1
|
Kalluri HV, Rosebraugh MR, Misko TP, Ziemann A, Liu W, Cree BAC. Phase 1 Evaluation of Elezanumab (Anti-Repulsive Guidance Molecule A Monoclonal Antibody) in Healthy and Multiple Sclerosis Participants. Ann Neurol 2023; 93:285-296. [PMID: 36093738 PMCID: PMC10100020 DOI: 10.1002/ana.26503] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE This study was undertaken to describe the safety, tolerability, pharmacokinetics, and immunogenicity of elezanumab (ABT-555), a fully human monoclonal antibody (mAb) directed against repulsive guidance molecule A (RGMa), in healthy and multiple sclerosis (MS) study participants. METHODS The single-center, first-in-human, single ascending dose (SAD) study evaluated elezanumab (50-1,600mg intravenous [IV] and 150mg subcutaneous) in 47 healthy men and women. The multicenter multiple ascending dose (MAD; NCT02601885) study evaluated elezanumab (150mg, 600mg, and 1,800mg) in 20 adult men and women with MS, receiving either maintenance or no immunomodulatory treatment. RESULTS No pattern of study drug-related adverse events was identified for either the SAD or MAD elezanumab regimens. Across both studies, the Tmax occurred within 4 hours of elezanumab IV infusion, and the harmonic mean of t1/2 ranged between 18.6 and 67.7 days. Following multiple dosing, elezanumab Cmax , area under the curve, and Ctrough increased dose-proportionally and resulted in dose-dependent increases in elezanumab cerebrospinal fluid (CSF) concentrations. Elezanumab CSF penetration was 0.1% to 0.4% across both studies, with CSF levels of free RGMa decreased by >40%. Changes in CSF interleukin-10 (IL-10) and free RGMa demonstrated dose/exposure-dependence. INTERPRETATION The elezanumab pharmacokinetic profile supports monthly, or bimonthly, administration of up to 1,800mg with the option of a loading dose of 3,600mg. Elezanumab partitioning into CSF is within the range expected for mAbs. Reduced CSF levels of free RGMa demonstrate central nervous system target binding of elezanumab with an apparent maximal effect at 1,800mg IV. Exposure-associated increases in CSF IL-10, an anti-inflammatory cytokine with neuroprotective/neurorestorative properties, support potential pathway modulation in MS participants. ANN NEUROL 2023;93:285-296.
Collapse
Affiliation(s)
- Hari V Kalluri
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, IL
| | | | | | | | - Wei Liu
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, IL
| | - Bruce A C Cree
- Weill Institute of Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
2
|
Yan Y, Gao Y, Fang Q, Zhang N, Kumar G, Yan H, Song L, Li J, Zhang Y, Sun J, Wang J, Zhao L, Skaggs K, Zhang HT, Ma CG. Inhibition of Rho Kinase by Fasudil Ameliorates Cognition Impairment in APP/PS1 Transgenic Mice via Modulation of Gut Microbiota and Metabolites. Front Aging Neurosci 2021; 13:755164. [PMID: 34721000 PMCID: PMC8551711 DOI: 10.3389/fnagi.2021.755164] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Fasudil, a Rho kinase inhibitor, exerts therapeutic effects in a mouse model of Alzheimer's disease (AD), a chronic neurodegenerative disease with progressive loss of memory. However, the mechanisms remain unclear. In addition, the gut microbiota and its metabolites have been implicated in AD. Methods: We examined the effect of fasudil on learning and memory using the Morris water-maze (MWM) test in APPswe/PSEN1dE9 transgenic (APP/PS1) mice (8 months old) treated (i.p.) with fasudil (25 mg/kg/day; ADF) or saline (ADNS) and in age- and gender-matched wild-type (WT) mice. Fecal metagenomics and metabolites were performed to identify novel biomarkers of AD and elucidate the mechanisms of fasudil induced beneficial effects in AD mice. Results: The MWM test showed significant improvement of spatial memory in APP/PS1 mice treated with fasudil as compared to ADNS. The metagenomic analysis revealed the abundance of the dominant phyla in all the three groups, including Bacteroidetes (23.7–44%) and Firmicutes (6.4–26.6%), and the increased relative abundance ratio of Firmicutes/Bacteroidetes in ADNS (59.1%) compared to WT (31.7%). In contrast, the Firmicutes/Bacteroidetes ratio was decreased to the WT level in ADF (32.8%). Lefse analysis of metagenomics identified s_Prevotella_sp_CAG873 as an ADF potential biomarker, while s_Helicobacter_typhlonius and s_Helicobacter_sp_MIT_03-1616 as ADNS potential biomarkers. Metabolite analysis revealed the increment of various metabolites, including glutamate, hypoxanthine, thymine, hexanoyl-CoA, and leukotriene, which were relative to ADNS or ADF microbiota potential biomarkers and mainly involved in the metabolism of nucleotide, lipids and sugars, and the inflammatory pathway. Conclusions: Memory deficit in APP/PS1 mice was correlated with the gut microbiome and metabolite status. Fasudil reversed the abnormal gut microbiota and subsequently regulated the related metabolisms to normal in the AD mice. It is believed that fasudil can be a novel strategy for the treatment of AD via remodeling of the gut microbiota and metabolites. The novel results also provide valuable references for the use of gut microbiota and metabolites as diagnostic biomarkers and/or therapeutic targets in clinical studies of AD.
