1
|
Parent MB, Ferreira-Neto HC, Kruemmel AR, Althammer F, Patel AA, Keo S, Whitley KE, Cox DN, Stern JE. Heart failure impairs mood and memory in male rats and down-regulates the expression of numerous genes important for synaptic plasticity in related brain regions. Behav Brain Res 2021; 414:113452. [PMID: 34274373 DOI: 10.1016/j.bbr.2021.113452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Chronic heart failure (HF) is a serious disorder that afflicts more than 26 million patients worldwide. HF is comorbid with depression, anxiety and memory deficits that have serious implications for quality of life and self-care in patients who have HF. Still, there are few studies that have assessed the effects of severely reduced ejection fraction (≤40 %) on cognition in non-human animal models. Moreover, limited information is available regarding the effects of HF on genetic markers of synaptic plasticity in brain areas critical for memory and mood regulation. We induced HF in male rats and tested mood and anxiety (sucrose preference and elevated plus maze) and memory (spontaneous alternation and inhibitory avoidance) and measured the simultaneous expression of 84 synaptic plasticity-associated genes in dorsal (DH) and ventral hippocampus (VH), basolateral (BLA) and central amygdala (CeA) and prefrontal cortex (PFC). We also included the hypothalamic paraventricular nucleus (PVN), which is implicated in neurohumoral activation in HF. Our results show that rats with severely reduced ejection fraction recapitulate behavioral symptoms seen in patients with chronic HF including, increased anxiety and impaired memory in both tasks. HF also downregulated several synaptic-plasticity genes in PFC and PVN, moderate decreases in DH and CeA and minimal effects in BLA and VH. Collectively, these findings identify candidate brain areas and molecular mechanisms underlying HF-induced disturbances in mood and memory.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Atit A Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Sreinick Keo
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Xing L, Huttner WB. Neurotransmitters as Modulators of Neural Progenitor Cell Proliferation During Mammalian Neocortex Development. Front Cell Dev Biol 2020; 8:391. [PMID: 32528958 PMCID: PMC7264395 DOI: 10.3389/fcell.2020.00391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Neural progenitor cells (NPCs) play a central role during the development and evolution of the mammalian neocortex. Precise temporal and spatial control of NPC proliferation by a concert of cell-intrinsic and cell-extrinsic factors is essential for the correct formation and proper function of the neocortex. In this review, we focus on the regulation of NPC proliferation by neurotransmitters, which act as a group of cell-extrinsic factors during mammalian neocortex development. We first summarize, from both in vivo and in vitro studies, our current knowledge on how γ-aminobutyric acid (GABA), glutamate and serotonin modulate NPC proliferation in the developing neocortex and the potential involvements of different receptors in the underlying mechanisms. Another focus of this review is to discuss future perspectives using conditionally gene-modified mice and human brain organoids as model systems to further our understanding on the contribution of neurotransmitters to the development of a normal neocortex, as well as how dysregulated neurotransmitter signaling leads to developmental and psychiatric disorders.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
3
|
