1
|
Colombo E, De Angelis A, Bassani C, Ruffini F, Ottoboni L, Garzetti L, Finardi A, Martino G, Furlan R, Farina C. iAstrocytes do not restrain T cell proliferation in vitro. BMC Neurosci 2023; 24:33. [PMID: 37286983 DOI: 10.1186/s12868-023-00806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
The cross-talk between T cells and astrocytes occurring under physiological and, even more, neuroinflammatory conditions may profoundly impact the generation of adaptive immune responses in the nervous tissue. In this study, we used a standardized in vitro co-culture assay to investigate the immunomodulatory properties of astrocytes differing for age, sex, and species. Mouse neonatal astrocytes enhanced T cell vitality but suppressed T lymphocyte proliferation in response to mitogenic stimuli or myelin antigens, regardless of the Th1, Th2 or Th17 T cell phenotype. Studies comparing glia cells from adult and neonatal animals showed that adult astrocytes were more efficient in inhibiting T lymphocyte activation than neonatal astrocytes, regardless of their sex. Differently from primary cultures, mouse and human astrocytes derived from reprogrammed fibroblasts did not interfere with T cell proliferation. Overall, we describe a standardized astrocyte-T cell interaction in vitro assay and demonstrate that primary astrocytes and iAstrocytes may differ in modulating T cell function.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Anthea De Angelis
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Claudia Bassani
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesca Ruffini
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Linda Ottoboni
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Livia Garzetti
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Annamaria Finardi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Gianvito Martino
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Furlan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
2
|
Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytother Res 2023; 37:438-451. [PMID: 36114802 DOI: 10.1002/ptr.7625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is a serious injury that can lead to irreversible motor dysfunction. Due to its complicated pathogenic mechanism, there are no effective drug treatments. Piperine, a natural active alkaloid extracted from black pepper, has been reported to influence neurogenesis and exert a neuroprotective effect in traumatic brain injury. The aim of this study was to investigate the therapeutic effect of piperine in an SCI model. SCI was induced in mice by clamping the spinal cord with a vascular clip for 1 min. Before SCI and every 2 days post-SCI, evaluations using the Basso mouse scale and inclined plane tests were performed. On day 28 after SCI, footprint analyses, and HE/Masson staining of tissues were performed. On a postoperative Day 3, the spinal cord was harvested to assess the levels of pyroptosis, reactive oxygen species (ROS), inflammation, and autophagy. Piperine enhanced functional recovery after SCI. Additionally, piperine reduced inflammation, oxidative stress, pyroptosis, and activated autophagy. However, the effects of piperine on functional recovery after SCI were reversed by autophagy inhibition. The study demonstrated that piperine facilitated functional recovery after SCI by inhibiting inflammatory, oxidative stress, and pyroptosis, mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dong-Dong Yu
- Department of Urology, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Haohan Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanlin Chen
- Spinal Surgery Department, The Central Hospital of Lishui City, Lishui, People's Republic of China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
3
|
Khantakova JN, Bondar NP, Antontseva EV, Reshetnikov VV. Once induced, it lasts for a long time: the structural and molecular signatures associated with depressive-like behavior after neonatal immune activation. Front Cell Neurosci 2022; 16:1066794. [PMID: 36619667 PMCID: PMC9812963 DOI: 10.3389/fncel.2022.1066794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Adverse factors such as stress or inflammation in the neonatal period can affect the development of certain brain structures and have negative delayed effects throughout the lifespan of an individual, by reducing cognitive abilities and increasing the risk of psychopathologies. One possible reason for these delayed effects is the neuroinflammation caused by neonatal immune activation (NIA). Neuroinflammation can lead to disturbances of neurotransmission and to reprogramming of astroglial and microglial brain cells; when combined, the two problems can cause changes in the cytoarchitecture of individual regions of the brain. In addition, neuroinflammation may affect the hypothalamic-pituitary-adrenal (HPA) axis and processes of oxidative stress, thereby resulting in higher stress reactivity. In our review, we tried to answer the questions of whether depressive-like behavior develops after NIA in rodents and what the molecular mechanisms associated with these disorders are. Most studies indicate that NIA does not induce depressive-like behavior in a steady state. Nonetheless, adult males (but not females or adolescents of both sexes) with experience of NIA exhibit marked depressive-like behavior when exposed to aversive conditions. Analyses of molecular changes have shown that NIA leads to an increase in the amount of activated microglia and astroglia in the frontal cortex and hippocampus, an increase in oxidative-stress parameters, a change in stress reactivity of the HPA axis, and an imbalance of cytokines in various regions of the brain, but not in blood plasma, thus confirming the local nature of the inflammation. Therefore, NIA causes depressive-like behavior in adult males under aversive testing conditions, which are accompanied by local inflammation and have sex- and age-specific effects.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Federal Government-Funded Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia,*Correspondence: Julia N. Khantakova
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Elena V. Antontseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vasiliy V. Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
4
|
Astrocytes in Multiple Sclerosis-Essential Constituents with Diverse Multifaceted Functions. Int J Mol Sci 2021; 22:ijms22115904. [PMID: 34072790 PMCID: PMC8198285 DOI: 10.3390/ijms22115904] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
In multiple sclerosis (MS), astrocytes respond to the inflammatory stimulation with an early robust process of morphological, transcriptional, biochemical, and functional remodeling. Recent studies utilizing novel technologies in samples from MS patients, and in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), exposed the detrimental and the beneficial, in part contradictory, functions of this heterogeneous cell population. In this review, we summarize the various roles of astrocytes in recruiting immune cells to lesion sites, engendering the inflammatory loop, and inflicting tissue damage. The roles of astrocytes in suppressing excessive inflammation and promoting neuroprotection and repair processes is also discussed. The pivotal roles played by astrocytes make them an attractive therapeutic target. Improved understanding of astrocyte function and diversity, and the mechanisms by which they are regulated may lead to the development of novel approaches to selectively block astrocytic detrimental responses and/or enhance their protective properties.
