1
|
Razavi SM, Khayatan D, Najafi Arab Z, Hosseini Y, Khanahmadi M, Momtaz S, Jamialahmadi T, Johnston TP, Abdolghaffari AH, Sahebkar A. Protective effects of curcumin against spinal cord injury. JOR Spine 2024; 7:e1364. [PMID: 39144499 PMCID: PMC11322827 DOI: 10.1002/jsp2.1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/16/2024] Open
Abstract
Background In parallel with population aging, the prevalence of neurological and neurodegenerative diseases has been dramatically increasing over the past few decades. Neurodegenerative diseases reduce the quality of life of patients and impose a high cost on the health system. These slowly progressive diseases can cause functional, perceptual, and behavioral deficits in patients. Therefore, neurodegenerative impairments have always been an interesting subject for scientists and clinicians. One of these diseases is spinal cord injury (SCI). SCI can lead to irreversible damage and is classified into two main subtypes: traumatic and non-traumatic, each with very different pathophysiological features. Aims This review aims to gather relevant information about the beneficial effects of curcumin (Cur), with specific emphasis on its anti-inflammatory properties towards spinal cord injury (SCI) patients. Materials & Methods The review collates data from extensive in-vitro, in-vivo, and clinical trials documenting the effects of CUR on SCI. It examines the modulation of pathophysiological pathways and regulation of the inflammatory cascades after CUR administration. Results Various pathophysiological processes involving the nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-kB), and transforming growth factor beta (TGF-β) signaling pathways have been suggested to exacerbate damages resulting from SCI. CUR administration showed to modulate these signaling pathways which lead to attenuation of SCI complications. Discussion Anti-inflammatory compounds, particularly CUR, can modulate these pathophysiological pathways and regulate the inflammatory cascades. CUR, a well-known natural product with significant anti-inflammatory effects, has been extensively documented in experimental and clinical trials. Conclusion Curcumin's potential to alter key steps in the Nrf2, NF-kB, and TGF-β signaling pathways suggests that it may play a role in attenuating SCI complications.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Saeideh Momtaz
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Medical Toxicology Research Center, Mashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical SciencesSchool of Pharmacy, University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research Center, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
3
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
4
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
GABAergic Mechanisms Can Redress the Tilted Balance between Excitation and Inhibition in Damaged Spinal Networks. Mol Neurobiol 2021; 58:3769-3786. [PMID: 33826070 PMCID: PMC8279998 DOI: 10.1007/s12035-021-02370-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Correct operation of neuronal networks depends on the interplay between synaptic excitation and inhibition processes leading to a dynamic state termed balanced network. In the spinal cord, balanced network activity is fundamental for the expression of locomotor patterns necessary for rhythmic activation of limb extensor and flexor muscles. After spinal cord lesion, paralysis ensues often followed by spasticity. These conditions imply that, below the damaged site, the state of balanced networks has been disrupted and that restoration might be attempted by modulating the excitability of sublesional spinal neurons. Because of the widespread expression of inhibitory GABAergic neurons in the spinal cord, their role in the early and late phases of spinal cord injury deserves full attention. Thus, an early surge in extracellular GABA might be involved in the onset of spinal shock while a relative deficit of GABAergic mechanisms may be a contributor to spasticity. We discuss the role of GABA A receptors at synaptic and extrasynaptic level to modulate network excitability and to offer a pharmacological target for symptom control. In particular, it is proposed that activation of GABA A receptors with synthetic GABA agonists may downregulate motoneuron hyperexcitability (due to enhanced persistent ionic currents) and, therefore, diminish spasticity. This approach might constitute a complementary strategy to regulate network excitability after injury so that reconstruction of damaged spinal networks with new materials or cell transplants might proceed more successfully.
Collapse
|
6
|
Does Inhibition of Nuclear Factor Kappa B Explain the Protective Effect of Ticagrelor on Myocardial Ischemia-Reperfusion Injury? J Cardiovasc Pharmacol 2020; 75:108-111. [PMID: 31876799 DOI: 10.1097/fjc.0000000000000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Cheng M, Wu X, Wang F, Tan B, Hu J. Electro-Acupuncture Inhibits p66Shc-Mediated Oxidative Stress to Facilitate Functional Recovery After Spinal Cord Injury. J Mol Neurosci 2020; 70:2031-2040. [PMID: 32488847 DOI: 10.1007/s12031-020-01609-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023]
Abstract
Oxidative stress is the core problem in improving secondary spinal cord injury (SCI). To investigate the effect of electro-acupuncture with different frequencies on neuroinflammation, oxidative stress injury, as well as related signaling pathways, male Sprague-Dawley (SD) rats were induced using operation for model SCI and then treated with electrical stimulation at low frequency (2 mA, 0.2 Hz), medium frequency (2 mA, 50 Hz), and high frequency (2 mA, 100 Hz), respectively. Here, we first demonstrated that the JNK/p66Shc signal pathway promoted ROS generation and inhibited the anti-oxidation effect of FoxO3a to induce oxidative stress damage after SCI and the mechanism of electro-acupuncture in anti-oxidative stress. Electro-acupuncture facilitated functional recovery after SCI and improved the apoptosis of neurons. Furthermore, p38MAPK-mediated microglia activation and inflammatory reaction and JNK/p66Shc-mediated ROS generation and oxidative stress damage were both attenuated by electro-acupuncture. However, the inhibitory effect of electro-acupuncture on p38MAPK was enslaved to the acupuncture frequency, but the ROS generation and phosphorylation of p66Shc were effectively inhibited by electro-acupuncture. Therefore, the activation of JNK/p66Shc promoted the ROS-induced oxidative stress damage after SCI, and inhibiting the phosphorylation of p66Shc-mediated oxidative stress was the key target of electro-acupuncture to facilitate functional recovery SCI, but not p38MAPK.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Orthopedics, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, 610072, China
- Department of Orthopedics, JinNiu District People's Hospital of Chengdu, Chengdu, 610036, China
| | - Xiaojing Wu
- Department of Orthopedics, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, 610072, China
| | - Fei Wang
- Department of Orthopedics, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, 610072, China
| | - Bo Tan
- Department of Orthopedics, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, 610072, China
| | - Jiang Hu
- Department of Orthopedics, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
8
|
Toro CA, Das DK, Cai D, Cardozo CP. Elucidating the Role of Apolipoprotein E Isoforms in Spinal Cord Injury-Associated Neuropathology. J Neurotrauma 2019; 36:3317-3322. [PMID: 31218915 DOI: 10.1089/neu.2018.6334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating, life-altering, neurological event that affects ∼300,000 individuals in the United States. Currently, there are no effective treatments to reverse the neurological impairments caused by the lesion. Until a cure is available, there is an urgent need for strategies that can either spare injured neurons or promote neuroplasticity and functional recovery. Genetic links to outcomes after SCI may provide insights into the pathological mechanisms, and possible new avenues for drug development. In the present review, we discuss the current knowledge linking apolipoprotein E genotypes with better or worse functional outcomes after an SCI, and the possible molecular mechanisms that may contribute to this association.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Dibash K Das
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Dongming Cai
- Neurology Service, James J. Peters VA, Bronx, New York
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
- Department of Rehabilitative Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| |
Collapse
|
9
|
Zhang X, Liu XD, Xian YF, Zhang F, Huang PY, Tang Y, Yuan QJ, Lin ZX. Berberine enhances survival and axonal regeneration of motoneurons following spinal root avulsion and re-implantation in rats. Free Radic Biol Med 2019; 143:454-470. [PMID: 31472247 DOI: 10.1016/j.freeradbiomed.2019.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023]
Abstract
Brachial plexus avulsion (BPA) occurs when the spinal nerve roots are pulled away from the surface of the spinal cord and disconnects neuronal cell body from its distal downstream axon, which induces massive motoneuron death, motor axon degeneration and de-innervation of targeted muscles, thereby resulting in permanent paralysis of motor functions in the upper limb. Avulsion injury triggers oxidative stress and intense local neuroinflammation at the lesioned site, leading to the death of most motoneurons. Berberine (BBR), a natural isoquinoline alkaloid derived from medicinal herbs of Berberis and Coptis species, has been reported to possess neuro-protective, anti-inflammatory and anti-oxidative effects in various animal models of central nervous system (CNS)-related disorders. In this study, we aimed to investigate the effect of BBR on motoneuron survival and axonal regeneration following spinal root avulsion plus re-implantation in rats. Our results indicated BBR significantly accelerated motor function recovery in the forelimb as revealed by the increased Terzis grooming test score, facilitated motor axon regeneration as evidenced by the elevated number of Fluoro-Gold-labeled and P75-positive regenerative motoneurons. The survival of motoneurons was notably promoted by BBR administration presented with boosted ChAT-immunopositive and neutral red-stained neurons. BBR treatment efficiently alleviated muscle atrophy, attenuated functional motor endplates loss in biceps and prevented the reduction of motor axons in the musculocutaneous nerve. Additionally, BBR treatment markedly mitigated the avulsion-induced neuroinflammation via inhibiting microglial and astroglial reactivity, up-regulated the expression of antioxidative indicator Cu/Zn SOD, and down-regulated the levels of nNOS, 3-NT, lipid peroxidation and NF-κB, as well as promoted SIRT1, PI3K and Akt activation. Collectively, BBR might be a promising therapy to assist re-implantation surgery for the treatment of BPA.