Zhu YN, Zuo GJ, Wang Q, Chen XM, Cheng JK, Zhang S. The involvement of the mGluR5-mediated JNK signaling pathway in rats with diabetic retinopathy. Int Ophthalmol 2019; 39:2223-2235. [PMID: 30607864 DOI: 10.1007/s10792-018-01061-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To understand the involvement of the mGluR5-mediated JNK signaling pathway in rats with diabetic retinopathy (DR). METHODS This study established rat models of diabetes mellitus (DM), which were divided into Normal, DM, DM + CHPG (mGluR5 agonist CHPG), and DM + MTEP (mGluR5 antagonist MTEP) groups. The blood glucose and weight of rats were recorded. EB staining was used for observation of blood-retinal barrier (BRB) damage. Neural retina function was measured by pattern electroretinogram (ERG). PAS and NG2 immunohistochemistry were conducted to evaluate the retinal vascular morphology. The TUNEL assay and active caspase-3 immunohistochemistry were performed to detect retinal cell apoptosis. Additionally, the expression levels of superoxide dismutase (SOD) and methylenedioxyamphetamine (MDA) were measured. Moreover, expression levels of mGluR5 and JNK pathway-related proteins were detected by western blot. RESULTS When compared with control rats, rats in the DM group showed decreased amplitude and latency of the peak times in the ERG test; further, DM group rats presented increases in blood glucose, BRB permeability, a retinal capillary area density, retinal cell apoptosis with an increased number of active caspase-3-positive cells, MDA level, mGluR5 levels, and the ratio of p-JNK/JNK, and they showed reductions in body weight and SOD activity, as well as in the number of pericytes and in the pericyte coverage (all P < 0.05). However, rats in DM + CHPG group had stronger negative effects than those in DM group (all P < 0.05). Rats from DM + MTEP group showed an opposite trend compared with the DM rats (all P < 0.05). CONCLUSION The level of mGluR5 in DR rats was upregulated, whereas inhibition of mGluR5 alleviated retinal pathological damage and decreased cell apoptosis to improve DR via suppression of the JNK signaling pathway, which provided a scientific theoretical basis for the clinical treatment of DR.
Collapse
Affiliation(s)
- Yan-Ni Zhu
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China.
| | - Guo-Jin Zuo
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| | - Qi Wang
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| | - Xiao-Ming Chen
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| | - Jin-Kui Cheng
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| | - Shu Zhang
- Department of Ophthalmology, Jingzhou First People's Hospital, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Qi C, Zhang J, Chen X, Wan J, Wang J, Zhang P, Liu Y. Hypoxia stimulates neural stem cell proliferation by increasing HIF‑1α expression and activating Wnt/β-catenin signaling. ACTA ACUST UNITED AC 2017; 63:12-19. [PMID: 28838333 DOI: 10.14715/cmb/2017.63.7.2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/26/2023]
Abstract
Evidence indicates that after brain injury, neurogenesis is enhanced in regions such as hippocampus, striatum, and cortex. To study the role of hypoxia-inducible factor-1 (HIF‑1α) and Wnt signaling in cerebral ischemia/hypoxia-induced proliferation of neural stem cells (NSCs), we investigated the proliferation of NSCs, expression of HIF‑1α, and activation of Wnt signaling under conditions of pathologic hypoxia in vitro. NSCs were isolated from 30-day-old Sprague-Dawley rats and subjected to 0.3% oxygen in a microaerophilic incubation system. Cell proliferation was evaluated by measuring the diameter of neurospheres and by bromodeoxyuridine incorporation assays. Real-time quantitative PCR and Western blotting were used to detect mRNA and protein levels of HIF-1α, β-catenin, and cyclin D1 in the NSCs. The results showed that hypoxia increased NSC proliferation and the levels of HIF-1α, β‑catenin, and cyclin D1 (p < 0.05). Blockade of the Wnt signaling pathway decreased hypoxia-induced NSC proliferation, whereas activation of this pathway increased hypoxia-induced NSC proliferation (p < 0.05). Knockdown of HIF-1α with HIF-1α siRNA decreased β‑catenin nuclear translocation and cyclin D1 expression, and inhibited proliferation of NSCs (p < 0.05). These findings indicate that pathologic hypoxia stimulates NSC proliferation by increasing expression of HIF-1α and activating the Wnt/β-catenin signaling pathway. The data suggest that Wnt/β-catenin signaling may play a key role in NSC proliferation under conditions of pathologic hypoxia.