Collapse
|
5
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
6
|
Michalovicz LT, Kelly KA, Vashishtha S, Ben‐Hamo R, Efroni S, Miller JV, Locker AR, Sullivan K, Broderick G, Miller DB, O’Callaghan JP. Astrocyte-specific transcriptome analysis using the ALDH1L1 bacTRAP mouse reveals novel biomarkers of astrogliosis in response to neurotoxicity. J Neurochem 2019; 150:420-440. [PMID: 31222732 PMCID: PMC6771645 DOI: 10.1111/jnc.14800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Neurotoxicology is hampered by the inability to predict regional and cellular targets of toxicant-induced damage. Evaluating astrogliosis overcomes this problem because reactive astrocytes highlight the location of toxicant-induced damage. While enhanced expression of glial fibrillary acidic protein is a hallmark of astrogliosis, few other biomarkers have been identified. However, bacterial artificial chromosome - translating ribosome affinity purification (bacTRAP) technology allows for characterization of the actively translating transcriptome of a particular cell type; use of this technology in aldehyde dehydrogenase 1 family member L1 (ALDH1L1) bacTRAP mice can identify genes selectively expressed in astrocytes. The aim of this study was to characterize additional biomarkers of neurotoxicity-induced astrogliosis using ALDH1L1 bacTRAP mice. The known dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 12.5 mg/kg s.c.) was used to induce astrogliosis. Striatal tissue was obtained 12, 24, and 48 h following exposure for the isolation of actively translating RNA. Subsequently, MPTP-induced changes in this RNA pool were analyzed by microarray and 184 statistically significant, differentially expressed genes were identified. The dataset was interrogated by gene ontology, pathway, and co-expression network analyses, which identified novel genes, as well as those with known immune and inflammatory functions. Using these analyses, we were directed to several genes associated with reactive astrocytes. Of these, TIMP1 and miR-147 were identified as candidate biomarkers because of their robust increased expression following both MPTP and trimethyl tin exposures. Thus, we have demonstrated that bacTRAP can be used to identify new biomarkers of astrogliosis and aid in the characterization of astrocyte phenotypes induced by toxicant exposures. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14518.
Collapse
Affiliation(s)
- Lindsay T. Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Kimberly A. Kelly
- Health Effects Laboratory Division, Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Saurabh Vashishtha
- Center for Clinical Systems BiologyRochester General Hospital Research InstituteRochesterNew YorkUSA
| | - Rotem Ben‐Hamo
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Julie V. Miller
- Health Effects Laboratory Division, Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Alicia R. Locker
- Health Effects Laboratory Division, Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | | | - Gordon Broderick
- Center for Clinical Systems BiologyRochester General Hospital Research InstituteRochesterNew YorkUSA
| | - Diane B. Miller
- Health Effects Laboratory Division, Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - James P. O’Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| |
Collapse
|
7
|
Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 2019; 80:10-24. [PMID: 31125711 DOI: 10.1016/j.bbi.2019.05.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.
Collapse
|
8
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
9
|
Vallejo-Giraldo C, Krukiewicz K, Calaresu I, Zhu J, Palma M, Fernandez-Yague M, McDowell B, Peixoto N, Farid N, O'Connor G, Ballerini L, Pandit A, Biggs MJP. Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800863. [PMID: 29862640 DOI: 10.1002/smll.201800863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Katarzyna Krukiewicz
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Ivo Calaresu
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Jingyuan Zhu
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Matteo Palma
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Marc Fernandez-Yague
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - BenjaminW McDowell
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nathalia Peixoto
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nazar Farid
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Gerard O'Connor
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Abhay Pandit
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Manus Jonathan Paul Biggs
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| |
Collapse
|
10
|
Braun M, Vaibhav K, Saad N, Fatima S, Brann DW, Vender JR, Wang LP, Hoda MN, Baban B, Dhandapani KM. Activation of Myeloid TLR4 Mediates T Lymphocyte Polarization after Traumatic Brain Injury. THE JOURNAL OF IMMUNOLOGY 2017; 198:3615-3626. [PMID: 28341672 DOI: 10.4049/jimmunol.1601948] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) is a major public health issue, producing significant patient mortality and poor long-term outcomes. Increasing evidence suggests an important, yet poorly defined, role for the immune system in the development of secondary neurologic injury over the days and weeks following a TBI. In this study, we tested the hypothesis that peripheral macrophage infiltration initiates long-lasting adaptive immune responses after TBI. Using a murine controlled cortical impact model, we used adoptive transfer, transgenic, and bone marrow chimera approaches to show increased infiltration and proinflammatory (classically activated [M1]) polarization of macrophages for up to 3 wk post-TBI. Monocytes purified from the injured brain stimulated the proliferation of naive T lymphocytes, enhanced the polarization of T effector cells (TH1/TH17), and decreased the production of regulatory T cells in an MLR. Similarly, elevated T effector cell polarization within blood and brain tissue was attenuated by myeloid cell depletion after TBI. Functionally, C3H/HeJ (TLR4 mutant) mice reversed M1 macrophage and TH1/TH17 polarization after TBI compared with C3H/OuJ (wild-type) mice. Moreover, brain monocytes isolated from C3H/HeJ mice were less potent stimulators of T lymphocyte proliferation and TH1/TH17 polarization compared with C3H/OuJ monocytes. Taken together, our data implicate TLR4-dependent, M1 macrophage trafficking/polarization into the CNS as a key mechanistic link between acute TBI and long-term, adaptive immune responses.