Collapse
Affiliation(s)
- Xie Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Xiao-Dong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Feng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Peng-Yun Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Ying Tang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
10
|
Krupa P, Svobodova B, Dubisova J, Kubinova S, Jendelova P, Machova Urdzikova L. Nano-formulated curcumin (Lipodisq™) modulates the local inflammatory response, reduces glial scar and preserves the white matter after spinal cord injury in rats. Neuropharmacology 2019; 155:54-64. [DOI: 10.1016/j.neuropharm.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
11
|
Agmatine inhibits nuclear factor-κB nuclear translocation in acute spinal cord compression injury rat model. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
12
|
Miguel CA, Raggio MC, Villar MJ, Gonzalez SL, Coronel MF. Anti-allodynic and anti-inflammatory effects of 17α-hydroxyprogesterone caproate in oxaliplatin-induced peripheral neuropathy. J Peripher Nerv Syst 2019; 24:100-110. [PMID: 30680838 DOI: 10.1111/jns.12307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapy-induced peripheral neuropathy is a disabling condition induced by several frequently used chemotherapeutic drugs including the front-line agent oxaliplatin (OXA). Symptoms are predominantly sensory with the development of neuropathic pain. Alternative dosing protocols and treatment discontinuation are the only available therapeutic strategies. The aim of our work was to evaluate the potential of a synthetic derivative of progesterone, 17α-hydroxyprogesterone caproate (HPGC), in the prevention and treatment of OXA-evoked painful neuropathy. We also evaluated glial activation at the dorsal root ganglia (DRG) and spinal cord levels as a possible target mechanism underlying HPGC actions. Male rats were injected with OXA and HPGC following a prophylactic (HPGCp) or therapeutic (HPGCt) scheme (starting either before or after chemotherapy). The development of hypersensitivity and allodynic pain and the expression of neuronal and glial activation markers were evaluated. When compared to control animals, those receiving OXA showed a significant decrease in paw mechanical and thermal thresholds, with the development of allodynia. Animals treated with HPGCp showed patterns of response similar to those detected in control animals, while those treated with HPGCt showed a suppression of both hypersensitivities after HPGC administration. We also observed a significant increase in the mRNA levels of activating transcription factor 3, the transcription factor (c-fos), glial fibrillary acidic protein, ionized calcium binding adaptor protein 1, interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNFα) in DRG and spinal cord of OXA-injected animals, and significantly lower levels in rats receiving OXA and HPGC. These results show that HPGC administration reduces neuronal and glial activation markers and is able to both prevent and suppress OXA-induced allodynia, suggesting a promising therapeutic strategy.
Collapse
Affiliation(s)
- Constanza A Miguel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental - CONICET, Buenos Aires, Argentina
| | - María C Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental - CONICET, Buenos Aires, Argentina
| | - Marcelo J Villar
- Instituto de Investigaciones en Medicina Traslacional, Universidad Austral - CONICET, Buenos Aires, Argentina
| | - Susana L Gonzalez
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental - CONICET, Buenos Aires, Argentina.,Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental - CONICET, Buenos Aires, Argentina.,Facultad de Ciencias Biomédicas, Universidad Austral - CONICET, Buenos Aires, Argentina
| |
Collapse
|
13
|
Neuroprotection by Paeoniflorin against Nuclear Factor Kappa B-Induced Neuroinflammation on Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9865403. [PMID: 30627586 PMCID: PMC6304651 DOI: 10.1155/2018/9865403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/22/2023]
Abstract
Background Acute spinal cord injury (SCI) is one of the most common and devastating causes of sensory or motor dysfunction. Nuclear factor-kappa B(NF-κB)-mediated neuroinflammatory responses, in addition to nitric oxide (NO), are key regulatory pathways in SCI. Paeoniflorin (PF), a major active component extracted from Paeonia roots, has been suggested to exert neuroprotective effects in the central nervous system. However, whether PF could improve the motor function after SCI in vivo is still unclear. Method Immunohistochemical analysis, western blot, real-time quantitative PCR, immunofluorescence staining, and histopathological and behavioral evaluation were used to explore the effects of paeoniflorin after SCI for 14 days. Results In this study, PF treatment significantly inhibited NF-κB activation and downregulated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2), and Nogo-A. Comparing behavioral and histological changes in SCI and PF treatment groups, we found that PF treatment improved motor function recovery, attenuated the histopathological damage, and increased neuronal survival in the SCI model. PF treatment also reduced expression levels of Bax and c-caspase-3 and increased the expression level of Bcl-2 and cell viabilities. Upregulation of TNF-α, IL-6, and IL-1β after injury was also prevented by PF. Conclusion These results suggest that the neuroprotective effects of PF are related to the inhibition of the NF-κB signaling pathway. And PF may be a therapeutic strategy in spinal cord injury.