Collapse
Affiliation(s)
- C Qi
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| | - J Zhang
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| | - X Chen
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| | - J Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | - J Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | - P Zhang
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| | - Y Liu
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| |
Collapse
|
5
|
Götz M, Nakafuku M, Petrik D. Neurogenesis in the Developing and Adult Brain-Similarities and Key Differences. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018853. [PMID: 27235475 DOI: 10.1101/cshperspect.a018853] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adult neurogenesis in the mammalian brain is often viewed as a continuation of neurogenesis at earlier, developmental stages. Here, we will critically review the extent to which this is the case highlighting similarities as well as key differences. Although many transcriptional regulators are shared in neurogenesis at embryonic and adult stages, recent findings on the molecular mechanisms by which these neuronal fate determinants control fate acquisition and maintenance have revealed profound differences between development and adulthood. Importantly, adult neurogenesis occurs in a gliogenic environment, hence requiring adult-specific additional and unique mechanisms of neuronal fate specification and maintenance. Thus, a better understanding of the molecular logic for continuous adult neurogenesis provides important clues to develop strategies to manipulate endogenous stem cells for the purpose of repair.
Collapse
Affiliation(s)
- Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, 80336 Munich, Germany Synergy, Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Masato Nakafuku
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45140 Departments of Pediatrics and Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - David Petrik
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, 80336 Munich, Germany
| |
Collapse
|
6
|
Eom HS, Park HR, Jo SK, Kim YS, Moon C, Kim SH, Jung U. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells. PLoS One 2016; 11:e0147538. [PMID: 26828720 PMCID: PMC4734671 DOI: 10.1371/journal.pone.0147538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/04/2016] [Indexed: 01/02/2023] Open
Abstract
Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, mGluR-1, STAT3 or PI3K. The inhibition of PI3K blocked both p53 signaling and STAT3-mGluR1 signaling but inhibition of p53 did not affect STAT3-mGluR1 signaling in irradiated C17.2 cells. Finally, these results of the IR-induced altered differentiation in C17.2 cells were verified in ex vivo experiments using mouse primary neural stem cells. In conclusion, the results of this study demonstrated that IR is able to trigger the altered neuronal differentiation in undifferentiated neural stem-like cells through PI3K-STAT3-mGluR1 and PI3K-p53 signaling. It is suggested that the IR-induced altered neuronal differentiation may play a role in the brain dysfunction caused by IR.
Collapse
Affiliation(s)
- Hyeon Soo Eom
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hae Ran Park
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sung Kee Jo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
7
|
Lei S, Zhang P, Li W, Gao M, He X, Zheng J, Li X, Wang X, Wang N, Zhang J, Qi C, Lu H, Chen X, Liu Y. Pre- and posttreatment with edaravone protects CA1 hippocampus and enhances neurogenesis in the subgranular zone of dentate gyrus after transient global cerebral ischemia in rats. ASN Neuro 2014; 6:6/6/1759091414558417. [PMID: 25388889 PMCID: PMC4357607 DOI: 10.1177/1759091414558417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs) in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15), control (n = 15), and edaravone-treated (n = 15) groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α) and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p < .05). Treatment with edaravone also decreased apoptosis of NSPCs (p < .01). Furthermore, treatment with edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia.