Collapse
Affiliation(s)
- Yuqing Yan
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ye Gao
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Qingli Fang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Hailong Yan
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiehui Li
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Yuna Zhang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Jingxian Sun
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Jiawei Wang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Linhu Zhao
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Keith Skaggs
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Cun-Gen Ma
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
3
|
Pradhan LK, Das SK. The Regulatory Role of Reticulons in Neurodegeneration: Insights Underpinning Therapeutic Potential for Neurodegenerative Diseases. Cell Mol Neurobiol 2021; 41:1157-1174. [PMID: 32504327 PMCID: PMC11448699 DOI: 10.1007/s10571-020-00893-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
In the last few decades, cytoplasmic organellar dysfunction, such as that of the endoplasmic reticulum (ER), has created a new area of research interest towards the development of serious health maladies including neurodegenerative diseases. In this context, the extensively dispersed family of ER-localized proteins, i.e. reticulons (RTNs), is gaining interest because of its regulative control over neural regeneration. As most neurodegenerative diseases are pathologically manifested with the accretion of misfolded proteins with subsequent induction of ER stress, the regulatory role of RTNs in neural dysfunction cannot be ignored. With the limited information available in the literature, delineation of the functional connection between rising consequences of neurodegenerative diseases and RTNs need to be elucidated. In this review, we provide a broad overview on the recently revealed regulatory roles of reticulons in the pathophysiology of several health maladies, with special emphasis on neurodegeneration. Additionally, we have also recapitulated the decisive role of RTN4 in neurite regeneration and highlighted how neurodegeneration and proteinopathies are mechanistically linked with each other through specific RTN paralogues. With the recent findings advocating zebrafish Rtn4b (a mammalian Nogo-A homologue) downregulation following central nervous system (CNS) lesion, RTNs provides new insight into the CNS regeneration. However, there are controversies with respect to the role of Rtn4b in zebrafish CNS regeneration. Given these controversies, the connection between the unique regenerative capabilities of zebrafish CNS by distinct compensatory mechanisms and Rtn4b signalling pathway could shed light on the development of new therapeutic strategies against serious neurodegenerative diseases.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
4
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
5
|
Álvarez-Salamero C, Castillo-González R, Pastor-Fernández G, Mariblanca IR, Pino J, Cibrian D, Navarro MN. IL-23 signaling regulation of pro-inflammatory T-cell migration uncovered by phosphoproteomics. PLoS Biol 2020; 18:e3000646. [PMID: 32203518 PMCID: PMC7117768 DOI: 10.1371/journal.pbio.3000646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2020] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin 23 (IL-23) triggers pathogenic features in pro-inflammatory, IL-17-secreting T cells (Th17 and Tγδ17) that play a key role in the development of inflammatory diseases. However, the IL-23 signaling cascade remains largely undefined. Here, we used quantitative phosphoproteomics to characterize IL-23 signaling in primary murine Th17 cells. We quantified 6,888 phosphorylation sites in Th17 cells and found 168 phosphorylations regulated upon IL-23 stimulation. IL-23 increased the phosphorylation of the myosin regulatory light chain (RLC), an actomyosin contractibility marker, in Th17 and Tγδ17 cells. IL-23-induced RLC phosphorylation required Janus kinase 2 (JAK2) and Rho-associated protein kinase (ROCK) catalytic activity, and further study of the IL-23/ROCK connection revealed an unexpected role of IL-23 in the migration of Tγδ17 and Th17 cells through ROCK activation. In addition, pharmacological inhibition of ROCK reduced Tγδ17 recruitment to inflamed skin upon challenge with inflammatory agent Imiquimod. This work (i) provides new insights into phosphorylation networks that control Th17 cells, (ii) widely expands the current knowledge on IL-23 signaling, and (iii) contributes to the increasing list of immune cells subsets characterized by global phosphoproteomic approaches. Phosphoproteomics of interleukin-17-secreting T cells (Th17 cells) identifies more than 100 phosphorylation events in response to interleukin-23 stimulation, revealing increased phosphorylation of myosin regulatory light chain (RLC) and a role for an IL-23/ROCK pathway in controlling migration of Th17 and Tγδ17 cells.