Collapse
|
14
|
Yang X, Chen S, Shao Z, Li Y, Wu H, Li X, Mao L, Zhou Z, Bai L, Mei X, Liu C. Apolipoprotein E Deficiency Exacerbates Spinal Cord Injury in Mice: Inflammatory Response and Oxidative Stress Mediated by NF-κB Signaling Pathway. Front Cell Neurosci 2018; 12:142. [PMID: 29875635 PMCID: PMC5974465 DOI: 10.3389/fncel.2018.00142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/09/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological trauma that involves complex pathological processes. Inflammatory response and oxidative stress are prevalent during the second injury and can influence the functional recovery of SCI. Specially, Apolipoprotein E (APOE) induces neuronal repair and nerve regeneration, and the deficiency of Apoe impairs spinal cord-blood-barrier and reduces functional recovery after SCI. However, the mechanism by which Apoe mediates signaling pathways of inflammatory response and oxidative stress in SCI remains largely elusive. This study was designed to investigate the signaling pathways that regulate Apoe deficiency-dependent inflammatory response and oxidative stress in the acute stage of SCI. In the present study, Apoe-/- mice retarded functional recovery and had a larger lesion size when compared to wild-type mice after SCI. Moreover, deficiency of Apoe induced an exaggerated inflammatory response by increasing expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β), and increased oxidative stress by reducing expression of Nrf2 and HO-1. Furthermore, lack of Apoe promoted neuronal apoptosis and decreased neuronal numbers in the anterior horn of the spinal cord after SCI. Mechanistically, we found that the absence of Apoe increased inflammation and oxidative stress through activation of NF-κB after SCI. In contrast, an inhibitor of nuclear factor-κB (NF-κB; Pyrrolidine dithiocarbamate) alleviates these changes. Collectively, these results indicate that a critical role for activation of NF-κB in regulating Apoe-deficiency dependent inflammation and oxidative stress is detrimental to recovery after SCI.
Collapse
Affiliation(s)
- Xuan Yang
- School of Nursing, Jinzhou Medical University, Jinzhou, China
| | - Shurui Chen
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhenya Shao
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuanlong Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - He Wu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xian Li
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liang Mao
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zipeng Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liangjie Bai
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
15
|
Mikawlrawng K, Rani R, Kumar S, Bhardwaj AR, Prakash G. Anti-paralytic medicinal plants - Review. J Tradit Complement Med 2017; 8:4-10. [PMID: 29321983 PMCID: PMC5755955 DOI: 10.1016/j.jtcme.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 01/17/2023] Open
Abstract
Paralysis is the loss of the ability of one or more muscles to move, due to disruption of signaling between the nervous system and muscles. The most common causes of paralysis are stroke, head injury, spinal cord injury (SCI) and multiple sclerosis. The search for cure of paralysis is yet to be found. Many ethnobotanical surveys have reported the use of medicinal plants by various ethnic communities in treating and curing paralysis. The present review discusses the use of medicinal plants in India for ameliorating and curing paralytic conditions, as well as discuses some of the important developments in future possible applications of medicinal plants in treatment of paralysis. This review reports the use of 37 medicinal plants for their application and cure of ailments related to paralysis. Out of the 37 plants documented, 11 plants have been reported for their ability to cure paralysis. However, the information on the documented plants were mostly found to be inadequate, requiring proper authentication with respect to their specificity, dosage, contradictions etc. It is found that despite the claims presented in many ethnobotanical surveys, the laboratory analysis of these plants remain untouched. It is believed that with deeper intervention on analysis of bioactive compounds present in these plants used by ethic traditional healers for paralysis, many potential therapeutic compounds can be isolated for this particular ailment in the near future.
Collapse
Affiliation(s)
| | - Roma Rani
- Department of Botany, Ramjas College, University of Delhi, India
| | - Suresh Kumar
- Department of Botany, Ramjas College, University of Delhi, India
| | - Ankur R Bhardwaj
- Department of Botany, Ramjas College, University of Delhi, India
| | - Geeta Prakash
- Department of Botany, Gargi College, University of Delhi, India
| |
Collapse
|
16
|
Li Z, Ni C, Xia C, Jaw J, Wang Y, Cao Y, Xu M, Guo X. Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats. Mol Med Rep 2016; 15:201-209. [PMID: 27909728 PMCID: PMC5355741 DOI: 10.3892/mmr.2016.5967] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
It is known that inhaled anesthetics induce neuroinflammation and facilitate postoperative cognitive dysfunction (POCD) in aged individuals; however, the mechanisms by which they mediate these effects remain elusive. Inhalation of the isoflurane anesthetic leads to opening of the mitochondrial permeability transition pore and loss of mitochondrial membrane potential. Therefore, mitochondrial retrograde signaling, which is an adaptive mechanism that facilitates the transmission of signals from dysfunctional mitochondria to the nucleus to activate target gene expression, may be activated during isoflurane inhalation. Therefore, the present study was designed to investigate the role of mitochondrial retrograde signaling in isoflurane-induced hippocampal neuroinflammation and cognitive impairment in aged rats. As calcineurin (CaN) serves an important role in the initiation of mitochondrial retrograde signaling, and nuclear factor-κB (NF‑κB) is involved in CaN signaling, their effects on isoflurane‑induced hippocampal neuroinflammation and cognitive impairment were investigated. Reactive oxygen species and mitochondrial membrane potential fluorescence staining, western blotting, colorimetric analysis, ELISA, immunofluorescence and the Morris water maze test were used in the present study. The results indicate that isoflurane induced hippocampal mitochondrial dysfunction and activated CaN, which subsequently lead to the putative activation of NF‑κB. These resulted in the elevation of interleukin‑1β (IL‑1β) expression (a typical marker of neuroinflammation), and was associated with cognitive impairment in aged rats. In addition, CaN and NF‑κB inhibition attenuated isoflurane-induced neuroinflammation and subsequent cognitive impairment. In conclusion, the results of the present study demonstrate the role of mitochondrial retrograde signaling and associated protein factors in inhaled anesthetic-induced neuroinflammation and cognitive impairment. These protein factors may therefore present promising therapeutic targets for the prevention of POCD.
Collapse
Affiliation(s)
- Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chun Xia
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Joey Jaw
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yujie Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yiyun Cao
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Mao Xu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
17
|
Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J Neuroinflammation 2016; 13:260. [PMID: 27716334 PMCID: PMC5053065 DOI: 10.1186/s12974-016-0736-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/28/2016] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in significant physical disabilities for affected individuals. Apart from local injury within the spinal cord, SCI patients develop a variety of complications characterized by multiple organ dysfunction or failure. These disorders, such as neurogenic pain, depression, lung injury, cardiovascular disease, liver damage, kidney dysfunction, urinary tract infection, and increased susceptibility to pathogen infection, are common in injured patients, hinder functional recovery, and can even be life threatening. Multiple lines of evidence point to pathological connections emanating from the injured spinal cord, post-injury systemic inflammation, and immune suppression as important multifactorial mechanisms underlying post-SCI complications. SCI triggers systemic inflammatory responses marked by increased circulation of immune cells and pro-inflammatory mediators, which result in the infiltration of inflammatory cells into secondary organs and persistence of an inflammatory microenvironment that contributes to organ dysfunction. SCI also induces immune deficiency through immune organ dysfunction, resulting in impaired responsiveness to pathogen infection. In this review, we summarize current evidence demonstrating the relevance of inflammatory conditions and immune suppression in several complications frequently seen following SCI. In addition, we highlight the potential pathways by which inflammatory and immune cues contribute to multiple organ failure and dysfunction and discuss current anti-inflammatory approaches used to alleviate post-SCI complications. A comprehensive review of this literature may provide new insights into therapeutic strategies against complications after SCI by targeting systemic inflammation.
