1
|
Hajimirzaei P, Tabatabaei FSA, Nasibi-Sis H, Razavian RS, Nasirinezhad F. Schwann cell transplantation for remyelination, regeneration, tissue sparing, and functional recovery in spinal cord injury: A systematic review and meta-analysis of animal studies. Exp Neurol 2025; 384:115062. [PMID: 39579959 DOI: 10.1016/j.expneurol.2024.115062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a significant global health challenge that results in profound physical and neurological impairments. Despite progress in medical care, the treatment options for SCI are still restricted and often focus on symptom management rather than promoting neural repair and functional recovery. This study focused on clarifying the impact of Schwann cell (SC) transplantation on the molecular, cellular, and functional basis of recovery in animal models of SCI. MATERIAL AND METHODS Relevant studies were identified by conducting searches across multiple databases, which included PubMed, Web of Science, Scopus, and ProQuest. The data were analyzed via comprehensive meta-analysis software. We assessed the risk of bias via the SYRCLE method. RESULTS The analysis included 59 studies, 48 of which provided quantitative data. The results revealed significant improvements in various outcome variables, including protein zero structures (SMD = 1.66, 95 %CI: 0.96-2.36; p < 0.001; I2 = 49.8 %), peripherally myelinated axons (SMD = 1.81, 95 %CI: 0.99-2.63; p < 0.001; I2 = 39.3 %), biotinylated dextran amine-labeled CST only rostral (SMD = 1.31, 95 % CI: 0.50-2.12, p < 0.01, I2 = 49.7 %), fast blue-labeled reticular formation (SMD = 0.96, 95 %CI: 0.43-1.49, p < 0.001, I2 = 0.0 %), 5-hydroxytryptamine caudally (SMD = 0.83, 95 %CI: 0.36-1.29, p < 0.001, I2 = 17.2 %) and epicenter (SMD = 0.85, 95 %CI: 0.17-1.53, p < 0.05, I2 = 62.7 %), tyrosine hydroxylase caudally (SMD = 1.86, 95 %CI: 1.14-2.59, p < 0.001, I2 = 0.0 %) and epicenter (SMD = 1.82, 95 %CI: 1.18-2.47, p < 0.001, I2 = 0.0 %), cavity volume (SMD = -2.07, 95 %CI: -2.90 - -1.24, p < 0.001, I2 = 67.2 %), and Basso, Beattie, and Bresnahan (SMD = 1.26, 95 %CI: 0.93-1.58; p < 0.001; I2 = 79.4 %). CONCLUSIONS This study demonstrates the promising potential of SC transplantation as a therapeutic approach for SCI, clarifying its impact on various biological processes critical for recovery.
Collapse
Affiliation(s)
- Pooya Hajimirzaei
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Nasibi-Sis
- Department of Medical Library and Information Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Iran University of Medical sciences, Tehran, Iran; Center of Experimental and Comparative Study, Iran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lendemeijer B, de Vrij FMS. In vitro models for human neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:213-227. [PMID: 40122626 DOI: 10.1016/b978-0-443-19104-6.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia are a heterogenous population of cells in the nervous system. In the central nervous system, this group is classified into astrocytes, oligodendrocytes, and microglia. Neuroglia in the peripheral nervous system are divided into Schwann cells and enteric glia. These groups of cells display considerable differences in their developmental origin, morphology, function, and regional abundance. Compared to animal models, human neuroglia differ in their transcriptomic profile, morphology, and function. Investigating the physiology of healthy or diseased human neuroglia in vivo is challenging due to the inaccessibility of the tissue. Therefore, researchers have developed numerous in vitro models attempting to replicate the natural tissue environment. Earlier models made use of postmortem, postsurgical, or fetal tissue to establish human neuroglial cells in vitro, either as a pure population of the desired cell type or as organotypic slice cultures. Advancements in human stem cell differentiation techniques have greatly enhanced the possibilities for creating in vitro models of human neuroglia. This chapter provides an overview of the current models used to study the functioning and development of human neuroglia in vitro, both in health and disease.
