1
|
Su Y, Cao N, Zhang D, Wang M. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy. Ageing Res Rev 2024; 96:102248. [PMID: 38408490 DOI: 10.1016/j.arr.2024.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China
| | - Ningrui Cao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China; Department of Neurology, West China Hospital of Sichuan University, China.
| |
Collapse
|
2
|
Almeida C, Pongilio RP, Móvio MI, Higa GSV, Resende RR, Jiang J, Kinjo ER, Kihara AH. Distinct Cell-specific Roles of NOX2 and MyD88 in Epileptogenesis. Front Cell Dev Biol 2022; 10:926776. [PMID: 35859905 PMCID: PMC9289522 DOI: 10.3389/fcell.2022.926776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
It is well established that temporal lobe epilepsy (TLE) is often related to oxidative stress and neuroinflammation. Both processes subserve alterations observed in epileptogenesis and ultimately involve distinct classes of cells, including astrocytes, microglia, and specific neural subtypes. For this reason, molecules associated with oxidative stress response and neuroinflammation have been proposed as potential targets for therapeutic strategies. However, these molecules can participate in distinct intracellular pathways depending on the cell type. To illustrate this, we reviewed the potential role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and myeloid differentiation primary response 88 (MyD88) in astrocytes, microglia, and neurons in epileptogenesis. Furthermore, we presented approaches to study genes in different cells, employing single-cell RNA-sequencing (scRNAseq) transcriptomic analyses, transgenic technologies and viral serotypes carrying vectors with specific promoters. We discussed the importance of identifying particular roles of molecules depending on the cell type, endowing more effective therapeutic strategies to treat TLE.
Collapse
Affiliation(s)
- Cayo Almeida
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Rodrigo Ribeiro Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erika Reime Kinjo
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
3
|
Estaras M, Martinez-Morcillo S, García A, Martinez R, Estevez M, Perez-Lopez M, Miguez MP, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco G, Lopez D, Roncero V, Salido GM, Gonzalez A. Pancreatic stellate cells exhibit adaptation to oxidative stress evoked by hypoxia. Biol Cell 2020; 112:280-299. [PMID: 32632968 DOI: 10.1111/boc.202000020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND INFORMATION Pancreatic stellate cells play a key role in the fibrosis that develops in diseases such as pancreatic cancer. In the growing tumour, a hypoxia condition develops under which cancer cells are able to proliferate. The growth of fibrotic tissue contributes to hypoxia. In this study, the effect of hypoxia (1% O2 ) on pancreatic stellate cells physiology was investigated. Changes in intracellular free-Ca2+ concentration, mitochondrial free-Ca2+ concentration and mitochondrial membrane potential were studied by fluorescence techniques. The status of enzymes responsible for the cellular oxidative state was analyzed by quantitative reverse transcription-polymerase chain reaction, high-performance liquid chromatography, spectrophotometric and fluorimetric methods and by Western blotting analysis. Cell viability and proliferation were studied by crystal violet test, 5-bromo-2-deoxyuridine cell proliferation test and Western blotting analysis. Finally, cell migration was studied employing the wound healing assay. RESULTS Hypoxia induced an increase in intracellular and mitochondrial free-Ca2+ concentration, whereas mitochondrial membrane potential was decreased. An increase in mitochondrial reactive oxygen species production was observed. Additionally, an increase in the oxidation of proteins and lipids was detected. Moreover, cellular total antioxidant capacity was decreased. Increases in the expression of superoxide dismutase 1 and 2 were observed and superoxide dismutase activity was augmented. Hypoxia evoked a decrease in the oxidized/reduced glutathione ratio. An increase in the phosphorylation of nuclear factor erythroid 2-related factor and in expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 were detected. The expression of cyclin A was decreased, whereas expression of cyclin D and the content of 5-bromo-2-deoxyuridine were increased. This was accompanied by an increase in cell viability. The phosphorylation state of c-Jun NH2 -terminal kinase was increased, whereas that of p44/42 and p38 was decreased. Finally, cells subjected to hypoxia maintained migration ability. CONCLUSIONS AND SIGNIFICANCE Hypoxia creates pro-oxidant conditions in pancreatic stellate cells to which cells adapt and leads to increased viability and proliferation.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Alfredo García