Collapse
|
18
|
Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells. Exp Cell Res 2016; 349:60-67. [PMID: 27693495 DOI: 10.1016/j.yexcr.2016.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Inflammatory response played an important role in the progression of spinal cord injury (SCI). Several miRNAs were associated with the pathology of SCI. However, the molecular mechanism of miRNA involving in inflammatory response in acute SCI (ASCI) was poorly understood. Sprague-Dawley (SD) rats were divided into 2 groups: control group (n=6) and acute SCI (ASCI) group (n=6). The expression of miR-199b and IκB kinase β-nuclear factor-kappa B (IKKβ-NF-κB) signaling pathway were evaluated by quantitative reverse transcription-PCR (qRT-PCR) in rats with ASCI and in primary microglia activated by lipopolysaccharide (LPS). We found that downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rats after ASCI and in activated microglia. miR-199b negatively regulated IKKβ by targeting its 3'- untranslated regions (UTR) through using luciferase reporter assay. Overexpression of miR-199b reversed the up-regulation of IKKβ, p-p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in LPS-treated BV2 cells assessed by western blotting analysis. In addition, BMS-345541 reversed the up-regulation effects of miR-199b inhibitor on the expression of TNF-α and IL-1β. In the SCI rats, overexpression of miR-199b attenuated ASCI and decreased the expression of IKKβ-NF-κB signaling pathway and TNF-α and IL-1β. These results indicated that miR-199b attenuated ASCI at least partly through IKKβ-NF-κB signaling pathway and affecting the function of microglia. Our findings suggest that miR-199b may be employed as therapeutic for spinal cord injury.
Collapse
|
19
|
Sato K, Mihara Y, Kanai K, Yamashita Y, Kimura Y, Itoh N. Tyrosol ameliorates lipopolysaccharide-induced ocular inflammation in rats via inhibition of nuclear factor (NF)-κB activation. J Vet Med Sci 2016; 78:1429-1438. [PMID: 27238160 PMCID: PMC5059370 DOI: 10.1292/jvms.16-0166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We evaluated the anti-inflammatory effect of tyrosol (Tyr) on endotoxin-induced uveitis (EIU) in rats. EIU was induced in male Lewis rats by subcutaneous injection of lipopolysaccharide (LPS). Tyr (10, 50 or 100 mg/kg) was intravenously injected 2 hr before, simultaneously and 2 hr after LPS injection. The aqueous humor (AqH) was collected 24 hr after LPS injection; the infiltrating cell number, protein concentration, and tumor necrosis factor (TNF)-α, prostaglandin (PG)-E2 and nitric oxide (NO) levels were determined. Histopathologic examination and immunohistochemical studies for nuclear factor (NF)-κB, inhibitor of κB (IκB)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in the iris-ciliary body (ICB) were performed at 3 or 24 hr after LPS injection. To further clarify the anti-inflammatory effects, RAW264.7 macrophages were stimulated with LPS in the presence or absence of Tyr. Tyr reduced, in a dose-dependent manner, the infiltrating cell number, protein concentration, and TNF-α, PGE2 and NO levels in AqH and improved histopathologic scores of EIU. Tyr also inhibited LPS-induced COX-2 and iNOS expression, IκB-α degradation and nuclear translocation of activated NF-κB in ICB. Tyr significantly suppressed inflammatory mediator production in the culture medium and COX-2 and iNOS expression and activated NF-κB translocation in LPS-stimulated RAW264.7 cells. These results suggest that Tyr suppresses ocular inflammation of EIU by inhibiting NF-κB activation and subsequent proinflammatory mediator production.
Collapse
Affiliation(s)
- Kazuaki Sato
- Department of Small Animal Internal Medicine I, School of Veterinary Medicine, University of Kitasato, 35-1, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | |
Collapse
|
20
|
The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation. Int J Mol Sci 2015; 17:ijms17010049. [PMID: 26729105 PMCID: PMC4730294 DOI: 10.3390/ijms17010049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022] Open
Abstract
Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury.
Collapse
|
21
|
Perez-Polo JR, Rea HC, Johnson KM, Parsley MA, Unabia GC, Xu GY, Prough D, DeWitt DS, Paulucci-Holthauzen AA, Werrbach-Perez K, Hulsebosch CE. Inflammatory cytokine receptor blockade in a rodent model of mild traumatic brain injury. J Neurosci Res 2015; 94:27-38. [PMID: 26172557 DOI: 10.1002/jnr.23617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
In rodent models of traumatic brain injury (TBI), both Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) levels increase early after injury to return later to basal levels. We have developed and characterized a rat mild fluid percussion model of TBI (mLFP injury) that results in righting reflex response times (RRRTs) that are less than those characteristic of moderate to severe LFP injury and yet increase IL-1α/β and TNFα levels. Here we report that blockade of IL-1α/β and TNFα binding to IL-1R and TNFR1, respectively, reduced neuropathology in parietal cortex, hippocampus, and thalamus and improved outcome. IL-1β binding to the type I IL-1 receptor (IL-1R1) can be blocked by a recombinant form of the endogenous IL-1R antagonist IL-1Ra (Kineret). TNFα binding to the TNF receptor (TNFR) can be blocked by the recombinant fusion protein etanercept, made up of a TNFR2 peptide fused to an Fc portion of human IgG1. There was no benefit from the combined blockades compared with individual blockades or after repeated treatments for 11 days after injury compared with one treatment at 1 hr after injury, when measured at 6 hr or 18 days, based on changes in neuropathology. There was also no further enhancement of blockade benefits after 18 days. Given that both Kineret and etanercept given singly or in combination showed similar beneficial effects and that TNFα also has a gliotransmitter role regulating AMPA receptor traffic, thus confounding effects of a TNFα blockade, we chose to focus on a single treatment with Kineret.
Collapse
Affiliation(s)
| | - H C Rea
- University of Texas Medical Branch, Galveston, Texas
| | - K M Johnson
- University of Texas Medical Branch, Galveston, Texas
| | - M A Parsley
- University of Texas Medical Branch, Galveston, Texas
| | - G C Unabia
- University of Texas Medical Branch, Galveston, Texas
| | - G-Y Xu
- University of Texas Medical Branch, Galveston, Texas
| | - D Prough
- University of Texas Medical Branch, Galveston, Texas
| | - D S DeWitt
- University of Texas Medical Branch, Galveston, Texas
| | | | | | | |
Collapse
|
22
|
Involvement of medullary GABAergic system in extraterritorial neuropathic pain mechanisms associated with inferior alveolar nerve transection. Exp Neurol 2015; 267:42-52. [DOI: 10.1016/j.expneurol.2015.02.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/03/2014] [Accepted: 02/22/2015] [Indexed: 01/15/2023]
|
23
|
Wang B, Chen C, Zhang JT, Song RX, Yu XC. Triptolide (TPL) improves locomotor function recovery in rats and reduces inflammation after spinal cord injury. Neurol Sci 2014; 36:701-5. [PMID: 25547329 DOI: 10.1007/s10072-014-2001-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/01/2014] [Indexed: 01/27/2023]
Abstract
In this study, we studied the effect of triptolide (TPL) on locomotor function in rats with spinal cord injury. A total of 40 rats were studied after dividing them in two major groups, one was experimental group denoted as TPL group while other was control group denoted as PBS group. Each group was subdivided in four subgroups having five rats each (n = 5). TPL was given intraperitonially at the rate of 5 mg/kg/day in TPL group while PBS was given at the same time interval in the same manner in control group for comparison. A reduction in the cavity area of tissue sections was observed by bright field microscopy from 0.22 ± 0.05 to 0.12 ± 0.05 mm(2) in experimental group after 28 days of treatment while BBB score also improved from 1 to 5 after 14 days of treatment. SPSS software, one way ANOVA, was used for recording statistical analysis and values were expressed as mean ± SEM where P value of <0.01 was considered significant. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. It was observed that treatment with TPL significantly reduced the expression of these factors after 28 days of treatment compared with controls.