Collapse
Affiliation(s)
- Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University, Augusta, GA 30912
| | - Nancy Saad
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA 30912
| | - Sumbul Fatima
- Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Lei P Wang
- Department of Psychiatry, Medical College of Georgia, Augusta University, Augusta, GA 30912; and
| | - Md Nasrul Hoda
- Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912; .,Charlie Norwood VA Medical Center, Augusta, GA 30912
| |
Collapse
|
11
|
Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC. The multifaceted role of astrocytes in regulating myelination. Exp Neurol 2016; 283:541-9. [PMID: 26988764 PMCID: PMC5019113 DOI: 10.1016/j.expneurol.2016.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Astrocytes are the major glial cell of the central nervous system (CNS), providing both metabolic and physical support to other neural cells. After injury, astrocytes become reactive and express a continuum of phenotypes which may be supportive or inhibitory to CNS repair. This review will focus on the ability of astrocytes to influence myelination in the context of specific secreted factors, cytokines and other neural cell targets within the CNS. In particular, we focus on how astrocytes provide energy and cholesterol to neurons, influence synaptogenesis, affect oligodendrocyte biology and instigate cross-talk between the many cellular components of the CNS.
Collapse
Affiliation(s)
- Hülya Kıray
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Susan L Lindsay
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Sara Hosseinzadeh
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom..
| |
Collapse
|
12
|
Correale J, Farez MF. The Role of Astrocytes in Multiple Sclerosis Progression. Front Neurol 2015; 6:180. [PMID: 26347709 PMCID: PMC4539519 DOI: 10.3389/fneur.2015.00180] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disorder causing central nervous system (CNS) demyelination and axonal injury. Although its etiology remains elusive, several lines of evidence support the concept that autoimmunity plays a major role in disease pathogenesis. The course of MS is highly variable; nevertheless, the majority of patients initially present a relapsing–remitting clinical course. After 10–15 years of disease, this pattern becomes progressive in up to 50% of untreated patients, during which time clinical symptoms slowly cause constant deterioration over a period of many years. In about 15% of MS patients, however, disease progression is relentless from disease onset. Published evidence supports the concept that progressive MS reflects a poorly understood mechanism of insidious axonal degeneration and neuronal loss. Recently, the type of microglial cell and of astrocyte activation and proliferation observed has suggested contribution of resident CNS cells may play a critical role in disease progression. Astrocytes could contribute to this process through several mechanisms: (a) as part of the innate immune system, (b) as a source of cytotoxic factors, (c) inhibiting remyelination and axonal regeneration by forming a glial scar, and (d) contributing to axonal mitochondrial dysfunction. Furthermore, regulatory mechanisms mediated by astrocytes can be affected by aging. Notably, astrocytes might also limit the detrimental effects of pro-inflammatory factors, while providing support and protection for oligodendrocytes and neurons. Because of the dichotomy observed in astrocytic effects, the design of therapeutic strategies targeting astrocytes becomes a challenging endeavor. Better knowledge of molecular and functional properties of astrocytes, therefore, should promote understanding of their specific role in MS pathophysiology, and consequently lead to development of novel and more successful therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea, FLENI , Buenos Aires , Argentina
| | - Mauricio F Farez
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea, FLENI , Buenos Aires , Argentina
| |
Collapse
|
13
|
T Cells-Protective or Pathogenic in Alzheimer's Disease? J Neuroimmune Pharmacol 2015; 10:547-60. [PMID: 25957956 DOI: 10.1007/s11481-015-9612-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and is characterised by deposits of amyloid β (Aβ), neurofibrillary tangles and neuronal loss. Neuroinflammatory changes have been identified as a feature of the disease, and recent studies have suggested a potential role for the peripheral immune system in driving these changes and, ultimately, the associated neuronal degeneration. A number of reports have detailed changes in the activation state and subtype of T cells in the circulation and CSF of AD patients and there is evidence of T cell infiltration into the brain. In this review, we examine the possible impact of T cell infiltration in the progression of pathology in AD and consider the data obtained from animal models of the disease. We consider how these cells infiltrate the brain, particularly in AD, and discuss whether the presence of T cells in the AD brain is protective or pathogenic. Finally we evaluate the current therapies, particularly those that involve immunization.