Collapse
Affiliation(s)
- Bas Lendemeijer
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, United States
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Goudarzi N, Shabani R, Moradi F, Ebrahimi M, Katebi M, Jafari A, Mehdinejadiani S, Vahabzade G, Soleimani M. Evaluation puramatrix as a 3D microenvironment for neural differentiation of human breastmilk stem cells. Brain Res 2024; 1836:148936. [PMID: 38649134 DOI: 10.1016/j.brainres.2024.148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The extracellular matrix is recognized as an efficient and determining component in the growth, proliferation, and differentiation of cells due to its ability to perceive and respond to environmental signals. Applying three-dimensional scaffolds can create conditions similar to the extracellular matrix and provide an opportunity to investigate cell fate. In this study, we employed the PuraMatrix hydrogel scaffold as an advanced cell culture platform for the neural differentiation of stem cells derived from human breastmilk to design an opportune model for tissue engineering. Isolated stem cells from breastmilk were cultured and differentiated into neural-like cells on PuraMatrix peptide hydrogel and in the two-dimensional system. The compatibility of breastmilk-derived stem cells with PuraMatrix and cell viability was evaluated by scanning electron microscopy and MTT assay, respectively. Induction of differentiation was achieved by exposing cells to the neurogenic medium. After 21 days of the initial differentiation process, the expression levels of glial fibrillary acidic protein (GFAP), microtubule-associated protein (MAP2), β-tubulin III, and neuronal nuclear antigen (NeuN) were analyzed using the immunostaining technique. The results illustrated a notable expression of MAP2, β-tubulin-III, and NeuN in the three-dimensional cell culture in comparison to the two-dimensional system, indicating the beneficial effect of PuraMatrix scaffolds in the process of differentiating breastmilk-derived stem cells into neural-like cells. In view of the obtained results, the combination of breastmilk-derived stem cells and PuraMatrix hydrogel scaffold could be an advisable preference for neural tissue regeneration and cell therapy.
Collapse
Affiliation(s)
- Nasim Goudarzi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ronak Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Majid Katebi
- Department of Anatomy, Faculty of Medical Science, Bandarabas, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Amir Jafari
- Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro.
| | - Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gelareh Vahabzade
- Department of Pharmacology, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kharazinejad E, Hassanzadeh G, Sahebkar A, Yousefi B, Reza Sameni H, Majidpoor J, Golchini E, Taghdiri Nooshabadi V, Mousavi M. The Comparative Effects of Schwann Cells and Wharton's Jelly Mesenchymal Stem Cells on the AIM2 Inflammasome Activity in an Experimental Model of Spinal Cord Injury. Neuroscience 2023; 535:1-12. [PMID: 37890609 DOI: 10.1016/j.neuroscience.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. The Basso, Beattie, Bresnahan (BBB) test, Nissl staining, and Luxol fast blue (LFB) staining were performed to evaluate locomotor function, neuronal survival, and myelination, respectively. Real-time polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) were employed to analyze the gene and protein expressions of inflammasome components, including AIM2, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18. Both gene and protein expressions of all evaluated factors were decreased after SC or WJ-MSC treatment, with a more pronounced effect observed in the SCs group (P < 0.05). Additionally, SCs promoted neuronal survival and myelination. Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.
Collapse
Affiliation(s)
- Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behpour Yousefi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ehsan Golchini
- Department of Operating Room, School of Paramedical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Vajihe Taghdiri Nooshabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Mousavi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
5
|
Li S, Yu Q, Li H, Chen M, Jin Y, Liu D. Self-Assembled Peptide Hydrogels in Regenerative Medicine. Gels 2023; 9:653. [PMID: 37623108 PMCID: PMC10453854 DOI: 10.3390/gels9080653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Regenerative medicine is a complex discipline that is becoming a hot research topic. Skin, bone, and nerve regeneration dominate current treatments in regenerative medicine. A new type of drug is urgently needed for their treatment due to their high vulnerability to damage and weak self-repairing ability. A self-assembled peptide hydrogel is a good scaffolding material in regenerative medicine because it is similar to the cytoplasmic matrix environment; it promotes cell adhesion, migration, proliferation, and division; and its degradation products are natural and harmless proteins. However, fewer studies have examined the specific mechanisms of self-assembled peptide hydrogels in promoting tissue regeneration. This review summarizes the applications and mechanisms of self-assembled short peptide and peptide hydrogels in skin, bone, and neural healing to improve their applications in tissue healing and regeneration.
Collapse
Affiliation(s)
- Shuangyang Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Qixuan Yu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Hongpeng Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Meiqi Chen
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Ye Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| |
Collapse
|
6
|
Millesi F, Mero S, Semmler L, Rad A, Stadlmayr S, Borger A, Supper P, Haertinger M, Ploszczanski L, Windberger U, Weiss T, Naghilou A, Radtke C. Systematic Comparison of Commercial Hydrogels Revealed That a Synergy of Laminin and Strain-Stiffening Promotes Directed Migration of Neural Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12678-12695. [PMID: 36876876 PMCID: PMC10020957 DOI: 10.1021/acsami.2c20040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
Hydrogels have shown potential in replacing damaged nerve tissue, but the ideal hydrogel is yet to be found. In this study, various commercially available hydrogels were compared. Schwann cells, fibroblasts, and dorsal root ganglia neurons were seeded on the hydrogels, and their morphology, viability, proliferation, and migration were examined. Additionally, detailed analyses of the gels' rheological properties and topography were conducted. Our results demonstrate vast differences on cell elongation and directed migration on the hydrogels. Laminin was identified as the driver behind cell elongation and in combination with a porous, fibrous, and strain-stiffening matrix structure responsible for oriented cell motility. This study improves our understanding of cell-matrix interactions and thereby facilitates tailored fabrication of hydrogels in the future.