Collapse
Affiliation(s)
- Shan Lei
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Weisong Li
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ming Gao
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Juan Zheng
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xu Li
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xiao Wang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ning Wang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Junfeng Zhang
- Department of Anatomy, Xi'an Medical University, Xi'an, China
| | - Cunfang Qi
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| |
Collapse
|
8
|
Ishimoto T, Nakamichi N, Hosotani H, Masuo Y, Sugiura T, Kato Y. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons. PLoS One 2014; 9:e89434. [PMID: 24586778 PMCID: PMC3934899 DOI: 10.1371/journal.pone.0089434] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/11/2014] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs) of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO) as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs). These cells exhibited time-dependent [3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid) led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP), with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits cellular proliferation via regulation of oxidative stress, and also promotes cellular differentiation by modulating the expression of basic helix-loop-helix transcription factors via an unidentified mechanism different from antioxidant action.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Hosotani
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoko Sugiura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
9
|
Jansson LC, Åkerman KE. The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J Neural Transm (Vienna) 2014; 121:819-36. [DOI: 10.1007/s00702-014-1174-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
|
10
|
Functional Recovery after Scutellarin Treatment in Transient Cerebral Ischemic Rats: A Pilot Study with (18) F-Fluorodeoxyglucose MicroPET. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:507091. [PMID: 23737833 PMCID: PMC3659649 DOI: 10.1155/2013/507091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 11/17/2022]
Abstract
Objective. To investigate neuroprotective effects of scutellarin (Scu) in a rat model of cerebral ischemia with use of 18F-fluorodeoxyglucose (18F-FDG) micro positron emission tomography (microPET). Method. Middle cerebral artery occlusion was used to establish cerebral ischemia. Rats were divided into 5 groups: sham operation, cerebral ischemia-reperfusion untreated (CIRU) group, Scu-25 group (Scu 25 mg/kg/d), Scu-50 group (Scu 50 mg/kg/d), and nimodipine (10 mg/Kg/d). The treatment groups were given for 2 weeks. The therapeutic effects in terms of cerebral infarct volume, neurological deficit scores, and cerebral glucose metabolism were evaluated. Levels of vascular density factor (vWF), glial marker (GFAP), and mature neuronal marker (NeuN) were assessed by immunohistochemistry. Results. The neurological deficit scores were significantly decreased in the Scu-50 group compared to the CIRU group (P < 0.001). 18F-FDG accumulation in the ipsilateral cerebral infarction increased steadily over time in Scu-50 group compared with CIRU group (P < 0.01) and Scu-25 group (P < 0.01). Immunohistochemical analysis demonstrated Scu-50 enhanced neuronal maturation. Conclusion. 18F-FDG microPET imaging demonstrated metabolic recovery after Scu-50 treatment in the rat model of cerebral ischemia. The neuroprotective effects of Scu on cerebral ischemic injury might be associated with increased regional glucose activity and neuronal maturation.
Collapse
|
11
|
Tong W, Xiong F, Li Y, Zhang L. Hypoxia inhibits cardiomyocyte proliferation in fetal rat hearts via upregulating TIMP-4. Am J Physiol Regul Integr Comp Physiol 2013; 304:R613-20. [PMID: 23427085 PMCID: PMC3627956 DOI: 10.1152/ajpregu.00515.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/14/2013] [Indexed: 01/12/2023]
Abstract
Maternal hypoxia inhibits cardiomyocyte proliferation in the heart of fetal and neonatal rats. The present study tested the hypothesis that hypoxia has a direct effect inhibiting cardiomyocyte proliferation via upregulating tissue inhibitors of metalloproteinases (TIMP) in fetal rat hearts. Isolated fetal rat hearts and rat embryonic ventricular myocyte H9c2 cells were treated ex vivo with 20% or 1% O(2) for 48 or 24 h, respectively. Hypoxia caused a significant reduction in cardiomyocyte Ki-67 expression and bromodeoxyuridine incorporation in fetal hearts and H9c2 cells. In both fetal hearts and H9c2 cells, hypoxia resulted in a significant decrease in a cell division marker cyclin D2 but an increase in a cell division inhibitor p27. Additionally, hypoxia caused an upregulation of TIMP-3 and TIMP-4 in fetal hearts and H9c2 cells. Knockdown of TIMP-3 in H9c2 cells significantly increased cyclin D2 and Ki-67 and partially blocked the hypoxia-induced inhibition of cyclin D2 and Ki-67 in H9c2 cells. Unlike TIMP-3, TIMP-4 knockdown had no significant effects on the basal levels of cell proliferation but completely abrogated the hypoxia-mediated effects. These findings provide evidence of a novel causal role of TIMP-4 and TIMP-3 in the direct inhibitory effect of hypoxia on cardiomyocyte proliferation in the developing heart.
Collapse
Affiliation(s)
- Wenni Tong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|