Collapse
|
14
|
Interaction of astrocytes and T cells in physiological and pathological conditions. Brain Res 2015; 1623:63-73. [PMID: 25813828 DOI: 10.1016/j.brainres.2015.03.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) has long been recognized as a site of 'immune privilege' because of the existence of the blood brain barrier (BBB) which presumably isolates CNS from the peripheral immunosurveillance. Different from the peripheral organs, CNS is unique in response to all forms of CNS injury and disease which is mainly mediated by resident microglia and astrocyte. There is increasing evidence that immune cells are not only involved in neuroinflammation process but also the maintenance of CNS homeostasis. T cells, an important immune cell population, are involved in the pathogenesis of some neurological diseases by inducing either innate or adaptive immune responses. Astrocytes, which are the most abundant cell type in the CNS, maintain the integrity of BBB and actively participate in the initiation and progression of neurological diseases. Surprisingly, how astrocytes and T cells interact and the consequences of their interaction are not clear. In this review we briefly summarized T cells diversity and astrocyte function. Then, we examined the evidence for the astrocytes and T cells interaction under physiological and pathological conditions including ischemic stroke, multiple sclerosis, viral infection, and Alzheimer's disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
15
|
Elain G, Jeanneau K, Rutkowska A, Mir AK, Dev KK. The selective anti-IL17A monoclonal antibody secukinumab (AIN457) attenuates IL17A-induced levels of IL6 in human astrocytes. Glia 2014; 62:725-35. [PMID: 24677511 DOI: 10.1002/glia.22637] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/14/2022]
Abstract
The family of interleukin 17 receptors (IL17Rs), subtypes IL17RA-IL17RE, is targeted by the group of pro-inflammatory IL17 cytokines (IL17A-F) and moreover the newly developed anti-IL17A antibody secukinumab (AIN457) has shown promise in Phase II trials in multiple sclerosis. Here, we show that human astrocytes, isolated from a fetal cerebral cortex, express IL17RA and IL17RC and in vitro treatment with IL17A increases protein levels of IL6 in human astrocytes, which is enhanced in the presence of TNFα, as determined by homogeneous time resolved fluorescence. Studies on acutely isolated mouse astrocytes are comparable to human astrocytes although the protein levels of IL6 are lower in mouse astrocytes, which also show a lower response to IL17F and IL1β in promoting IL6 levels. In human astrocytes, IL17A and TNFα also induce mRNA expression of IL6, IL8 and the Th17 cytokines CXCL1, CXCL2, and CCL20, with little effect on Th1 cytokines CXCL9, CXCL10, and CXCL11. The effects of IL17A are associated with nuclear translocation of the NF-κB transcription factor, as determined by immunocytochemistry, where treatment of human astrocytes with the inhibitors of the NF-κB pathway and with secukinumab inhibits the IL17A and IL17A/TNFα-induced increase in nuclear translocation of NF-κB and levels of IL6. Taken together the data shows that IL17A signaling plays a key role in regulating the levels of cytokines, such as IL6, in human astrocytes via a mechanism that involves NF-κB signaling and that selective inhibition of IL17A signaling attenuates levels of pro-inflammatory molecules in astrocytes.
Collapse
|
16
|
Park ES, Uchida K, Nakayama H. Th1-, Th2-, and Th17-Related Cytokine and Chemokine Receptor mRNA and Protein Expression in the Brain Tissues, T Cells, and Macrophages of Dogs With Necrotizing and Granulomatous Meningoencephalitis. Vet Pathol 2013; 50:1127-34. [DOI: 10.1177/0300985813488957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E.-S. Park
- Department of Veterinary Pathology, Faculty of Agriculture, University of Tokyo, Tokyo, Japan
| | - K. Uchida
- Department of Veterinary Pathology, Faculty of Agriculture, University of Tokyo, Tokyo, Japan
| | - H. Nakayama
- Department of Veterinary Pathology, Faculty of Agriculture, University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Peng BH, Borisevich V, Popov VL, Zacks MA, Estes DM, Campbell GA, Paessler S. Production of IL-8, IL-17, IFN-gamma and IP-10 in human astrocytes correlates with alphavirus attenuation. Vet Microbiol 2013; 163:223-34. [PMID: 23428380 PMCID: PMC7117234 DOI: 10.1016/j.vetmic.2012.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/06/2012] [Accepted: 11/22/2012] [Indexed: 01/30/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995 indicate that VEEV still poses a serious public health threat. Astrocytes may be target cells in human and mouse infection and they play an important role in repair through gliosis. In this study, we report that virulent VEEV efficiently infects cultured normal human astrocytes, three different murine astrocyte cell lines and astrocytes in the mouse brain. The attenuation of virus replication positively correlates with the increased levels of production of IL-8, IL-17, IFN-gamma and IP-10. In addition, VEEV infection induces release of basic fibroblast growth factor and production of potent chemokines such as RANTES and MIP-1-beta from cultured human astrocytes. This growth factor and cytokine profile modeled by astrocytes in vitro may contribute to both neuroprotection and repair and may play a role in leukocyte recruitment in vivo.