- Department of Animal Production, Cicytex-La Orden, Badajoz, Spain
| | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Mario Estevez
- IPROCAR Research Institute, Food Technology, University of Extremadura, Caceres, 10003, Spain
| | - Marcos Perez-Lopez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Maria P Miguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
4
|
Sasaki T, Tamaki J, Nishizawa K, Kojima T, Tanaka R, Moriya R, Sasaki H, Maruyama H. Evaluation of cell viability and metabolic activity of a 3D cultured human epidermal model using a dynamic autoradiographic technique with a PET radiopharmaceutical. Sci Rep 2019; 9:10685. [PMID: 31337856 PMCID: PMC6650402 DOI: 10.1038/s41598-019-47153-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Abstract
Quality control of tissues and organs for transplant is important to confirm their safety and effectiveness for regenerative medicine. However, quality evaluation is only carried out using a limited range of inspection criteria, because many of the available evaluation tests are invasive. In order to explore the potential of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG)-bioradiography as a non-invasive test for estimation of the safety, soundness, and effectiveness of tissues for transplantation, [18F]FDG uptake and cell viability or metabolism were investigated using a reconstructed human epidermal model (RHEM). We developed an imaging system, and suitable bioradiographic image acquisition conditions and its effectiveness were investigated. [18F]FDG uptake increased in agreement with DNA content as a marker of cell numbers and for histological assessment during cell proliferation and keratinization. [18F]FDG uptake was significantly decreased in good agreement with the viability of tissues used with various hazardous chemical treatments. [18F]FDG uptake by the tissues was decreased by hypothermia treatment and increased by hypoxia treatment while maintaining cell viability in the tissue. Therefore, [18F]FDG-bioradiography can be useful to estimate cell viability or metabolism in this RHEM. This method might be utilized as a non-invasive test for quality evaluation of tissues for transplantation.
Collapse
Affiliation(s)
- Toru Sasaki
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan. .,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Junya Tamaki
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kentaro Nishizawa
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takahiro Kojima
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ryoich Tanaka
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ryotaro Moriya
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Haruyo Sasaki
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hiroko Maruyama
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
5
|
Liu B, Xu Q, Wang J, Lin J, Pei Y, Cui Y, Wang G, Zhu L. Recombinant human growth hormone treatment of mice suppresses inflammation and apoptosis caused by skin flap ischemia–reperfusion injury. J Cell Biochem 2019; 120:18162-18171. [PMID: 31144385 DOI: 10.1002/jcb.29122] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Ben Liu
- Orthopaedic Department Qilu Hospital of Shandong University Jinan China
| | - Qingjia Xu
- Orthopaedic Department Qilu Hospital of Shandong University Jinan China
| | - Juntao Wang
- Orthopaedic Department Qilu Hospital of Shandong University Jinan China
| | - Junhao Lin
- Orthopaedic Department Qilu Hospital of Shandong University Jinan China
| | - Yantao Pei
- Orthopaedic Department Qilu Hospital of Shandong University Jinan China
| | - Yidong Cui
- Orthopaedic Department Qilu Hospital of Shandong University Jinan China
| | - Gang Wang
- Orthopaedic Department Qilu Hospital of Shandong University Jinan China
| | - Lei Zhu
- Orthopaedic Department Qilu Hospital of Shandong University Jinan China
| |
Collapse
|
6
|
Kelly J, Murphy J. Mitochondrial gene expression changes in cultured human skin cells following simulated sunlight irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:167-174. [DOI: 10.1016/j.jphotobiol.2017.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
7
|