Collapse
Affiliation(s)
- Candelas Álvarez-Salamero
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - Raquel Castillo-González
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - Gloria Pastor-Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Isabel R. Mariblanca
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Jesús Pino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Danay Cibrian
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - María N. Navarro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Huang YQ, Peng ZR, Huang FL, Yang AL. Mechanism of delayed encephalopathy after acute carbon monoxide poisoning. Neural Regen Res 2020; 15:2286-2295. [PMID: 32594050 PMCID: PMC7749483 DOI: 10.4103/1673-5374.284995] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many hypotheses exist regarding the mechanism underlying delayed encephalopathy after acute carbon monoxide poisoning (DEACMP), including the inflammation and immune-mediated damage hypothesis and the cellular apoptosis and direct neuronal toxicity hypothesis; however, no existing hypothesis provides a satisfactory explanation for the complex clinical processes observed in DEACMP. Leucine-rich repeat and immunoglobulin-like domain-containing protein-1 (LINGO-1) activates the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing protein kinase 2 (ROCK2) signaling pathway, which negatively regulates oligodendrocyte myelination, axonal growth, and neuronal survival, causing myelin damage and participating in the pathophysiological processes associated with many central nervous system diseases. However, whether LINGO-1 is involved in DEACMP remains unclear. A DEACMP model was established in rats by allowing them to inhale 1000 ppm carbon monoxide gas for 40 minutes, followed by 3000 ppm carbon monoxide gas for an additional 20 minutes. The results showed that compared with control rats, DEACMP rats showed significantly increased water maze latency and increased protein and mRNA expression levels of LINGO-1, RhoA, and ROCK2 in the brain. Compared with normal rats, significant increases in injured neurons in the hippocampus and myelin sheath damage in the lateral geniculate body were observed in DEACMP rats. From days 1 to 21 after DEACMP, the intraperitoneal injection of retinoic acid (10 mg/kg), which can inhibit LINGO-1 expression, was able to improve the above changes observed in the DEACMP model. Therefore, the overexpression of LINGO-1 appeared to increase following carbon monoxide poisoning, activating the RhoA/ROCK2 signaling pathway, which may be an important pathophysiological mechanism underlying DEACMP. This study was reviewed and approved by the Medical Ethics Committee of Xiangya Hospital of Central South Hospital (approval No. 201612684) on December 26, 2016.
Collapse
Affiliation(s)
- Yan-Qing Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zheng-Rong Peng
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Fang-Ling Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - A-Li Yang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Yu J, Yan Y, Gu Q, Kumar G, Yu H, Zhao Y, Liu C, Gao Y, Chai Z, Chumber J, Xiao BG, Zhang GX, Zhang HT, Jiang Y, Ma CG. Fasudil in Combination With Bone Marrow Stromal Cells (BMSCs) Attenuates Alzheimer's Disease-Related Changes Through the Regulation of the Peripheral Immune System. Front Aging Neurosci 2018; 10:216. [PMID: 30061826 PMCID: PMC6054996 DOI: 10.3389/fnagi.2018.00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease. Its mechanism is still not clear. Majority of research focused on the central nervous system (CNS) changes, while few studies emphasize on peripheral immune system modulation. Our study aimed to investigate the regulation of the peripheral immune system and its relationship to the severity of the disease after treatment in an AD model of APPswe/PSEN1dE9 transgenic (APP/PS1 Tg) mice. APP/PS1 Tg mice (8 months old) were treated with the ROCK-II inhibitor 1-(5-isoquinolinesulfonyl)-homo-piperazine (Fasudil) (intraperitoneal (i.p.) injections, 25 mg/kg/day), bone marrow stromal cells (BMSCs; caudal vein injections, 1 × 106 BMSCs /time/mouse), Fasudil combined with BMSCs, or saline (i.p., control) for 2 months. Morris water maze (MWM) test was used to evaluate learning and memory. The mononuclear cells (MNCs) of spleens of APP/PS1 Tg mice were analyzed using flow cytometry for CD4+ T-cells, macrophages, and the pro-inflammatory and anti-inflammatory molecules of the macrophages. Immunohistochemical staining was used to examine the expression of ROCK-II in the spleens of APP/PS1 Tg mice. The MWM test showed improved spatial learning ability in APP/PS1 Tg mice treated with Fasudil or BMSCs alone or in combination, compared to untreated APP/PS1 Tg mice. Fasudil combined with BMSCs intervention significantly promoted the proliferation of CD4+/CD25+ and CD4+/ IL-10 lymphocytes, induced the release of cytokine factors, and regulated the balance of the immune system to work functionally. It also shifted M1 (MHC-II, CD86) to M2 (IL-10, CD206) phenotype of macrophages of CD11b and significantly enhanced the anti-inflammatory and phagocytic abilities (CD16/32) of macrophages of CD11b. Immunohistochemical staining showed significantly decreased expression of ROCK-II in mice treated with combination of Fasudil with BMSCs as compared to saline control. Fasudil in combination of BMSCs improved cognition of APP/PS1 Tg mice through the regulation of the peripheral immune system, including reduction of ROCK-II expression and increased proportion of anti-inflammatory M2 mononuclear phenotype and phagocytic macrophages in the spleen of the peripheral immune system. The latter was achieved through the communication between brain and spleen to improve the immunoregulation of CNS and AD disease conditions.