Collapse
Affiliation(s)
- Bi-Hung Peng
- Department of Pathology/Institute for Human Infections and Immunity, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang JF, Tao HQ, Liu YM, Zhan XX, Liu Y, Wang XY, Wang JH, Mu LL, Yang LL, Gao ZM, Kong QF, Wang GY, Han JH, Sun B, Li HL. Characterization of the interaction between astrocytes and encephalitogenic lymphocytes during the development of experimental autoimmune encephalitomyelitis (EAE) in mice. Clin Exp Immunol 2013; 170:254-65. [PMID: 23121666 DOI: 10.1111/j.1365-2249.2012.04661.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nature of pathogenic mechanisms associated with the development of multiple sclerosis (MS) have long been debated. However, limited research was conducted to define the interplay between infiltrating lymphocytes and resident cells of the central nervous system (CNS). Data presented in this report describe a novel role for astrocyte-mediated alterations to myelin oligodendrocyte glycoprotein (MOG)(35-55) -specific lymphocyte responses, elicited during the development of experimental autoimmune encephalitomyelitis (EAE). In-vitro studies demonstrated that astrocytes inhibited the proliferation and interferon (IFN)-γ, interleukin (IL)-4, IL-17 and transforming growth factor (TGF)-β secretion levels of MOG(35-55) -specific lymphocytes, an effect that could be ameliorated by astrocyte IL-27 neutralization. However, when astrocytes were pretreated with IFN-γ, they could promote the proliferation and secretion levels of MOG(35-55) -specific lymphocytes, coinciding with apparent expression of major histocompatibility complex (MHC)-II on astrocytes themselves. Quantitative polymerase chain reaction (qPCR) demonstrated that production of IL-27 in the spinal cord was at its highest during the initial phases. Conversely, production of IFN-γ in the spinal cord was highest during the peak phase. Quantitative analysis of MHC-II expression in the spinal cord showed that there was a positive correlation between MHC-II expression and IFN-γ production. In addition, astrocyte MHC-II expression levels correlated positively with IFN-γ production in the spinal cord. These findings suggested that astrocytes might function as both inhibitors and promoters of EAE. Astrocytes prevented MOG(35-55) -specific lymphocyte function by secreting IL-27 during the initial phases of EAE. Then, in the presence of higher IFN-γ levels in the spinal cord, astrocytes were converted into antigen-presenting cells. This conversion might promote the progression of pathological damage and result in a peak of EAE severity.
Collapse
Affiliation(s)
- J F Yang
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Demyelinating diseases such as multiple sclerosis are chronic inflammatory autoimmune diseases with a heterogeneous clinical presentation and course. Both the adaptive and the innate immune systems have been suggested to contribute to their pathogenesis and recovery. In this review, we discuss the role of the innate immune system in mediating demyelinating diseases. In particular, we provide an overview of the anti-inflammatory or pro-inflammatory functions of dendritic cells, mast cells, natural killer (NK) cells, NK-T cells, γδ T cells, microglial cells, and astrocytes. We emphasize the interaction of astroctyes with the immune system and how this interaction relates to the demyelinating pathologies. Given the pivotal role of the innate immune system, it is possible that targeting these cells may provide an effective therapeutic approach for demyelinating diseases.
Collapse
Affiliation(s)
- Lior Mayo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
20
|
Amedei A, Prisco D, D’Elios MM. Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. Int J Mol Sci 2012; 13:13438-13460. [PMID: 23202961 PMCID: PMC3497335 DOI: 10.3390/ijms131013438] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis, the clinical features and pathological correlate for which were first described by Charcot, is a chronic neuroinflammatory disease with unknown etiology and variable clinical evolution. Although neuroinflammation is a descriptive denominator in multiple sclerosis based on histopathological observations, namely the penetration of leukocytes into the central nervous system, the clinical symptoms of relapses, remissions and progressive paralysis are the result of losses of myelin and neurons. In the absence of etiological factors as targets for prevention and therapy, the definition of molecular mechanisms that form the basis of inflammation, demyelination and toxicity for neurons have led to a number of treatments that slow down disease progression in specific patient cohorts, but that do not cure the disease. Current therapies are directed to block the immune processes, both innate and adaptive, that are associated with multiple sclerosis. In this review, we analyze the role of cytokines in the multiple sclerosis pathogenesis and current/future use of them in treatments of multiple sclerosis.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy; E-Mail:
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Domenico Prisco
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Department of Medical and Surgical Critical Care, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Mario Milco D’Elios
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy; E-Mail:
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| |
Collapse
|
21
|
Abstract
Multiple sclerosis (MS) is a chronic, complex neurological disease with a variable clinical course in which several pathophysiological mechanisms such as axonal/ neuronal damage, demyelination, inflammation, gliosis, remyelination and repair, oxidative injury and excitotoxicity, alteration of the immune system as well as biochemical disturbances and disruption of blood-brain barrier are involved.(1,2) Exacerbations of MS symptoms reflect inflammatory episodes, while the neurodegenerative aspects of gliosis and axonal loss result in the progression of disability. The precise aetiology of MS is not yet known, although epidemiological data indicate that it arises from a complex interactions between genetic susceptibility and environmental factors.(3) In this chapter the brain structures and processes involved in immunopathogenesis of MS are presented. Additionally, clinical phenotypes and biomarkers of MS are showed.
Collapse
|
22
|
Chen SJ, Wang YL, Fan HC, Lo WT, Wang CC, Sytwu HK. Current status of the immunomodulation and immunomediated therapeutic strategies for multiple sclerosis. Clin Dev Immunol 2011; 2012:970789. [PMID: 22203863 PMCID: PMC3235500 DOI: 10.1155/2012/970789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/12/2011] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and CD4(+) T cells form the core immunopathogenic cascade leading to chronic inflammation. Traditionally, Th1 cells (interferon-γ-producing CD4(+) T cells) driven by interleukin 12 (IL12) were considered to be the encephalitogenic T cells in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Currently, Th17 cells (Il17-producing CD4(+) T cells) are considered to play a fundamental role in the immunopathogenesis of EAE. This paper highlights the growing evidence that Th17 cells play the core role in the complex adaptive immunity of EAE/MS and discusses the roles of the associated immune cells and cytokines. These constitute the modern immunological basis for the development of novel clinical and preclinical immunomodulatory therapies for MS discussed in this paper.