Liu Z, Zhu Z, Zhao J, Ren W, Cai Y, Wang Q, Luan X, Zhao K, He J. Malondialdehyde: A novel predictive biomarker for post-stroke depression. J Affect Disord 2017; 220:95-101. [PMID: 28600933 DOI: 10.1016/j.jad.2017.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/29/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND There is evidence that stroke is accompanied by oxidative stress. However, the links between oxidative stress and depression in stroke patients are poorly understood. This study examines whether post-stroke depression (PSD) is associated with oxidative stress. METHODS Overall, 216 acute stroke patients were consecutively recruited and followed up for 1 month. Blood specimens were collected within 24h after admission and measured for the following oxidative stress biomarkers: malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX). All enrolled patients were divided into the PSD group or the non-PSD group according to an assessment of clinical depression. One hundred normal control subjects were also recruited. RESULTS There was a positive correlation between serum MDA levels and HAMD scores in stroke patients (r=0.536, p<0.001). Based on the Receiver-operating characteristic (ROC) curve, the optimal cutoff value of serum MDA levels as an indicator for an auxiliary diagnosis of PSD was projected to be 2.898 nmol/ml, which yielded a sensitivity of 77.9% and a specificity of 81.1%, with an area under the curve of 0.883 (95% CI, 0.836-0.929). Elevated MDA (≥2.898 nmol/ml) was an independent predictive marker of PSD (odds ratio OR=24.295; 95% CI, 9.461-62.388; p<0.001, adjusted for relevant confounders). LIMITATIONS We excluded patients with severe aphasia or with serious conditions. In addition, the information for dietary intake was not recorded, which may influence oxidative stress levels. CONCLUSION Our study demonstrated that an elevated serum MDA level at admission was positively associated with an increased risk of developing depression after acute stroke, especially minor stroke.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuoying Zhu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiyun Zhao
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenwei Ren
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yan Cai
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiongzhang Wang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoqian Luan
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kai Zhao
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jincai He
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
8
|
Sasaki T, Awaji T, Shimada K, Sasaki H. Increase of reactive oxygen species generation in cerebral cortex slices after the transiently enhanced metabolic activity. Neurosci Res 2017; 123:55-64. [PMID: 28499835 DOI: 10.1016/j.neures.2017.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Under certain conditions such as hypoxia-reoxygenation, the generation of reactive oxygen species (ROS) increases following hypoxia caused by a decreased oxygen supply. As another hypoxic condition, an excess neural activity status including epileptic seizure induces a decrease in tissue oxygen partial pressure (pO2) caused by enhanced oxygen utilization; however, whether ROS generation increases following the hypoxic status induced by transiently enhanced energy metabolism in brain tissue currently remains unknown. We herein investigated ROS-dependent chemiluminescence in cerebral cortex slices during the restoration of transiently enhanced energy metabolism induced by a high-potassium treatment with tissue pO2 changes and redox balance. ROS generation in the tissue was enhanced after high-potassium-induced hypoxia, but not by the reversed order of the treatment: control-potassium then high-potassium treatment, high-potassium treatment alone, and control-potassium treatment alone. The high-potassium treatment induced a transient decrease in tissue pO2 and a shift in the tissue redox balance towards reduction. The transient shift in the tissue redox balance towards reduction with enhanced metabolic activity and its recovery may correlate with ROS generation. This phenomenon may mimic ROS generation following the hypoxic status induced by transiently enhanced energy metabolism.
Collapse
Affiliation(s)
- Toru Sasaki
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan; Research Team for Mechanism of Aging, Redox Research, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan.
| | - Takuji Awaji
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuyoshi Shimada
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Haruyo Sasaki
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
9
|
Yu QJ, Yang Y. Function of SOD1, SOD2, and PI3K/AKT signaling pathways in the protection of propofol on spinal cord ischemic reperfusion injury in a rabbit model. Life Sci 2016; 148:86-92. [DOI: 10.1016/j.lfs.2016.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 01/30/2023]
|
10
|
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6:524-551. [PMID: 26484802 PMCID: PMC4625011 DOI: 10.1016/j.redox.2015.08.020] [Citation(s) in RCA: 1011] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. Reperfusion injury is implicated in a variety of human diseases and disorders. Evidence implicating ROS in reperfusion injury continues to grow. Several enzymes are candidate sources of ROS in post-ischemic tissue. Inter-enzymatic ROS-dependent signaling enhances the oxidative stress caused by I/R. .