Collapse
Affiliation(s)
- Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuqing Yan
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Qingfang Gu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Hongqiang Yu
- 2011 Collaborative Innovation Center, Research Center of Neurobiology, Taiyuan, China
| | - Yijin Zhao
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Chunyun Liu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Ye Gao
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Zhi Chai
- 2011 Collaborative Innovation Center, Research Center of Neurobiology, Taiyuan, China
| | - Jasleen Chumber
- Departments of Behavioral Medicine and Psychiatry & Physiology, Pharmacology & Neuroscience, The Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Han-Ting Zhang
- Departments of Behavioral Medicine and Psychiatry & Physiology, Pharmacology & Neuroscience, The Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, China.,2011 Collaborative Innovation Center, Research Center of Neurobiology, Taiyuan, China
| |
Collapse
|
8
|
Saal K, Galter D, Roeber S, Bähr M, Tönges L, Lingor P. Altered Expression of Growth Associated Protein-43 and Rho Kinase in Human Patients with Parkinson's Disease. Brain Pathol 2017; 27:13-25. [PMID: 26748453 PMCID: PMC8029215 DOI: 10.1111/bpa.12346] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Causative treatment strategies for Parkinson's disease (PD) will have to address multiple underlying pathomechanisms to attenuate neurodegeneration. Additionally, the intrinsic regenerative capacity of the central nervous system is also an important factor contributing to restoration. Extracellular cues can limit sprouting and regrowth of adult neurons, but even aged neurons have a low intrinsic regeneration capacity. Whether this capacity has been lost or if growth inhibitory cues are increased during PD progression has not been resolved yet. In this study, we assessed the regenerative potential in the nigrostriatal system in post-mortem brain sections of PD patients compared to age-matched and young controls. Investigation of the expression pattern of the regeneration-associated protein GAP-43 suggested a lower regenerative capacity in nigral dopaminergic neurons of PD patients. Furthermore, the increase in protein expression of the growth-inhibitory protein ROCK2 in astrocytes and a similar trend in microglia, suggests an important role for ROCK2 in glial PD pathology, which is initiated already in normal aging. Considering the role of astro- and microglia in PD pathogenesis as well as beneficial effects of ROCK inhibition on neuronal survival and regeneration in neurodegenerative disease models, our data strengthens the importance of the ROCK pathway as a therapeutic target in PD.
Collapse
Affiliation(s)
- Kim‐Ann Saal
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
| | - Dagmar Galter
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Sigrun Roeber
- Department of NeuropathologyLudwig‐Maximilians‐UniversityMunichGermany
| | - Mathias Bähr
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| | - Lars Tönges
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| | - Paul Lingor
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| |
Collapse
|
9
|
Abstract
Effective immune responses require the precise regulation of dynamic interactions between hematopoietic and non-hematopoietic cells. The Rho subfamily of GTPases, which includes RhoA, is rapidly activated downstream of a diverse array of biochemical and biomechanical signals, and is emerging as an important mediator of this cross-talk. Key downstream effectors of RhoA are the Rho kinases, or ROCKs. The ROCKs are two serine-threonine kinases that can act as global coordinators of a tissue’s response to stress and injury because of their ability to regulate a wide range of biological processes. Although the RhoA-ROCK pathway has been extensively investigated in the non-hematopoietic compartment, its role in the immune system is just now becoming appreciated. In this commentary, we provide a brief overview of recent findings that highlight the contribution of this pathway to lymphocyte development and activation, and the impact that dysregulation in the activation of RhoA and/or the ROCKs may exert on a growing list of autoimmune and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, 10065, USA
| | - Luvana Chowdhury
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA
| | - Woelsung Yi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, 10021, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, 10065, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, New York, 10021, USA
| |
Collapse
|
10
|
Abeysinghe HCS, Phillips EL, Chin-Cheng H, Beart PM, Roulston CL. Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase. Int J Mol Sci 2016; 17:288. [PMID: 26927079 PMCID: PMC4813152 DOI: 10.3390/ijms17030288] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 01/13/2023] Open
Abstract
Stroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported to result in further damage and functional loss, we discuss the available evidence to suggest that the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting ROCK after stroke results in reduced scar formation and improved functional recovery.
Collapse
Affiliation(s)
- Hima Charika S Abeysinghe
- Neurotrauma Research, Department of Medicine, St Vincent's Campus, University of Melbourne, Parkville, VIC 3065, Australia.
- Department of Surgery, St Vincent's Campus, University of Melbourne, Parkville, VIC 3065, Australia.
| | - Ellie L Phillips
- Department of Biochemistry and Molecular Biology, Bio21 Insitute, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Heung Chin-Cheng
- Department of Biochemistry and Molecular Biology, Bio21 Insitute, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Philip M Beart
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Parkville, VIC 3010, Australia.
| | - Carli L Roulston
- Neurotrauma Research, Department of Medicine, St Vincent's Campus, University of Melbourne, Parkville, VIC 3065, Australia.
| |
Collapse
|
11
|
Chen C, Yu JZ, Zhang Q, Zhao YF, Liu CY, Li YH, Yang WF, Ma CG, Xiao BG. Role of Rho Kinase and Fasudil on Synaptic Plasticity in Multiple Sclerosis. Neuromolecular Med 2015; 17:454-65. [PMID: 26481340 DOI: 10.1007/s12017-015-8374-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
In addition to myelin loss and oligodendrocyte injury, axonal damage is a major cause of irreversible neurological disability in multiple sclerosis (MS). A series of studies have demonstrated that Rho kinase (ROCK) is involved in synaptic plasticity of neurons. Here, we found that ROCK activity in MS serum was elevated compared with serum from healthy controls. In experimental autoimmune encephalomyelitis (EAE), ROCK activity was also increased in serum, spleen, brain and spinal cord. Neuron injury with scratch and TNF-α stimulation induced the up-regulation of ROCK activity. When serum of MS patients was co-cultured with mouse cortical neurons in vitro, MS serum caused neurite shortening and reduction of cell viability, while the addition of Fasudil partially restored synaptic morphology of neurons, revealing that MS sera inhibited neurite outgrowth and synapse formation. The expression of synaptophysin was decreased in MS serum-neurons, and elevated in the presence of Fasudil. In contrast, the expression of phosphorylated collapsin response mediator protein-2 (CRMP-2) was elevated in MS serum-neurons and decreased in the presence of Fasudil. However, the addition of anti-ROCK I/II mixed antibodies in MS serum partially declined ROCK activity, but did not improve neurite outgrowth of neurons, revealing that Fasudil should prevent synaptic damage possibly through inhibiting intracellular ROCK activation mediated with MS serum. Our results indicate that axonal loss in MS may be related to increased ROCK activity. Fasudil could promote synaptogenesis and thus may contribute to preventing irreversible neurological disability associated with MS.
