity but CL-P1 locates mainly to the cytosol and not to the membrane of these cells. We conclude that CL-P1 is not a common membrane protein on endothelial cells found in normal tissues under steady state conditions.
Collapse
|
38
|
Farfara D, Lifshitz V, Frenkel D. Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med 2008; 12:762-80. [PMID: 18363841 PMCID: PMC4401126 DOI: 10.1111/j.1582-4934.2008.00314.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) affects more than 18 million people worldwide and is characterized by progressive memory deficits, cognitive impairment and personality changes. The main cause of AD is generally attributed to the increased production and accumulation of amyloid-β (Aβ), in association with neurofibrillary tangle (NFT) formation. Increased levels of pro-inflammatory factors such as cytokines and chemokines, and the activation of the complement cascade occurs in the brains of AD patients and contributes to the local inflammatory response triggered by senile plaque. The existence of an inflammatory component in AD is now well known on the basis of epidemiological findings showing a reduced prevalence of the disease upon long-term medication with anti-inflammatory drugs, and evidence from studies of clinical materials that shows an accumulation of activated glial cells, particularly microglia and astrocytes, in the same areas as amyloid plaques. Glial cells maintain brain plasticity and protect the brain for functional recovery from injuries. Dysfunction of glial cells may promote neurodegeneration and, eventually, the retraction of neuronal synapses, which leads to cognitive deficits. The focus of this review is on glial cells and their diversity properties in AD.
Collapse
Affiliation(s)
- D Farfara
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
39
|
Falsig J, van Beek J, Hermann C, Leist M. Molecular basis for detection of invading pathogens in the brain. J Neurosci Res 2008; 86:1434-47. [DOI: 10.1002/jnr.21590] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Plüddemann A, Neyen C, Gordon S. Macrophage scavenger receptors and host-derived ligands. Methods 2007; 43:207-17. [PMID: 17920517 DOI: 10.1016/j.ymeth.2007.06.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023] Open
Abstract
The scavenger receptors are a large family of molecules that are structurally diverse and have been implicated in a range of functions. They are expressed by myeloid cells, selected endothelial cells and some epithelial cells and recognise many different ligands, including microbial pathogens as well as endogenous and modified host-derived molecules. This review will focus on the eight classes of scavenger receptors (class A-H) in terms of their structure, expression and recognition of host-derived ligands. Scavenger receptors have been implicated in a range of physiological and pathological processes, such as atherosclerosis and Alzheimer's disease, and function in adhesion and tissue maintenance. More recently, some of the scavenger receptors have been shown to mediate binding and endocytosis of chaperone proteins, such as the heat shock proteins, thereby playing an important role in antigen cross-presentation.
Collapse
Affiliation(s)
- Annette Plüddemann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
41
|
Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007; 28:138-45. [PMID: 17276138 DOI: 10.1016/j.it.2007.01.005] [Citation(s) in RCA: 965] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/02/2007] [Accepted: 01/19/2007] [Indexed: 02/06/2023]
Abstract
Innate immunity is a constitutive component of the central nervous system (CNS) and relies strongly on resident myeloid cells, the microglia. However, evidence is emerging that the most abundant glial cell population of the CNS, the astrocyte, participates in the local innate immune response triggered by a variety of insults. Astrocytes display an array of receptors involved in innate immunity, including Toll-like receptors, nucleotide-binding oligomerization domains, double-stranded RNA-dependent protein kinase, scavenger receptors, mannose receptor and components of the complement system. Following activation, astrocytes are endowed with the ability to secrete soluble mediators, such as CXCL10, CCL2, interleukin-6 and BAFF, which have an impact on both innate and adaptive immune responses. The role of astrocytes in inflammation and tissue repair is elaborated by recent in vivo studies employing cell-type specific gene targeting.
Collapse
Affiliation(s)
- Cinthia Farina
- Neuroimmunology and Neuromuscular Disorders Unit, National Neurological Institute Carlo Besta, 20133 Milan, Italy.
| | | | | |
Collapse
|
42
|
Ohya W, Funakoshi H, Kurosawa T, Nakamura T. Hepatocyte growth factor (HGF) promotes oligodendrocyte progenitor cell proliferation and inhibits its differentiation during postnatal development in the rat. Brain Res 2007; 1147:51-65. [PMID: 17382307 DOI: 10.1016/j.brainres.2007.02.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/06/2007] [Accepted: 02/05/2007] [Indexed: 12/25/2022]
Abstract
Hepatocyte growth factor (HGF) was initially cloned as a mitogen for hepatocytes and has been identified as a neurotrophic factor for a variety of neurons. However, few attempts have assessed the role of HGF in cells of oligodendrocyte lineage. The purpose of this study was to elucidate the role of HGF in such cells during development. Double immunostaining for either c-Met/HGF receptor or phospho-c-Met with either NG2 or RIP in rat striatum at postnatal day 3 (P3), P7, and P14 revealed that c-Met was phosphorylated on tyrosine residues and thereby activated in NG2(+) oligodendrocyte progenitor cells (OPCs) at P3-P14 and in RIP(+) oligodendrocytes at P14. Intrastriatal injections of recombinant human HGF at both P7 and P10 revealed that the relative ratio of BrdU(+)/NG2(+) cells per total number of NG2(+) cells increased, while BrdU(+)/MBP(+) oligodendrocyte numbers decreased. Western blot analysis showed a down-regulation of myelin basic protein (MBP) after HGF injection. Electron microscopy revealed that the numbers of myelinated nerve fibers decreased after HGF treatment. Furthermore, administration of anti-HGF IgG into the striatum increased the number of BrdU(+)/MBP(+) oligodendrocytes. These findings demonstrated that HGF increases proliferation of OPCs and attenuates their differentiation into myelinating oligodendrocytes, presumably by favoring neurite outgrowth that may be inhibited by the myelin inhibitory molecules on oligodendrocytes. Down-regulation of HGF mRNA in the striatum from P7 to P14, as revealed by quantitative real-time RT-PCR, may be favorable for OPC differentiation into myelinating oligodendrocytes. Our findings suggest that c-Met signaling, together with HGF regulation, plays an important role in developmental oligodendrogenesis.
Collapse
Affiliation(s)
- Wakana Ohya
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, B-7, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|