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:238914. [PMID: 26301039 PMCID: PMC4537744 DOI: 10.1155/2015/238914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/26/2014] [Indexed: 01/23/2023]
Abstract
Oxidative stress is believed to greatly contribute to the pathogenesis of various diseases, including neurodegeneration. Impairment of mitochondrial energy production and increased mitochondrial oxidative damage are considered early pathological events that lead to neurodegeneration. Manganese superoxide dismutase (Mn-SOD, SOD2) is a mitochondrial antioxidant enzyme that converts toxic superoxide to hydrogen peroxide. To investigate the pathological role of mitochondrial oxidative stress in the central nervous system, we generated brain-specific SOD2-deficient mice (B-Sod2−/−) using nestin-Cre-loxp system. B-Sod2−/− showed perinatal death, along with severe growth retardation. Interestingly, these mice exhibited spongiform neurodegeneration in motor cortex, hippocampus, and brainstem, accompanied by gliosis. In addition, the mutant mice had markedly decreased mitochondrial complex II activity, but not complex I or IV, in the brain based on enzyme histochemistry. Furthermore, brain lipid peroxidation was significantly increased in the B-Sod2−/−, without any compensatory alterations of the activities of other antioxidative enzymes, such as catalase or glutathione peroxidase. These results suggest that SOD2 protects the neural system from oxidative stress in the perinatal stage and is essential for infant survival and central neural function in mice.
Collapse
|
12
|
Surowka AD, Wrobel P, Adamek D, Radwanska E, Szczerbowska-Boruchowska M. Synchrotron radiation based X-ray fluorescence shows changes in the elemental composition of the human substantia nigra in aged brains. Metallomics 2015; 7:1522-31. [DOI: 10.1039/c5mt00154d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 2014; 71:368-378. [PMID: 24704971 PMCID: PMC4049226 DOI: 10.1016/j.freeradbiomed.2014.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Significant advances in maintaining health throughout life can be made through a clear understanding of the fundamental mechanisms that regulate aging. The Oxidative Stress Theory of Aging (OSTA) is probably the most well studied mechanistic theory of aging and suggests that the rate of aging is controlled by accumulation of oxidative damage. To directly test the OSTA, aging has been measured in several lines of mice with genetic alterations in the expression of enzymatic antioxidants. Under its strictest interpretation, these studies do not support the OSTA, as modulation of antioxidant expression does not generally affect mouse life span. However, the incidence of many age-related diseases and pathologies is altered in these models, suggesting that oxidative stress does significantly influence some aspects of the aging process. Further, oxidative stress may affect aging in disparate patterns among tissues or under various environmental conditions. In this review, we summarize the current literature regarding aging in antioxidant mutant mice and offer several interpretations of their support of the OSTA.
Collapse
Affiliation(s)
- Yael H Edrey
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA; The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
14
|
Marecki JC, Parajuli N, Crow JP, MacMillan-Crow LA. The use of the Cre/loxP system to study oxidative stress in tissue-specific manganese superoxide dismutase knockout models. Antioxid Redox Signal 2014; 20:1655-70. [PMID: 23641945 PMCID: PMC3942694 DOI: 10.1089/ars.2013.5293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Respiring mitochondria are a significant site for reactions involving reactive oxygen and nitrogen species that contribute to irreversible cellular, structural, and functional damage leading to multiple pathological conditions. Manganese superoxide dismutase (MnSOD) is a critical component of the antioxidant system tasked with protecting the oxidant-sensitive mitochondrial compartment from oxidative stress. Since global knockout of MnSOD results in significant cardiac and neuronal damage leading to early postnatal lethality, this approach has limited use for studying the mechanisms of oxidant stress and the development of disease in specific tissues lacking MnSOD. To circumvent this problem, a number of investigators have employed the Cre/loxP system to precisely knockout MnSOD in individual tissues. RECENT ADVANCES Multiple tissue and organ-specific Cre-expressing mice have been generated, which greatly enhance the specificity of MnSOD knockout in tissues and organ systems that were once difficult, if not impossible to study. CRITICAL ISSUES Evaluating the contribution of MnSOD deficiency to oxidant-mediated mitochondrial damage requires careful consideration of the promoter system used for creating the tissue-specific knockout animal, in addition to the collection and interpretation of multiple indices of oxidative stress and damage. FUTURE DIRECTIONS Expanded use of well-characterized tissue-specific promoter elements and inducible systems to drive the Cre/loxP recombinational events will lead to a spectrum of MnSOD tissue knockout models, and a clearer understanding of the role of MnSOD in preventing mitochondrial dysfunction in human disease.