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Yen-Ling Wang
- Center for Composite Tissue Allotransplantation, Chang Gung Memorial Hospital, Linkou, New Taipei City 333, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Tsung Lo
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Chien Wang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
23
|
Miljković D, Timotijević G, Stojković MM. Astrocytes in the tempest of multiple sclerosis. FEBS Lett 2011; 585:3781-8. [DOI: 10.1016/j.febslet.2011.03.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/11/2022]
|
24
|
Hill F, Kim CF, Gorrie CA, Moalem-Taylor G. Interleukin-17 deficiency improves locomotor recovery and tissue sparing after spinal cord contusion injury in mice. Neurosci Lett 2010; 487:363-7. [PMID: 21034793 DOI: 10.1016/j.neulet.2010.10.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/01/2010] [Accepted: 10/21/2010] [Indexed: 11/18/2022]
Abstract
Following the initial impact, spinal cord injury (SCI) triggers a number of inflammatory responses which can exacerbate tissue damage in the cord and impair functional recovery. The involvement of several pro-inflammatory cytokines in the secondary degenerative mechanisms of SCI has been well established, although the role of interleukin-17 (IL-17) remains unclear. In the present study, we used IL-17 knockout (KO) and C57BL/6J wildtype (WT) mice to investigate the effects of IL-17 deficiency on locomotor recovery, lesion size, glial activation and inflammatory cell response following spinal cord contusion injury. Our results show that compared to WT mice, IL-17 KO mice had a significantly smaller lesion size, corresponding with significantly improved locomotor functional recovery following SCI. At 6 weeks after injury, recruitment of B cells, dendritic cells and neutrophils was significantly lower in IL-17 KO than WT mice, however there was no difference in the presence of activated microglia and reactive astrocytes, in the injured spinal cord. These findings suggest that IL-17 is a mediator of secondary degeneration, which contributes to neuroinflammation and hinders functional recovery, though its actions do not affect glial activation following SCI.
Collapse
Affiliation(s)
- Faith Hill
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
25
|
Rajabi A, Parinejad N, Ahmadi K, Khorramizadeh MR, Raza M. Anti-inflammatory effects of serum isolated from animals on intermittent feeding in C6 glioma cell line. Neurosci Lett 2010; 487:32-5. [PMID: 20932879 DOI: 10.1016/j.neulet.2010.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the CNS. Early inflammation leads to later destruction of myelin in MS. Dietary restriction (DR) produces anti-inflammatory and immunomodulatory effects in many species. Based on the reported anti-inflammatory effects of DR, we investigated whether sera collected from rats fed on intermittent feeding (IF, a type of DR) diet could modulate cytokine secretion and matrix metalloproteinase (MMP-2) activity that are involved in MS pathogenesis. Cytokine levels (IL-6 and TGF-β1) were measured in supernatant from C6 glioma cell line cultures treated with IF and AL fed animals' sera by enzyme-linked immunosorbent assay (ELISA) and MMP-2 activity was detected by gelatin zymography. Our results indicated that sera of animals on IF diet significantly reduced IL-6 (p<0.05) and increased TGF-β1 (p<0.05) production by C6 glioma cells. A significant decrease (p<0.05) in MMP-2 activity was also found. These results indicate anti-inflammatory and immunomodulatory activity in the sera of animals on IF regimen on cells involved in multiple sclerosis pathogenesis. Further studies on the detection of factors responsible for such activities and their mechanism of action in MS pathogenesis are recommended.
Collapse
Affiliation(s)
- Azam Rajabi
- Department of Physiology, Faculty of Basic Sciences, Shahed University, Tehran, Islamic Republic of Iran
| | | | | | | | | |
Collapse
|
26
|
Vergara D, Martignago R, Bonsegna S, De Nuccio F, Santino A, Nicolardi G, Maffia M. IFN-β reverses the lipopolysaccharide-induced proteome modifications in treated astrocytes. J Neuroimmunol 2010; 221:115-20. [DOI: 10.1016/j.jneuroim.2010.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 01/20/2023]
|
27
|
Miljković Z, Momcilović M, Miljković D, Mostarica-Stojković M. Methylprednisolone inhibits IFN-gamma and IL-17 expression and production by cells infiltrating central nervous system in experimental autoimmune encephalomyelitis. J Neuroinflammation 2009; 6:37. [PMID: 20003332 PMCID: PMC2797773 DOI: 10.1186/1742-2094-6-37] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 12/11/2009] [Indexed: 11/18/2022] Open
Abstract
Background Glucocorticoids have been shown to be effective in the treatment of autoimmune diseases of the CNS such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the mechanisms and the site of glucocorticoids' actions are still not completely defined. The aim of this study was to investigate the in vivo effect of the synthetic glucocorticoid methylprednisolone (MP) on the expression and production of proinflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17 by cells infiltrating CNS tissue. Methods Experimental autoimmune encephalomyelitis was induced in Dark Agouti (DA) rats by immunization with rat spinal cord homogenate mixed with adjuvants. Commencing on the day when the first EAE signs appeared, DA rats were injected daily for 3 days with MP and/or RU486, an antagonist of glucocorticoid receptor. Cytokine production and gene expression in CNS-infiltrating cells and lymph node cells were measured using ELISA and real time PCR, respectively. Results Treatment of rats with MP ameliorated EAE, and the animals recovered without relapses. Further, MP inhibited IFN-γ and IL-17 expression and production in cells isolated from the CNS of DA rats with EAE after the last injection of MP. The observed effect of MP in vivo treatment was not mediated through depletion of CD4+ T cells among CNS infiltrating cells, or through induction of their apoptosis within the CNS. Finally, the glucocorticoid receptor-antagonist RU486 prevented the inhibitory effect of MP on IFN-γ and IL-17 production both in vitro and in vivo, thus indicating that the observed effects of MP were mediated through glucocorticoid receptor-dependent mechanisms. Conclusion Taken together, these results demonstrate that amelioration of EAE by exogenous glucocorticoids might be, at least partly, ascribed to the limitation of effector cell functions in the target tissue.