Collapse
Affiliation(s)
- Chan Chen
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China.,Department of Rehabilitation, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Qiong Zhang
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yong-Fei Zhao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Chun-Yun Liu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Yan-Hua Li
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Wan-Fang Yang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China.,"2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China.
| |
Collapse
|
12
|
O'Shea RD, Lau CL, Zulaziz N, Maclean FL, Nisbet DR, Horne MK, Beart PM. Transcriptomic analysis and 3D bioengineering of astrocytes indicate ROCK inhibition produces cytotrophic astrogliosis. Front Neurosci 2015; 9:50. [PMID: 25750613 PMCID: PMC4335181 DOI: 10.3389/fnins.2015.00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023] Open
Abstract
Astrocytes provide trophic, structural and metabolic support to neurons, and are considered genuine targets in regenerative neurobiology, as their phenotype arbitrates brain integrity during injury. Inhibitors of Rho kinase (ROCK) cause stellation of cultured 2D astrocytes, increased L-glutamate transport, augmented G-actin, and elevated expression of BDNF and anti-oxidant genes. Here we further explored the signposts of a cytotrophic, “healthy” phenotype by data-mining of our astrocytic transcriptome in the presence of Fasudil. Gene expression profiles of motor and autophagic cellular cascades and inflammatory/angiogenic responses were all inhibited, favoring adoption of an anti-migratory phenotype. Like ROCK inhibition, tissue engineered bioscaffolds can influence the extracellular matrix. We built upon our evidence that astrocytes maintained on 3D poly-ε-caprolactone (PCL) electrospun scaffolds adopt a cytotrophic phenotype similar to that produced by Fasudil. Using these procedures, employing mature 3D cultured astrocytes, Fasudil (100 μM) or Y27632 (30 μM) added for the last 72 h of culture altered arborization, which featured numerous additional minor processes as shown by GFAP and AHNAK immunolabelling. Both ROCK inhibitors decreased F-actin, but increased G-actin labeling, indicative of disassembly of actin stress fibers. ROCK inhibitors provide additional beneficial effects for bioengineered 3D astrocytes, including enlargement of the overall arbor. Potentially, the combined strategy of bio-compatible scaffolds with ROCK inhibition offers unique advantages for the management of glial scarring. Overall these data emphasize that manipulation of the astrocyte phenotype to achieve a “healthy biology” offers new hope for the management of inflammation in neuropathologies.
Collapse
Affiliation(s)
- Ross D O'Shea
- Department of Physiology, Anatomy and Microbiology, La Trobe University Bundoora, VIC, Australia
| | - Chew L Lau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Parkville, VIC, Australia
| | - Natasha Zulaziz
- Department of Physiology, Anatomy and Microbiology, La Trobe University Bundoora, VIC, Australia
| | - Francesca L Maclean
- Research School of Engineering, The Australian National University Canberra, ACT, Australia
| | - David R Nisbet
- Research School of Engineering, The Australian National University Canberra, ACT, Australia
| | - Malcolm K Horne
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Parkville, VIC, Australia ; Department of Neurology, St. Vincent's Hospital Fitzroy, VIC, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
13
|
Fujita Y, Yamashita T. Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 2014; 8:338. [PMID: 25374504 PMCID: PMC4205828 DOI: 10.3389/fnins.2014.00338] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/06/2014] [Indexed: 12/31/2022] Open
Abstract
Rho kinase (ROCK) is a serine/threonine kinase and a downstream target of the small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal functions such as migration, dendrite development, and axonal extension. Evidence from animal studies reveals that RhoA/ROCK signaling is involved in various central nervous system (CNS) diseases, including optic nerve and spinal cord injuries, stroke, and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the pathophysiology of CNS diseases, the development of therapeutic agents targeting this pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK pathway mediates the effects of myelin-associated axon growth inhibitors—Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and repulsive guidance molecule (RGM). Blocking RhoA/ROCK signaling can reverse the inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK inhibitors have been under development or in clinical trials as therapeutic agents for neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway in neurological disorders. We also discuss the potential therapeutic approaches of RhoA/ROCK inhibitors for various neurological disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Osaka, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Osaka, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
14
|
Zhao YF, Zhang X, Ding ZB, Yang XW, Zhang H, Yu JZ, Li YH, Liu CY, Zhang Q, Zhang HZ, Ma CG, Xiao BG. The therapeutic potential of Rho kinase inhibitor fasudil derivative FaD-1 in experimental autoimmune encephalomyelitis. J Mol Neurosci 2014; 55:725-32. [PMID: 25223373 DOI: 10.1007/s12031-014-0411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
Although therapeutic potential of fasudil in EAE is promising, action mechanism and clinical limitations are still not fully understood and resolved. In this study, we observed the therapeutic potential of a novel Rho kinase (ROCK) inhibitor FaD-1, a fasudil derivative, and explored possible mechanism in MOG35-55-induced EAE. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG35-55) immunization. The pathology of spinal cord was measured by immunohistochemistry and neurological impairment was evaluated using clinical scores. FaD-1, as a novel ROCK inhibitor, inhibited the expression of ROCK II that is mainly expressed in the CNS. We show here that FaD-1 ameliorates the neurological defects and the severity of MOG-induced EAE in mice, accompanied by the protection of demyelination and the inhibition of neuroinflammation in spinal cord of EAE. In addition, FaD-1 dampened TLR2 and TLR4 signaling as well as Th1 (IFN-γ) and Th17 (IL-17) responses in spinal cord of EAE. FaD-1 also prevented the expression of iNOS and production of inflammatory cytokine IL-1β, IL-6, and TNF-α which are specific markers for M1 inflammatory microglia/macrophages. This study highlights the therapeutic potential of FaD-1 as a ROCK inhibitor for the treatment of human autoimmune diseases with both inflammatory and autoimmune components.