Collapse
Affiliation(s)
- Bing Wang
- Department of Orthopaedic, The General Hospital of Jinan Military Commanding Region, No. 25 Shifan Road, Tianqiao District, Jinan, 250031, Shandong, China
| | | | | | | | | |
Collapse
|
24
|
Shrestha RP, Qiao JM, Shen FG, Bista KB, Zhao ZN, Yang J. Intra-Spinal Bone Marrow Mononuclear Cells Transplantation Inhibits the Expression of Nuclear Factor-κB in Acute Transection Spinal Cord Injury in Rats. J Korean Neurosurg Soc 2014; 56:375-82. [PMID: 25535513 PMCID: PMC4272994 DOI: 10.3340/jkns.2014.56.5.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/09/2014] [Accepted: 08/16/2014] [Indexed: 11/27/2022] Open
Abstract
Objective To assess the effect of bone marrow mononuclear cells (BMMNCs) transplantation in the expression of nuclear factor-κB (NF-κB) in spinal cord injury (SCI) in rats. Methods BMMNCs were isolated from tibia and femur by a density gradient centrifugation. After establishment of acute transection SCI, rats were divided into experiment (BMMNCs), experiment control (0.1 M PBS infused) and sham surgery groups (laminectomy without any SCI). Locomotor function was assessed weekly for 5 weeks post-injury using BBB locomotor score and urinary bladder function daily for 4 weeks post-injury. Activity of NF-κB in spinal cord was assessed by immunohistochemistry and reverse transcriptase polymerase chain reaction. Results At each time point post-injury, sham surgery group had significantly higher Basso, Beattie, Bresnahan locomotor and urinary bladder function scores than experiment and experiment control group (p<0.05). At subsequent time interval there were gradual improvement in both experiment and experiment control group, but experiment group had higher score in comparison to experiment control group (p<0.05). Comparisons were also made for expression of activated NF-κB positive cells and level of NF-κB messenger RNA in spinal cord at various time points between the groups. Activated NF-κB immunoreactivity and level of NF-κB mRNA expression were significantly higher in control group in comparison to experiment and sham surgery group (p<0.05). Conclusion BMMNCs transplantation attenuates the expression of NF-κB in injured spinal cord tissue and thus helps in recovery of neurological function in rat models with SCI.
Collapse
Affiliation(s)
- Rajiv Prasad Shrestha
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Jian Min Qiao
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Fu Guo Shen
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Krishna Bahadur Bista
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Zhong Nan Zhao
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Jianhua Yang
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| |
Collapse
|
25
|
Engelmann C, Weih F, Haenold R. Role of nuclear factor kappa B in central nervous system regeneration. Neural Regen Res 2014; 9:707-11. [PMID: 25206877 PMCID: PMC4146279 DOI: 10.4103/1673-5374.131572] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-κB in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a transdominant negative mutant of its upstream regulator IκBα, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular program in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.
Collapse
Affiliation(s)
- Christian Engelmann
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Falk Weih
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ronny Haenold
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
26
|
Study of effect of salvianolic acid B on motor function recovery in rats with spinal cord injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:931850. [PMID: 24757683 PMCID: PMC3976925 DOI: 10.1155/2014/931850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 01/17/2023]
Abstract
In this study effect of salvianolic acid B was observed on motor function recovery of rats with spinal cord injury. 50 rats were selected and after inducing SCI their recovery under controlled conditions was studied using Sal B and PBS (as control). Both compounds were introduced intraperitoneally in respective groups of traumatic rats at the same time intervals for 28 days. It was observed that Sal B introduced at 5 mg/kg/day resulted in better motor function recovery. BBB score was recorded which increased significantly along with the reduction in cavity area observed by bright field microscopy of tissues, that is, from 1 to 10 and from 0.20 ± 0.05 mm(2) to 0.10 ± 0.03 mm(2), in Sal B treated group, respectively, compared to PBS group. Statistical analysis was carried out using SPSS software (SPSS, Chicago, IL, USA), values were expressed as mean ± SEM, and P value <0.01 was considered significant. Effect of Sal B on expression of NF-kB p65 and IkB α was studied and OD values of densitometry of western blots were taken. MPO activity was also studied. It was observed that treatment of Sal B significantly reduced the expression of both compounds in Sal B treated group as compared to control group after 28 days of treatment.
Collapse
|
27
|
Ormond DR, Shannon C, Oppenheim J, Zeman R, Das K, Murali R, Jhanwar-Uniyal M. Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLoS One 2014; 9:e88916. [PMID: 24558450 PMCID: PMC3928327 DOI: 10.1371/journal.pone.0088916] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023] Open
Abstract
Acute traumatic spinal cord injury (SCI) is marked by the enhanced production of local cytokines and pro-inflammatory substances that induce gliosis and prevent reinnervation. The transplantation of stem cells is a promising treatment strategy for SCI. In order to facilitate functional recovery, we employed stem cell therapy alone or in combination with curcumin, a naturally-occurring anti-inflammatory component of turmeric (Curcuma longa), which potently inhibits NF-κB. Spinal cord contusion following laminectomy (T9–10) was performed using a weight drop apparatus (10 g over a 12.5 or 25 mm distance, representing moderate or severe SCI, respectively) in Sprague-Dawley rats. Neural stem cells (NSC) were isolated from subventricular zone (SVZ) and transplanted at the site of injury with or without curcumin treatment. Functional recovery was assessed by BBB score and body weight gain measured up to 6 weeks following SCI. At the conclusion of the study, the mass of soleus muscle was correlated with BBB score and body weight. Stem cell therapy improved recovery from moderate SCI, however, it had a limited effect on recovery after severe SCI. Curcumin stimulated NSC proliferation in vitro, and in combination with stem cell therapy, induced profound recovery from severe SCI as evidenced by improved functional locomotor recovery, increased body weight, and soleus muscle mass. These findings demonstrate that curcumin in conjunction with stem cell therapy synergistically improves recovery from severe SCI. Furthermore, our results indicate that the effect of curcumin extends beyond its known anti-inflammatory properties to the regulation of stem cell proliferation.