Collapse
Affiliation(s)
- John C Marecki
- 1 Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | | | | | | |
Collapse
|
15
|
Abstract
SIGNIFICANCE Cancer is the second leading cause of death in the United States. Considering the quality of life and treatment cost, the best way to fight against cancer is to prevent or suppress cancer development. Cancer is preventable as indicated by human papilloma virus (HPV) vaccination and tamoxifen/raloxifen treatment in breast cancer prevention. The activities of superoxide dismutases (SODs) are often lowered during early cancer development, making it a rational candidate for cancer prevention. RECENT ADVANCES SOD liposome and mimetics have been shown to be effective in cancer prevention animal models. They've also passed safety tests during early phase clinical trials. Dietary supplement-based SOD cancer prevention provides another opportunity for antioxidant-based cancer prevention. New mechanistic studies have revealed that SOD inhibits not only oncogenic activity, but also subsequent metabolic shifts during early tumorigenesis. CRITICAL ISSUES Lack of sufficient animal model studies targeting specific cancers; and lack of clinical trials and support from pharmaceutical industries also hamper efforts in further advancing SOD-based cancer prevention. FUTURE DIRECTIONS To educate and obtain support from our society that cancer is preventable. To combine SOD-based therapeutics with other cancer preventive agents to obtain synergistic effects. To formulate a dietary supplementation-based antioxidant approach for cancer prevention. Lastly, targeting specific populations who are prone to carcinogens, which can trigger oxidative stress as the mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Delira Robbins
- 1 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | |
Collapse
|
16
|
Rodríguez-Martínez E, Martínez F, Espinosa-García M, Maldonado P, Rivas-Arancibia S. Mitochondrial dysfunction in the hippocampus of rats caused by chronic oxidative stress. Neuroscience 2013; 252:384-95. [DOI: 10.1016/j.neuroscience.2013.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/23/2022]
|
17
|
Nathaniel TI, Otukonyong EE, Okon M, Chaves J, Cochran T, Nathaniel AI. Metabolic regulatory clues from the naked mole rat: toward brain regulatory functions during stroke. Brain Res Bull 2013; 98:44-52. [PMID: 23886571 DOI: 10.1016/j.brainresbull.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 12/30/2022]
Abstract
Resistance to tissue hypoxia is a robust fundamental adaptation to low oxygen supply, and represents a novel neuroscience problem with significance to mammalian physiology as well as human health. With the underlying mechanisms strongly conserved in evolution, the ability to resist tissue hypoxia in natural systems has recently emerged as an interesting model in mammalian physiology research to understand mechanisms that can be manipulated for the clinical management of stroke. The extraordinary ability to resist tissue hypoxia by the naked mole rat (NMR) indicates the presence of a unique mechanism that underlies the remarkable healthy life span and exceptional hypoxia resistance. This opens an interesting line of research into understanding the mechanisms employed by the naked mole rat (Heterocephalus glaber) to protect the brain during hypoxia. In a series of studies, we first examined the presence of neuroprotection in the brain cells of naked mole rats (NMRs) subjected to hypoxic insults, and then characterized the expression of such neuroprotection in a wide range of time intervals. We used oxygen nutrient deprivation (OND), an in vitro model of resistance to tissue hypoxia to determine whether there is evidence of neuronal survival in the hippocampal (CA1) slices of NMRs that are subjected to chronic hypoxia. Hippocampus neurons of NMRs that were kept in hypoxic condition consistently tolerated OND right from the onset time of 5h. This tolerance was maintained for 24h. This finding indicates that there is evidence of resistance to tissue hypoxia by CA1 neurons of NMRs. We further examined the effect of hypoxia on metabolic rate in the NMR. Repeated measurement of metabolic rates during exposure of naked mole rats to hypoxia over a constant ambient temperature indicates that hypoxia significantly decreased metabolic rates in the NMR, suggesting that the observed decline in metabolic rate during hypoxia may contribute to the adaptive mechanism used by the NMR to resist tissue hypoxia. This work is aimed to contribute to the understanding of mechanisms of resistance to tissue hypoxia in the NMR as an important life-sustaining process, which can be translated into therapeutic interventions during stroke.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- University of South Carolina School of Medicine, HSEB, 607 Grove Road, Greenville, SC 29605, United States.