Collapse
Affiliation(s)
- Yong-Fei Zhao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pedraza CE, Taylor C, Pereira A, Seng M, Tham CS, Izrael M, Webb M. Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro 2014; 6:6/4/1759091414538134. [PMID: 25289646 PMCID: PMC4189421 DOI: 10.1177/1759091414538134] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In inflammatory demyelinating diseases such as multiple sclerosis (MS), myelin
degradation results in loss of axonal function and eventual axonal degeneration.
Differentiation of resident oligodendrocyte precursor cells (OPCs) leading to
remyelination of denuded axons occurs regularly in early stages of MS but halts as
the pathology transitions into progressive MS. Pharmacological potentiation of
endogenous OPC maturation and remyelination is now recognized as a promising
therapeutic approach for MS. In this study, we analyzed the effects of modulating the
Rho-A/Rho-associated kinase (ROCK) signaling pathway, by the use of selective
inhibitors of ROCK, on the transformation of OPCs into mature, myelinating
oligodendrocytes. Here we demonstrate, with the use of cellular cultures from rodent
and human origin, that ROCK inhibition in OPCs results in a significant generation of
branches and cell processes in early differentiation stages, followed by accelerated
production of myelin protein as an indication of advanced maturation. Furthermore,
inhibition of ROCK enhanced myelin formation in cocultures of human OPCs and neurons
and remyelination in rat cerebellar tissue explants previously demyelinated with
lysolecithin. Our findings indicate that by direct inhibition of this signaling
molecule, the OPC differentiation program is activated resulting in morphological and
functional cell maturation, myelin formation, and regeneration. Altogether, we show
evidence of modulation of the Rho-A/ROCK signaling pathway as a viable target for the
induction of remyelination in demyelinating pathologies.
Collapse
Affiliation(s)
- Carlos E Pedraza
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Albertina Pereira
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Michelle Seng
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Chui-Se Tham
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Michael Webb
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| |
Collapse
|
16
|
Rusielewicz T, Nam J, Damanakis E, John GR, Raine CS, Melendez-Vasquez CV. Accelerated repair of demyelinated CNS lesions in the absence of non-muscle myosin IIB. Glia 2014; 62:580-91. [PMID: 24470341 PMCID: PMC4135430 DOI: 10.1002/glia.22627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
The oligodendrocyte (OL), the myelinating cell of the central nervous system, undergoes dramatic changes in the organization of its cytoskeleton as it differentiates from a precursor (oligodendrocyte precursor cells) to a myelin-forming cell. These changes include an increase in its branching cell processes, a phenomenon necessary for OL to myelinate multiple axon segments. We have previously shown that levels and activity of non-muscle myosin II (NMII), a regulator of cytoskeletal contractility, decrease as a function of differentiation and that inhibition of NMII increases branching and myelination of OL in coculture with neurons. We have also found that mixed glial cell cultures derived from NMIIB knockout mice display an increase in mature myelin basic protein-expressing OL compared with wild-type cultures. We have now extended our studies to investigate the role of NMIIB ablation on myelin repair following focal demyelination by lysolecithin. To this end, we generated an oligodendrocyte-specific inducible knockout model using a Plp-driven promoter in combination with a temporally activated CRE-ER fusion protein. Our data indicate that conditional ablation of NMII in adult mouse brain, expedites lesion resolution and remyelination by Plp+ oligodendrocyte-lineage cells when compared with that observed in control brains. Taken together, these data validate the function of NMII as that of a negative regulator of OL myelination in vivo and provide a novel target for promoting myelin repair in conditions such as multiple sclerosis.