Collapse
Affiliation(s)
- Zeljka Miljković
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia.
| | | | | | | |
Collapse
|
28
|
Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57:1192-203. [PMID: 19191336 DOI: 10.1002/glia.20841] [Citation(s) in RCA: 397] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell-based therapies are attractive approaches to promote myelin repair. Recent studies demonstrated a reduction in disease burden in mice with experimental allergic encephalomyelitis (EAE) treated with mouse mesenchymal stem cells (MSCs). Here, we demonstrated human bone marrow-derived MSCs (BM-hMSCs) promote functional recovery in both chronic and relapsing-remitting models of mouse EAE, traced their migration into the injured CNS and assayed their ability to modulate disease progression and the host immune response. Injected BM-hMSCs accumulated in the CNS, reduced the extent of damage and increased oligodendrocyte lineage cells in lesion areas. The increase in oligodendrocytes in lesions may reflect BM-hMSC-induced changes in neural fate determination, since neurospheres from treated animals gave rise to more oligodendrocytes and less astrocytes than nontreated neurospheres. Host immune responses were also influenced by BM-hMSCs. Inflammatory T-cells including interferon gamma producing Th1 cells and IL-17 producing Th17 inflammatory cells and their associated cytokines were reduced along with concomitant increases in IL-4 producing Th2 cells and anti-inflammatory cytokines. Together, these data suggest that the BM-hMSCs represent a viable option for therapeutic approaches.
Collapse
Affiliation(s)
- Lianhua Bai
- Case Western Reserve University, Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kalish H, Phillips TM. Application of immunoaffinity capillary electrophoresis to the measurements of secreted cytokines by cultured astrocytes. J Sep Sci 2009; 32:1605-12. [PMID: 19472286 DOI: 10.1002/jssc.200900047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability of the central nervous system (CNS) to act in conjunction with the immune system has been of great interest to both neurobiologists and immunologists. Previous studies have shown that astrocytes can be stimulated, by various peptides, to act as immune regulators within the CNS and release cytokines and chemokines. However, the regulatory mechanism of astrocytes is still poorly understood. Our present study describes a micro-device capable of monitoring the growth and stimulation of 20 astrocytes by vasoactive intestinal peptide. A microdialysis needle was used to collect the secretion by products, which were analyzed by immunoaffinity capillary electrophoresis (ICE) for the secretion of pro-inflammatory cytokines, IL-1alpha, IL-1beta, IL-6, and tumor necrosis factor (TNF)-alpha; hemopoietic cytokines, IL-3, granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), granulocyte/macrophage colony-stimulating factor (GM-CSF); and chemokines; regulated upon activation normal T-cell expression sequence (RANTES), macrophage inflammatory protein (MIP)-1alpha and MIP-1beta. Vasoactive intestinal peptide stimulated astrocytes showed an almost immediate release of pro-inflammatory cytokines and chemokines, with an increase over baseline ranging from 3 to 15 fold, while no substantial increase over baseline was observed for hemopoietic cytokines. This system demonstrates the ability to isolate individual cells in a closely controlled environment and identify and quantify their analytes.
Collapse
Affiliation(s)
- Heather Kalish
- Ultramicro Immunodiagnostics Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
30
|
Jiang Z, Li H, Fitzgerald DC, Zhang GX, Rostami A. MOG(35-55) i.v suppresses experimental autoimmune encephalomyelitis partially through modulation of Th17 and JAK/STAT pathways. Eur J Immunol 2009; 39:789-99. [PMID: 19224632 DOI: 10.1002/eji.200838427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intravenous (i.v.) administration of encephalitogenic peptide can effectively prevent experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis; however, the underlying cellular and molecular mechanisms are not fully understood. In this study, we induced i.v. tolerance to EAE by administration of MOG(35-55) peptide and determined the effect of this approach on intracellular signaling pathways of the IL-23/IL-17 system, which is essential for the pathogenesis of MS/EAE. In tolerized mice, phosphorylation of JAK/STAT-1, -4, ERK1/2 and NF-kappaBp65 were significantly reduced in splenocytes and the central nervous system. MOG i.v. treatment led to significantly lower production of IL-17, and administration of exogenous IL-17 slightly broke immune tolerance, which was associated with reduced activation of STAT4 and NF-kappaB. Suppressed phosphorylation of these pathway molecules was primarily evident in CD11b(+) and small numbers of CD4(+), CD8(+) and CD11c(+) cells. More importantly, adoptive transfer of CD11b(+) splenocytes of tolerized mice effectively delayed onset and reduced clinical severity of actively induced EAE. This study correlates MOG i.v. tolerance with modulation of Jak/STAT signaling pathways and investigates novel therapeutic avenues for the treatment of EAE/MS.