| | | | | | | | | | | |
Collapse
|
18
|
Sun H, Xiong W, Arrick DM, Mayhan WG. Low-dose alcohol consumption protects against transient focal cerebral ischemia in mice: possible role of PPARγ. PLoS One 2012; 7:e41716. [PMID: 22848576 PMCID: PMC3407212 DOI: 10.1371/journal.pone.0041716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/26/2012] [Indexed: 01/22/2023] Open
Abstract
Background We examined the influence of low-dose alcohol consumption on cerebral ischemia/reperfusion (I/R) injury in mice and a potential mechanism underlying the neuroprotective effect of low-dose alcohol consumption. Methodology/Principal Findings C57BL/6 J mice were fed a liquid diet without or with 1% alcohol for 8 weeks, orally treated with rosiglitazone (20 mg/kg/day), a peroxisome proliferator-activated receptor gamma (PPARγ)-selective agonist, or GW9662 (3 mg/kg/day), a selective PPARγantagonist, for 2 weeks. The mice were subjected to unilateral middle cerebral artery occlusion (MCAO) for 90 minutes. Brain injury, DNA fragmentation and nuclear PPARγ protein/activity were evaluated at 24 hours of reperfusion. We found that the brain injury and DNA fragmentation were reduced in 1% alcohol-fed mice compared to nonalcohol-fed mice. Rosiglitazone suppressed the brain injury in nonalcohol-fed mice, but didn't alter the brain injury in alcohol-fed mice. In contrast, GW9662 worsened the brain injury in alcohol-fed mice, but didn't alter the brain injury in nonalcohol-fed mice. Nuclear PPARγ protein/activity at peri-infarct and the contralateral corresponding areas of the parietal cortex was greater in alcohol-fed mice compared to nonalcohol-fed mice. Using differentiated catecholaminergic (CATH.a) neurons, we measured dose-related influences of chronic alcohol exposure on nuclear PPARγ protein/activity and the influence of low-dose alcohol exposure on 2-hour oxygen-glucose deprivation (OGD)/24-hour reoxygenation-induced apoptosis. We found that low-dose alcohol exposure increased nuclear PPARγ protein/activity and protected against the OGD/reoxygenation-induced apoptosis. The beneficial effect of low-dose alcohol exposure on OGD/reoxygenation-induced apoptosis was abolished by GW9662. Conclusions/Significance Our findings suggest that chronic consumption of low-dose alcohol protects the brain against I/R injury. The neuroprotective effect of low-dose alcohol consumption may be related to an upregulated PPARγ.