Collapse
Affiliation(s)
- D. Ryan Ormond
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Craig Shannon
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Julius Oppenheim
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Richard Zeman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Kaushik Das
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Raj Murali
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Meena Jhanwar-Uniyal
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats. Inflamm Res 2014; 63:381-7. [DOI: 10.1007/s00011-014-0710-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/17/2013] [Accepted: 01/12/2014] [Indexed: 01/19/2023] Open
|
29
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|
30
|
Coronel MF, Labombarda F, De Nicola AF, González SL. Progesterone reduces the expression of spinal cyclooxygenase-2 and inducible nitric oxide synthase and prevents allodynia in a rat model of central neuropathic pain. Eur J Pain 2013; 18:348-59. [PMID: 23929706 DOI: 10.1002/j.1532-2149.2013.00376.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) results in the development of chronic pain that is refractory to conventional treatment. Progesterone, a neuroprotective steroid, may offer a promising perspective in pain modulation after central injury. Here, we explore the impact of progesterone administration on the post-injury inflammatory cascade involving the enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) at the spinal cord level. We also analyse pain behaviours, the profile of glial cell activation, and IκB-α mRNA levels, as an index of NF-κB transactivation. METHODS We used biochemical, immunohistochemical and molecular techniques, as well as behavioural studies, to investigate the effects of progesterone in a well-characterized model of central neuropathic pain. RESULTS Injured animals receiving progesterone presented reduced mRNA levels of the proinflammatory enzymes, as well as decreased COX-2 activity and nitrite levels, as compared to vehicle-treated injured rats. Further, animals receiving the steroid exhibited lower levels of IκB-α mRNA, suggesting decreased NF-κB transactivation. Progesterone administration also attenuated the injury-induced increase in the number of glial fibrillary acidic protein and OX-42 positive cells both at early and late time points after injury, and prevented the development of mechanical and thermal allodynia. Further, when injured rats received early progesterone administration for a critical period of time after injury, they did not display allodynic behaviours even after the treatment had stopped. CONCLUSIONS Our results suggest that progesterone, by modulating early neuroinflammatory events triggered after SCI, may represent a useful strategy to prevent the development of central chronic pain.
Collapse
Affiliation(s)
- M F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
31
|
Butein inhibits NF-κB activation and reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 2013; 542:87-91. [DOI: 10.1016/j.neulet.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 11/22/2022]
|
32
|
Dulin JN, Moore ML, Grill RJ. The dual cyclooxygenase/5-lipoxygenase inhibitor licofelone attenuates p-glycoprotein-mediated drug resistance in the injured spinal cord. J Neurotrauma 2013; 30:211-26. [PMID: 22947335 DOI: 10.1089/neu.2012.2587] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood-spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague-Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72 h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord.
Collapse
Affiliation(s)
- Jennifer N Dulin
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
33
|
Hu JZ, Huang JH, Xiao ZM, Li JH, Li XM, Lu HB. Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 2013; 324:94-9. [DOI: 10.1016/j.jns.2012.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 10/14/2012] [Accepted: 10/16/2012] [Indexed: 01/10/2023]
|
34
|
Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep 2012; 15:215-22. [PMID: 21387163 DOI: 10.1007/s11916-011-0186-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal hyperexcitability produces enhanced pain transmission in the spinal dorsal horn after spinal cord injury (SCI). Spontaneous and evoked neuronal excitability normally are well controlled by neural circuits. However, SCI produces maladaptive synaptic circuits in the spinal dorsal horn that result in neuronal hyperexcitability. After SCI, activated primary afferent neurons produce enhanced release of glutamate, neuropeptides, adenosine triphosphate, and proinflammatory cytokines, which are known to be major components for pain transmission in the spinal dorsal horn. Enhanced neurochemical events contribute to neuronal hyperexcitability, and neuroanatomical changes also contribute to maladaptive synaptic circuits and neuronal hyperexcitability. These neurochemical and neuroanatomical changes produce enhanced cellular signaling cascades that ensure persistently enhanced pain transmission. This review describes altered neurochemical and neuroanatomical contributions on neuronal hyperexcitability in the spinal dorsal horn, which serve as substrates for central neuropathic pain after SCI.
Collapse
Affiliation(s)
- Young Seob Gwak
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA
| | | |
Collapse
|
35
|
Han X, Lu M, Wang S, Lv D, Liu H. Targeting IKK/NF-κB pathway reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 2012; 511:28-32. [DOI: 10.1016/j.neulet.2012.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/21/2022]
|
36
|
Ormond DR, Peng H, Zeman R, Das K, Murali R, Jhanwar-Uniyal M. Recovery from spinal cord injury using naturally occurring antiinflammatory compound curcumin: laboratory investigation. J Neurosurg Spine 2012; 16:497-503. [PMID: 22324804 DOI: 10.3171/2012.1.spine11769] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECT Spinal cord injury (SCI) is a debilitating disease. Primary SCI results from direct injury to the spinal cord, whereas secondary injury is a side effect from subsequent edema and ischemia followed by activation of proinflammatory cytokines. These cytokines activate the prosurvival molecule nuclear factor-κB and generate obstacles in spinal cord reinnervation due to gliosis. Curcumin longa is an active compound found in turmeric, which acts as an antiinflammatory agent primarily by inhibiting nuclear factor-κB. Here, the authors study the effect of curcumin on SCI recovery. METHODS Fourteen female Sprague-Dawley rats underwent T9-10 laminectomy and spinal cord contusion using a weight-drop apparatus. Within 30 minutes after contusion and weekly thereafter, curcumin (60 mg/kg/ml body weight in dimethyl sulfoxide) or dimethyl sulfoxide (1 ml/kg body weight) was administered via percutaneous epidural injection at the injury site. Spinal cord injury recovery was assessed weekly by scoring hindlimb motor function. Animals were killed 6 weeks postcontusion for histopathological analysis of spinal cords and soleus muscle weight evaluation. RESULTS Curcumin-treated rats had improved motor function compared with controls starting from Week 1. Body weight gain significantly improved, correlating with improved Basso-Beattie-Bresnahan scores. Soleus muscle weight was greater in curcumin-treated rats than controls. Histopathological analysis validated these results with increased neural element mass with less gliosis at the contusion site in curcumin-treated rats than controls. CONCLUSIONS Epidural administration of curcumin resulted in improved recovery from SCI. This occurred with no adverse effects noted in experimental animals. Therefore, curcumin treatment may translate into a novel therapy for humans with SCI.
Collapse
Affiliation(s)
- D Ryan Ormond
- Department of Neurosurgery, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
37
|
Priestley JV, Michael-Titus AT, Tetzlaff W. Limiting spinal cord injury by pharmacological intervention. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:463-484. [PMID: 23098731 DOI: 10.1016/b978-0-444-52137-8.00029-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The direct primary mechanical trauma to neurons, glia and blood vessels that occurs with spinal cord injury (SCI) is followed by a complex cascade of biochemical and cellular changes which serve to increase the size of the injury site and the extent of cellular and axonal loss. The aim of neuroprotective strategies in SCI is to limit the extent of this secondary cell loss by inhibiting key components of the evolving injury cascade. In this review we will briefly outline the pathophysiological events that occur in SCI, and then review the wide range of neuroprotective agents that have been evaluated in preclinical SCI models. Agents will be considered under the following categories: antioxidants, erythropoietin and derivatives, lipids, riluzole, opioid antagonists, hormones, anti-inflammatory agents, statins, calpain inhibitors, hypothermia, and emerging strategies. Several clinical trials of neuroprotective agents have already taken place and have generally had disappointing results. In attempting to identify promising new treatments, we will therefore highlight agents with (1) low known risks or established clinical use, (2) behavioral data gained in clinically relevant animal models, (3) efficacy when administered after the injury, and (4) robust effects seen in more than one laboratory and/or more than one model of SCI.