Collapse
Affiliation(s)
- Zhilong Jiang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
31
|
Gait abnormalities and inflammatory cytokines in an autologous nucleus pulposus model of radiculopathy. Spine (Phila Pa 1976) 2009; 34:648-54. [PMID: 19333095 PMCID: PMC2712587 DOI: 10.1097/brs.0b013e318197f013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN The authors investigated gait abnormalities and mechanical hypersensitivity associated with invertebral disc herniation in a rat model of radiculopathy. Further evaluation involved assessing how nucleus pulposus (NP) injury affected systemic cytokine expression and molecular changes at the dorsal root ganglion (DRG). OBJECTIVE The objective of this work was to describe the gait and behavioral changes in an animal model of disc-herniation induced radiculopathy. A second objective included examining how these functional changes correlated with neuroinflammation and autoreactive lymphocyte immune activation. SUMMARY OF BACKGROUND DATA Animal models of radiculopathy describe demyelination, slowed nerve conduction, and heightened pain sensitivity after application of autologous NP to the DRG. The quantitative impact of disc herniation on animal locomotion has not been investigated. Further, while local inflammation occurs at the injury site, the role of autoimmune cytokines reactive against previously immune-sequestered NP requires investigation. METHODS NP-treated animals (n = 16) received autologous tail NP placed onto the L5 DRG exposed by unilateral facetectomy, and control animals (n = 16) underwent exposure only. At weekly time points, animals were evaluated for mechanical allodynia, thermal hyperalgesia, and gait characteristics through digitized video analysis. Serum cytokine content was measured after animal sacrifice, and immunohistochemistry tested DRG tissue for mediators of inflammation and immune activation. RESULTS Sensory testing revealed mechanical allodynia in the affected limb of NP-treated rats compared with sham animals (P < 0.01) at all time points. Gait analysis reflected functional locomotive consequences of marked asymmetry (P = 0.048) and preference to bear weight on the contralateral limb (duty factor imbalance, P < 0.01) at early time points. Equivalent serum cytokine expression occurred in both groups, confirming the local inflammatory nature of this disease model. Immunohistochemistry of the sectioned DRGs revealed equivalent postsurgical inflammatory activation (interleukin 23, P = 0.47) but substantial early immune activation in the NP-treated group (interleukin 17, P = 0.01). CONCLUSION This model of radiculopathy provides evidence of altered gait in a model of noncompressive disc herniation. Systemic inflammation was absent, but mechanical allodynia, local inflammation, and autoreactive immune activation were observed. Future work will involve therapeutic interventions to rescue animals from the phenotype of inflammatory radiculopathy.
Collapse
|
32
|
Abstract
It has long been thought that astrocytes, like other glial cells, simply provide a support mechanism for neuronal function in the healthy and inflamed central nervous system (CNS). However, recent evidence suggests that astrocytes play an active and dual role in CNS inflammatory diseases such as multiple sclerosis (MS). Astrocytes not only have the ability to enhance immune responses and inhibit myelin repair, but they can also be protective and limit CNS inflammation while supporting oligodendrocyte and axonal regeneration. The particular impact of these cells on the pathogenesis and repair of an inflammatory demyelinating process is dependent upon a number of factors, including the stage of the disease, the type and microenvironment of the lesion, and the interactions with other cell types and factors that influence their activation. In this review, we summarize recent data supporting the idea that astrocytes play a complex role in the regulation of CNS autoimmunity.
Collapse
Affiliation(s)
- A. Nair
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - T. J. Frederick
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - S. D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| |
Collapse
|
33
|
Momcilović M, Miljković Z, Popadić D, Marković M, Savić E, Ramić Z, Miljković D, Mostarica-Stojković M. Methylprednisolone inhibits interleukin-17 and interferon-gamma expression by both naive and primed T cells. BMC Immunol 2008; 9:47. [PMID: 18700009 PMCID: PMC2525626 DOI: 10.1186/1471-2172-9-47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 08/12/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Interleukin-17 (IL-17)-producing cells are increasingly considered to be the major pathogenic population in various autoimmune disorders. The effects of glucocorticoids, widely used as therapeutics for inflammatory and autoimmune disorders, on IL-17 generation have not been thoroughly investigated so far. Therefore, we have explored the influence of methylprednisolone (MP) on IL-17 expression in rat lymphocytes, and compared it to the effect of the drug on interferon (IFN)-gamma. RESULTS Production of IL-17 in mitogen-stimulated lymph node cells (LNC) from non-treated rats, as well as in myelin basic protein (MBP)-stimulated draining LNC from rats immunized with spinal cord homogenate and complete Freund's adjuvant was significantly reduced by MP. The reduction was dose-dependent, sustained through the follow-up period of 48 hours, and was not achieved through anti-proliferative effect. Additionally, MP inhibited IL-17 production in purified T cells as well, but to less extent than in LNC. In its influence on IL-17 production MP inhibited Ror-gammaT transcription factor expression, as well as Jun phosphorylation, but not ERK or p38 activation in mitogen-stimulated LNC. Importantly, MP collaborated with IFN-gamma in inhibiting IL-17 generation in LNC. CONCLUSION The observed difference in the effect of MP on IL-17 and IFN-gamma could be important for the understanding of the variability in the efficiency of glucocorticoids in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Miljana Momcilović
- Department of Immunology, Institute for Biological Research Sinisa Stanković, Belgrade, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|