Collapse
Affiliation(s)
- Tomasz Rusielewicz
- Department of Biological Sciences, Hunter College, New York, New York; The Graduate Center, Molecular Cellular and Developmental Biology, The City University of New York, New York
| | | | | | | | | | | |
Collapse
|
17
|
Liu C, Li Y, Yu J, Feng L, Hou S, Liu Y, Guo M, Xie Y, Meng J, Zhang H, Xiao B, Ma C. Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 2013; 8:e54841. [PMID: 23418431 PMCID: PMC3572131 DOI: 10.1371/journal.pone.0054841] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/17/2012] [Indexed: 02/08/2023] Open
Abstract
We observed the therapeutic effect of Fasudil and explored its mechanisms in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Fasudil, a selective Rho kinase (ROCK) inhibitor, was injected intraperitoneally at 40 mg/kg/d in early and late stages of EAE induction. Fasudil ameliorated the clinical severity of EAE at different stages, and decreased the expression of ROCK-II in spleen, accompanied by an improvement in demyelination and inhibition of inflammatory cells. Fasudil mainly inhibited CD4+IL-17+ T cells in early treatment, but also elevated CD4+IL-10+ regulatory T cells and IL-10 production in late treatment. The treatment of Fasudil shifted inflammatory M1 to anti-inflammatory M2 macrophages in both early and late treatment, being shown by inhibiting CD16/32, iNOS, IL-12, TLR4 and CD40 and increasing CD206, Arg-1, IL-10 and CD14 in spleen. By using Western blot and immunohistochemistry, iNOS and Arg-1, as two most specific markers for M1 and M2, was inhibited or induced in splenic macrophages and spinal cords of EAE mice treated with Fasudil. In vitro experiments also indicate that Fasudil shifts M1 to M2 phenotype, which does not require the participation or auxiliary of other cells. The polarization of M2 macrophages was associated with the decrease of inflammatory cytokine IL-1β, TNF-α and MCP-1. These results demonstrate that Fasudil has therapeutic potential in EAE possibly through inducing the polarization of M2 macrophages and inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Chunyun Liu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Yanhua Li
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Jiezhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Ling Feng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Shaowei Hou
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Yueting Liu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Mingfang Guo
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Yong Xie
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Jian Meng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Haifei Zhang
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- * E-mail: (BX); (CM)
| | - Cungen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
- Department of Neurology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
- * E-mail: (BX); (CM)
| |
Collapse
|
18
|
Tönges L, Koch JC, Bähr M, Lingor P. ROCKing Regeneration: Rho Kinase Inhibition as Molecular Target for Neurorestoration. Front Mol Neurosci 2011; 4:39. [PMID: 22065949 PMCID: PMC3207219 DOI: 10.3389/fnmol.2011.00039] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/16/2011] [Indexed: 12/31/2022] Open
Abstract
Regenerative failure in the CNS largely depends on pronounced growth inhibitory signaling and reduced cellular survival after a lesion stimulus. One key mediator of growth inhibitory signaling is Rho-associated kinase (ROCK), which has been shown to modulate growth cone stability by regulation of actin dynamics. Recently, there is accumulating evidence the ROCK also plays a deleterious role for cellular survival. In this manuscript we illustrate that ROCK is involved in a variety of intracellular signaling pathways that comprise far more than those involved in neurite growth inhibition alone. Although ROCK function is currently studied in many different disease contexts, our review focuses on neurorestorative approaches in the CNS, especially in models of neurotrauma. Promising strategies to target ROCK by pharmacological small molecule inhibitors and RNAi approaches are evaluated for their outcome on regenerative growth and cellular protection both in preclinical and in clinical studies.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, University Medicine Göttingen Göttingen, Germany
| | | | | | | |
Collapse
|
19
|
Lau CL, O'Shea RD, Broberg BV, Bischof L, Beart PM. The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes. Br J Pharmacol 2011; 163:533-45. [PMID: 21309758 DOI: 10.1111/j.1476-5381.2011.01259.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Glutamate transporters play a major role in maintaining brain homeostasis and the astrocytic transporters, EAAT1 and EAAT2, are functionally dominant. Astrocytic excitatory amino acid transporters (EAATs) play important roles in various neuropathologies wherein astrocytes undergo cytoskeletal changes. Astrocytic plasticity is well documented, but the interface between EAAT function, actin and the astrocytic cytoskeleton is poorly understood. Because Rho kinase (ROCK) is a key determinant of actin polymerization, we investigated the effects of ROCK inhibitors on EAAT activity and astrocytic morphology. EXPERIMENTAL APPROACH The functional activity of glutamate transport was determined in murine cultured astrocytes after exposure to the ROCK inhibitors Fasudil (HA-1077) and Y27632 using biochemical, molecular and morphological approaches. Cytochemical analyses assessed changes in astrocytic morphology, F-/G-actin, and localizations of EAAT1/2. RESULTS Fasudil and Y27632 increased [(3)H]-D-aspartate (D-Asp) uptake into astrocytes, and the action of Fasudil was time-dependent and concentration-related. The rapid stellation of astrocytes (glial fibrillary acidic protein immunocytochemistry) induced by Fasudil was accompanied by reduced phalloidin staining of F-actin and increased V(max) for [(3)H]-D-Asp uptake. Immunoblotting after biotinylation demonstrated that Fasudil increased the expression of EAAT1 and EAAT2 on the cell surface. Immunocytochemistry indicated that Fasudil induced prominent labelling of astrocytic processes by EAAT1/2. CONCLUSION AND IMPLICATIONS These data show for the first time that ROCK plays a major role in determining the cell surface expression of EAAT1/2, providing new evidence for an association between transporter function and astrocytic phenotype. ROCK inhibitors, via the actin cytoskeleton, effect a consequent elevation of glutamate transporter function - this activity profile may contribute to their beneficial actions in neuropathologies.