Collapse
|
38
|
Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 2011; 234:362-72. [PMID: 22036747 DOI: 10.1016/j.expneurol.2011.10.010] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/05/2011] [Accepted: 10/13/2011] [Indexed: 01/27/2023]
Abstract
In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. However, in trauma or disease states, spinal glia become activated, dorsal horn neurons become hyperexcitable contributing to sensitized neuronal-glial circuits. The maladaptive spinal circuits directly affect synaptic excitability, including activation of intracellular downstream cascades that result in enhanced evoked and spontaneous activity in dorsal horn neurons with the result that abnormal pain syndromes develop. Recent literature reported that spinal cord injury produces glial activation in the dorsal horn; however, the majority of glial activation studies after SCI have focused on transient and/or acute time points, from a few hours to 1 month, and peri-lesion sites, a few millimeters rostral and caudal to the lesion site. In addition, thoracic spinal cord injury produces activation of astrocytes and microglia that contributes to dorsal horn neuronal hyperexcitability and central neuropathic pain in above-level, at-level and below-level segments remote from the lesion in the spinal cord. The cellular and molecular events of glial activation are not simple events, rather they are the consequence of a combination of several neurochemical and neurophysiological changes following SCI. The ionic imbalances, neuroinflammation and alterations of cell cycle proteins after SCI are predominant components for neuroanatomical and neurochemical changes that result in glial activation. More importantly, SCI induced release of glutamate, proinflammatory cytokines, ATP, reactive oxygen species (ROS) and neurotrophic factors trigger activation of postsynaptic neuron and glial cells via their own receptors and channels that, in turn, contribute to neuronal-neuronal and neuronal-glial interaction as well as microglia-astrocytic interactions. However, a systematic review of temporal and spatial glial activation following SCI has not been done. In this review, we describe time and regional dependence of glial activation and describe activation mechanisms in various SCI models in rats. These data are placed in the broader context of glial activation mechanisms and chronic pain states. Our work in the context of work by others in SCI models demonstrates that dysfunctional glia, a condition called "gliopathy", is a key contributor in the underlying cellular mechanisms contributing to neuropathic pain.
Collapse
Affiliation(s)
- Young S Gwak
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
39
|
Hai L, Kawarabayashi Y, Imai Y, Honda A, Inoue R. Counteracting effect of TRPC1-associated Ca2+ influx on TNF-α-induced COX-2-dependent prostaglandin E2 production in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2011; 301:G356-67. [PMID: 21546578 DOI: 10.1152/ajpgi.00354.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TNF-α-NF-κB signaling plays a central role in inflammation, apoptosis, and neoplasia. One major consequence of this signaling in the gut is increased production of prostaglandin E(2) (PGE(2)) via cyclooxygenase-2 (COX-2) induction in myofibroblasts, which has been reported to be dependent on Ca(2+). In this study, we explored a potential role of canonical transient receptor potential (TRPC) proteins in this Ca(2+)-mediated signaling using a human colonic myofibroblast cell line CCD-18Co. In CCD-18Co cell, treatment with TNF-α greatly enhanced Ca(2+) influx induced by store depletion along with increased cell-surface expression of TRPC1 protein (but not of the other TRPC isoforms) and induction of a Gd(3+)-sensitive nonselective cationic conductance. Selective inhibition of TRPC1 expression by small interfering RNA (siRNA) or functionally effective TRPC1 antibody targeting the near-pore region of TRPC1 (T1E3) antagonized the enhancement of store-dependent Ca(2+) influx by TNF-α, whereas potentiated TNF-α induced PGE(2) production. Overexpression of TRPC1 in CCD-18Co produced opposite consequences. Inhibitors of NF-κB (curcumin, SN-50) attenuated TNF-α-induced enhancement of TRPC1 expression, store-dependent Ca(2+) influx, and COX-2-dependent PGE(2) production. In contrast, inhibition of calcineurin-nuclear factor of activated T-cell proteins (NFAT) signaling by FK506 or NFAT Activation Inhibitor III enhanced the PGE(2) production without affecting TRPC1 expression and the Ca(2+) influx. Finally, the suppression of store-dependent Ca(2+) influx by T1E3 antibody or siRNA knockdown significantly facilitated TNF-α-induced NF-κB nuclear translocation. In aggregate, these results strongly suggest that, in colonic myofibroblasts, NF-κB and NFAT serve as important positive and negative transcriptional regulators of TNF-α-induced COX-2-dependent PGE(2) production, respectively, at the downstream of TRPC1-associated Ca(2+) influx.
Collapse
Affiliation(s)
- Lin Hai
- Department of Physiology, Fukuoka University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
40
|
Menotta M, Crinelli R, Carloni E, Mussi V, Valbusa U, Magnani M. Binding force measurement of NF-κB-ODNs interaction: an AFM based decoy and drug testing tool. Biosens Bioelectron 2011; 28:158-65. [PMID: 21802937 DOI: 10.1016/j.bios.2011.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 01/22/2023]
Abstract
Interaction between transcription factors and DNA are essential for regulating gene transcription. The Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor involved in cell signalling and its failure is a principal cause of several autoimmune and auto-inflammatory disorders. In this paper we have developed an atomic force microscopy (AFM) method to quantitatively characterise the interaction force between NF-κB and DNA or LNA (locked nucleic acid) double strand molecules containing the NF responsive elements (RE). This process allows the simple testing and selection of LNA based decoy molecules to be used in NF-κB modulation decoy strategies. Furthermore the proposed methodology is also suitable for testing drug efficacy on the modulation of NF-κB binding to its nucleic acid target sequence. A biological AFM based sensor is therefore considered appropriate for characterising transcription factors and selecting molecules to modulate their activity.
Collapse
Affiliation(s)
- Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino (PU), Italy
| | | | | | | | | | | |
Collapse
|
41
|
Kasai M, Fukumitsu H, Soumiya H, Furukawa S. Caffeic acid phenethyl ester reduces spinal cord injury-evoked locomotor dysfunction. ACTA ACUST UNITED AC 2011; 32:1-7. [PMID: 21383505 DOI: 10.2220/biomedres.32.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is a component of propolis, which is a substance taken from the hives of honeybees, and is known to exhibit an anti-inflammatory activity. Such activity has been thought to be partly based on its potential and specific inhibitory activities toward nuclear factor-κB, a transcription factor. Therefore, in the present study, we evaluated the effect of CAPE on functional locomotor recovery after spinal cord injury (SCI) caused by hemi-transection, because inflammatory responses are a major cause of the secondary injury observed following SCI and play a pivotal role in regulating the pathogenesis of acute and chronic SCI. When CAPE was i.p.-administered at a dosage of 10 µmol/kg, it enhanced the recovery of locomotor function and reduced the lesion size while suppressing the expression of the mRNAs for a pro-inflammatory cytokine interleukin-1β and the inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2. These results suggest CAPE to be a promising therapeutic tool for reducing the secondary neuronal damage following primary physical injury to the spinal cord.