Collapse
Affiliation(s)
- Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.
| | | | | | | |
Collapse
|
19
|
Oh SS, Sullivan KA, Wilkinson JE, Backus C, Hayes JM, Sakowski SA, Feldman EL. Neurodegeneration and early lethality in superoxide dismutase 2-deficient mice: a comprehensive analysis of the central and peripheral nervous systems. Neuroscience 2012; 212:201-13. [PMID: 22516022 DOI: 10.1016/j.neuroscience.2012.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 03/02/2012] [Accepted: 03/20/2012] [Indexed: 01/17/2023]
Abstract
The contribution of oxidative stress to diabetic complications including neuropathy is widely known. Mitochondrial and cellular damage are associated with the overproduction of reactive oxygen species and decreased levels or function of the cellular antioxidant mitochondrial manganese superoxide dismutase (SOD2). We hypothesized that targeted SOD2 deletion in the peripheral nervous system using cre-lox technology under control of the nestin promoter would accelerate neuropathy in a type 2 model of diabetes, the BKS.db/db mouse. SOD2-deficient mice, however, demonstrated severe gait deformities and seizures and died by 20 days of age. Examination of SOD2 expression levels revealed that SOD2 was lost in brain and reduced in the spinal cord, but appeared normal in dorsal root ganglia and peripheral nerves in SOD2-deficient mice. These findings indicate incomplete targeted knockout of SOD2. Morphological examination revealed cortical lesions similar to spongiform encephalopathy in the brain of SOD2-deficient mice. No lesions were evident in the spinal cord, but changes in myelin within the sciatic and sural nerves including a lack of cohesion between layers of compact myelin were observed. Together, these results indicate that targeted neuronal SOD2 knockout using the nestin promoter results in severe central nervous system degeneration and perinatal lethality in mice. A specific peripheral nervous system-targeting construct is required to examine the consequences of SOD2 knockout in diabetic neuropathy.
Collapse
Affiliation(s)
- S S Oh
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, Hatsuta H, Murayama S, Barnham KJ, Irie K, Shirasawa T, Shimizu T. SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 2011; 286:44557-68. [PMID: 22072713 PMCID: PMC3247976 DOI: 10.1074/jbc.m111.279208] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/01/2011] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is closely linked to the pathogenesis of neurodegeneration. Soluble amyloid β (Aβ) oligomers cause cognitive impairment and synaptic dysfunction in Alzheimer disease (AD). However, the relationship between oligomers, oxidative stress, and their localization during disease progression is uncertain. Our previous study demonstrated that mice deficient in cytoplasmic copper/zinc superoxide dismutase (CuZn-SOD, SOD1) have features of drusen formation, a hallmark of age-related macular degeneration (Imamura, Y., Noda, S., Hashizume, K., Shinoda, K., Yamaguchi, M., Uchiyama, S., Shimizu, T., Mizushima, Y., Shirasawa, T., and Tsubota, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 11282-11287). Amyloid assembly has been implicated as a common mechanism of plaque and drusen formation. Here, we show that Sod1 deficiency in an amyloid precursor protein-overexpressing mouse model (AD mouse, Tg2576) accelerated Aβ oligomerization and memory impairment as compared with control AD mouse and that these phenomena were basically mediated by oxidative damage. The increased plaque and neuronal inflammation were accompanied by the generation of N(ε)-carboxymethyl lysine in advanced glycation end products, a rapid marker of oxidative damage, induced by Sod1 gene-dependent reduction. The Sod1 deletion also caused Tau phosphorylation and the lower levels of synaptophysin. Furthermore, the levels of SOD1 were significantly decreased in human AD patients rather than non-AD age-matched individuals, but mitochondrial SOD (Mn-SOD, SOD2) and extracellular SOD (CuZn-SOD, SOD3) were not. These findings suggest that cytoplasmic superoxide radical plays a critical role in the pathogenesis of AD. Activation of Sod1 may be a therapeutic strategy for the inhibition of AD progression.
Collapse
Affiliation(s)
- Kazuma Murakami
- From Molecular Gerontology
- the Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nakaba Murata
- From Molecular Gerontology
- Applied Biological Chemistry, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | - Hiroyuki Hatsuta
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kevin J. Barnham
- the Department of Pathology, Bio21 Molecular and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia, and
| | - Kazuhiro Irie
- the Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takuji Shirasawa
- the Department of Aging Control Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiko Shimizu
- From Molecular Gerontology
- Applied Biological Chemistry, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|