Collapse
Affiliation(s)
- C L Lau
- Molecular Neuropharmacology, Florey Neuroscience Institutes, Parkville, Australia
| | | | | | | | | |
Collapse
|
20
|
Moreno-López B, Sunico CR, González-Forero D. NO orchestrates the loss of synaptic boutons from adult "sick" motoneurons: modeling a molecular mechanism. Mol Neurobiol 2010; 43:41-66. [PMID: 21190141 DOI: 10.1007/s12035-010-8159-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Synapse elimination is the main factor responsible for the cognitive decline accompanying many of the neuropathological conditions affecting humans. Synaptic stripping of motoneurons is also a common hallmark of several motor pathologies. Therefore, knowledge of the molecular basis underlying this plastic process is of central interest for the development of new therapeutic tools. Recent advances from our group highlight the role of nitric oxide (NO) as a key molecule triggering synapse loss in two models of motor pathologies. De novo expression of the neuronal isoform of NO synthase (nNOS) in motoneurons commonly occurs in response to the physical injury of a motor nerve and in the course of amyotrophic lateral sclerosis. In both conditions, this event precedes synaptic withdrawal from motoneurons. Strikingly, nNOS-synthesized NO is "necessary" and "sufficient" to induce synaptic detachment from motoneurons. The mechanism involves a paracrine/retrograde action of NO on pre-synaptic structures, initiating a downstream signaling cascade that includes sequential activation of (1) soluble guanylyl cyclase, (2) cyclic guanosine monophosphate-dependent protein kinase, and (3) RhoA/Rho kinase (ROCK) signaling. Finally, ROCK activation promotes phosphorylation of regulatory myosin light chain, which leads to myosin activation and actomyosin contraction. This latter event presumably contributes to the contractile force to produce ending axon retraction. Several findings support that this mechanism may operate in the most prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernardo Moreno-López
- Grupo de NeuroDegeneración y NeuroReparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla, 9, 11003 Cádiz, Spain.
| | | | | |
Collapse
|
21
|
Rayavarapu S, Van der meulen JH, Gordish-Dressman H, Hoffman EP, Nagaraju K, Knoblach SM. Characterization of dysferlin deficient SJL/J mice to assess preclinical drug efficacy: fasudil exacerbates muscle disease phenotype. PLoS One 2010; 5:e12981. [PMID: 20886045 PMCID: PMC2945315 DOI: 10.1371/journal.pone.0012981] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/31/2010] [Indexed: 12/21/2022] Open
Abstract
The dysferlin deficient SJL/J mouse strain is commonly used to study dysferlin deficient myopathies. Therefore, we systematically evaluated behavior in relatively young (9-25 weeks) SJL/J mice and compared them to C57BL6 mice to determine which functional end points may be the most effective to use for preclinical studies in the SJL/J strain. SJL/J mice had reduced body weight, lower open field scores, higher creatine kinase levels, and less muscle force than did C57BL6 mice. Power calculations for expected effect sizes indicated that grip strength normalized to body weight and open field activity were the most sensitive indicators of functional status in SJL/J mice. Weight and open field scores of SJL/J mice deteriorated over the course of the study, indicating that progressive myopathy was ongoing even in relatively young (<6 months old) SJL/J mice. To further characterize SJL/J mice within the context of treatment, we assessed the effect of fasudil, a rho-kinase inhibitor, on disease phenotype. Fasudil was evaluated based on previous observations that Rho signaling may be overly activated as part of the inflammatory cascade in SJL/J mice. Fasudil treated SJL/J mice showed increased body weight, but decreased grip strength, horizontal activity, and soleus muscle force, compared to untreated SJL/J controls. Fasudil either improved or had no effect on these outcomes in C57BL6 mice. Fasudil also reduced the number of infiltrating macrophages/monocytes in SJL/J muscle tissue, but had no effect on muscle fiber degeneration/regeneration. These studies provide a basis for standardization of preclinical drug testing trials in the dysferlin deficient SJL/J mice, and identify measures of functional status that are potentially translatable to clinical trial outcomes. In addition, the data provide pharmacological evidence suggesting that activation of rho-kinase, at least in part, may represent a beneficial compensatory response in dysferlin deficient myopathies.
Collapse
Affiliation(s)
- Sree Rayavarapu
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
- Institute of Biomedical Sciences, The George Washington University, Washington, D.C., United States of America
| | - Jack H. Van der meulen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
| | - Eric P. Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
- Department of Integrative Systems Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D.C., United States of America
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
- Department of Integrative Systems Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D.C., United States of America
- * E-mail: (KN); (SMK)
| | - Susan M. Knoblach
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
- Department of Integrative Systems Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D.C., United States of America
- * E-mail: (KN); (SMK)
| |
Collapse
|