Collapse
Affiliation(s)
- Masaki Kasai
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
42
|
Abraham J, Brooks PJ. Divergent effects of oxidatively induced modification to the C8 of 2'-deoxyadenosine on transcription factor binding: 8,5'(S)-cyclo-2'-deoxyadenosine inhibits the binding of multiple sequence specific transcription factors, while 8-oxo-2'-deoxyadenosine increases binding of CREB and NF-kappa B to DNA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:287-295. [PMID: 20872830 DOI: 10.1002/em.20619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Abstract
DNA is exposed to endogenous and environmental factors that can form stable lesions. If not repaired, these lesions can lead to transcription/replication blocking or mutagenic bypass. Our previous work has focused on 8,5'-cyclopurine 2'-deoxyribonucleosides, a unique class of oxidatively induced DNA lesions that are specifically repaired by the NER pathway (see Brooks PJ [2008]: DNA Repair 7:1168-1179). Here we used EMSA to monitor the ability of sequence-specific transcription factors, HSF1, CREB, and NF-kappaB and "architectural" transcription factor, HMGA, to bind to their target sequences when 8, 5'(S)-cyclo-2'-deoxyadenosine (cyclo-dAdo) is present within their recognition sequences. For comparison, we also tested the effect of 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dAdo) in the same recognition sequences. The presence of a cyclo-dAdo lesion in the target sequence essentially eliminated the binding activity of HSF1, CREB, and NF-kappa B whereas HMGA retained some of its binding activity. In contrast, 8-oxo-dAdo had no obvious effect on the binding activity of HSF1 and HMGA in comparison to lesion-free DNA. Notably, though, CREB and NFκB binding increased when an 8-oxo-dAdo lesion was present in their target sequence. Competition EMSA showed about 2-3-fold increased affinity of both proteins for the 8-oxo-dAdo containing target sequence compared to lesion-free DNA. Molecular modeling of the lesions in the NF-kappaB sequence indicated that 8-oxo-dAdo may form an additional hydrogen bond with the protein, thereby strengthening the binding of NF-kappa B to its DNA target. The cyclo-dAdo lesion, in contrast, distorted the DNA structure, providing an explanation for the inhibition of NF-kappaB binding.
Collapse
Affiliation(s)
- Jessy Abraham
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852, USA
| | | |
Collapse
|
43
|
Gwak YS, Hulsebosch CE. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 2011; 60:799-808. [PMID: 21216257 PMCID: PMC3285561 DOI: 10.1016/j.neuropharm.2010.12.030] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 12/31/2022]
Abstract
Spinal cord injury induces maladaptive synaptic transmission in the somatosensory system that results in chronic central neuropathic pain. Recent literature suggests that glial-neuronal interactions are important modulators in synaptic transmission following spinal cord injury. Neuronal hyperexcitability is one of the predominant phenomenon caused by maladaptive synaptic transmission via altered glial-neuronal interactions after spinal cord injury. In the somatosensory system, spinal inhibitory neurons counter balance the enhanced synaptic transmission from peripheral input. For a decade, the literature suggests that hypofunction of GABAergic inhibitory tone is an important factor in the enhanced synaptic transmission that often results in neuronal hyperexcitability in dorsal horn neurons following spinal cord injury. Neurons and glial cells synergistically control intracellular chloride ion gradients via modulation of chloride transporters, extracellular glutamate and GABA concentrations via uptake mechanisms. Thus, the intracellular "GABA-glutamate-glutamine cycle" is maintained for normal physiological homeostasis. However, hyperexcitable neurons and glial activation after spinal cord injury disrupts the balance of chloride ions, glutamate and GABA distribution in the spinal dorsal horn and results in chronic neuropathic pain. In this review, we address spinal cord injury induced mechanisms in hypofunction of GABAergic tone that results in chronic central neuropathic pain. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Young S Gwak
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
44
|
Chuang YC, Chen SD, Lin TK, Chang WN, Lu CH, Liou CW, Chan SHH, Chang AYW. Transcriptional upregulation of nitric oxide synthase II by nuclear factor-kappaB promotes apoptotic neuronal cell death in the hippocampus following experimental status epilepticus. J Neurosci Res 2010; 88:1898-907. [PMID: 20155797 DOI: 10.1002/jnr.22369] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Whereas status epilepticus, or the condition of continuous epileptic seizures, produces a characteristic pattern of preferential neuronal cell loss in the hippocampus, the underlying mechanism is still unsettled. Based on an experimental model of temporal lobe status epilepticus, we demonstrated previously that prolonged seizures prompted an overproduction of nitric oxide (NO) by upregulation of NO synthase II (NOS II) in the hippocampal CA3 subfield, followed by the activation of mitochondrial apoptotic signaling cascade. Using the same animal model, the present study evaluated the hypothesis that transcriptional upregulation of NOS II gene by nuclear factor-kappaB (NF-kappaB) promotes apoptotic neuronal cell death in the hippocampus following status epilepticus. In Sprague-Dawley rats, significantly augmented nucleus-bound translocation of NF-kappaB p50 and p65 subunits and DNA binding activity of NF-kappaB were observed in hippocampal CA3 neurons as early as 30 min after elicitation of sustained seizure activity by microinjection of kainic acid into the CA3 subfield, followed by a progressive elevation that peaked at 90 min. In addition, application bilaterally into the hippocampal CA3 subfield of a selective NF-kappaB inhibitor, pyrrolidine dithiocarbamate or double-stranded kappaB decoy DNA significantly antagonized the activated NOS II-peroxynitrite signaling cascade (3 hr) and the associated manifestations of apoptotic cell death (7 days) in the hippocampus. We conclude that activation of NF-kappaB in hippocampal CA3 neurons upregulates NOS II gene expression following experimental temporal lobe status epilepticus, leading to apoptotic neuronal cell death in the hippocampus.
Collapse
Affiliation(s)
- Yao-Chung Chuang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung County, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hulsebosch CE. Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury. Exp Neurol 2008; 214:6-9. [PMID: 18708053 PMCID: PMC2888707 DOI: 10.1016/j.expneurol.2008.07.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 07/23/2008] [Indexed: 12/12/2022]
Abstract
Research focused on improving recovery of function, including the reduction of central neuropathic pain (CNP) after spinal cord injury (SCI) is essential. After SCI, regional neuropathic pain syndromes above, at and below the level or spinal injury develop and are thought to have different mechanisms, but may share common dysfunctional glial mechanisms. Detloff et al., [Detloff, M.R., Fisher, L.C., McGaughy, V., Longbrake, E.E., Popovich, P.G., Basso, D.M., Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp. Neurol. (2008), doi: 10.1016/j.expneurol.2008.04.009.] describe events in the lumbar region of the spinal cord after a midthoracic SCI injury, the so called "below-level" pain and compares the findings to peripheral nerve lesion findings. This commentary briefly reviews glial contributions and intracellular signaling mechanisms, both neuronal and glial, that provide the substrate for CNP after SCI, including the persistent glial production of factors that can maintain sensitization of dorsal horn neurons in segments remote from the spinal injury; ie. dorsal horn hyperexcitability to formerly non noxious stimuli that become noxious after SCI resulting in allodynia. The term "gliopathy" is proposed to describe the dysfunctional and maladaptive response of glial cells, specifically astrocytes and microglia, to neural injury that is initiated by the sudden injury induced increase in extracellular concentrations of glutamate and concomitant production of several proinflammatory molecules. It is important to understand the roles that different glia play in "gliopathy", a condition that appears to persist after SCI. Furthermore, targeted treatment of gliopathy will attenuate mechanical allodynia in both central and peripheral neuropathic pain syndromes.
Collapse
Affiliation(s)
- Claire E Hulsebosch
- Neuroscience and Cell Biology, 301 University Boulevard, Route 1043, University of Texas Medical Branch, Galveston, Texas 77555-1043, USA.
| |
Collapse
|