Collapse
Affiliation(s)
- Flavia Millesi
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Sascha Mero
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Lorenz Semmler
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Anda Rad
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Sarah Stadlmayr
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Anton Borger
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Paul Supper
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Maximilian Haertinger
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Leon Ploszczanski
- Institute
for Physics and Materials Science, University
of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Ursula Windberger
- Decentralized
Biomedical Facilities, Core Unit Laboratory Animal Breeding and Husbandry, Medical University Vienna, Vienna 1090, Austria
| | - Tamara Weiss
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Aida Naghilou
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
- Department
of Physical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christine Radtke
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
- Department
of Plastic, Reconstructive
and Aesthetic Surgery, Medical University
of Vienna, Vienna 1090, Austria
| |
Collapse
|
7
|
Ghandy N, Ebrahimzadeh-Bideskan A, Gorji A, Negah SS. Co-transplantation of novel Nano-SDF scaffold with human neural stem cells attenuates inflammatory responses and apoptosis in traumatic brain injury. Int Immunopharmacol 2023; 115:109709. [PMID: 36638659 DOI: 10.1016/j.intimp.2023.109709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Traumatic brain injury (TBI) causes long-term disability and mortality worldwide. The prime pathological players in TBI are neuroinflammation and apoptosis. These pathological changes lead to a limited capacity of regeneration after TBI. To alleviate inflammatory responses and apoptosis triggered by TBI, developing bioactive scaffolds conjoined with stem cells is a decisive approach in neural tissue engineering. The aim of this study was to fabricate a novel nano-scaffold made of RADA-16 with a bioactive motif of stromal cell-derived factor-1 α (SDF-1α) and evaluate its effects with stem cell transplantation on inflammatory pathways, reactive gliosis, and apoptosis after TBI. Co-transplantation of Nano-SDF and human neural stem cells (hNSCs) derived from fetus brain in adult rats subjected to TBI led to the improvement of motor activitycompared with the control group. The treated animals with hNSCs + Nano-SDF had a significantly lower expression of toll-like receptor 4 and nuclear factor-kappa B at the injury site than the control animals. A significant reduction in the number of reactive astrocytes was also observed in rats that received hNSCs + Nano-SDF compared with the vehicle and Nano-SDF groups. Furthermore, the TUNEL assay indicated a significant reduction in TUNEL positive cells in the hNSCs + Nano-SDF group compared with the TBI, vehicle, and Nano-SDF groups. These data demonstrated co-transplantation of hNSCs with Nano-SDF can reduce inflammatory responses and cell death after TBI via creating a more supportive microenvironment. Further research is required to establish the therapeutic efficacy of Nano-SDF with stem cells for TBI.
Collapse
Affiliation(s)
- Nasibeh Ghandy
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Kulkarni N, Rao P, Jadhav GS, Kulkarni B, Kanakavalli N, Kirad S, Salunke S, Tanpure V, Sahu B. Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications. ACS OMEGA 2023; 8:3551-3570. [PMID: 36743055 PMCID: PMC9893456 DOI: 10.1021/acsomega.2c05601] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Owing to their properties such as biocompatibility, tunable mechanical properties, permeability toward oxygen, nutrients, and the ability to hold a significant amount of water, hydrogels have wide applications in biomedical research. They have been engaged in drug delivery systems, 3D cell culture, imaging, and extracellular matrix (ECM) mimetics. Injectable hydrogels represent a major subset of hydrogels possessing advantages of site-specific conformation with minimal invasive techniques. It preserves the inherent properties of drug/biomolecules and is devoid of any side effects associated with surgery. Various polymeric materials utilized in developing injectable hydrogels are associated with the limitations of toxicity, immunogenicity, tedious manufacturing processes, and lack of easy synthetic tunability. Peptides are an important class of biomaterials that have interesting properties such as biocompatibility, stimuli responsiveness, shear thinning, self-healing, and biosignaling. They lack immunogenicity and toxicity. Therefore, numerous peptide-based injectable hydrogels have been explored in the past, and a few of them have reached the market. In recent years, minimalistic dipeptides have shown their ability to form stable hydrogels through cooperative noncovalent interactions. In addition to inherent properties of lengthy peptide-based injectable hydrogels, dipeptides have the unique advantages of low production cost, high synthetic accessibility, and higher stability. Given the instances of expanding significance of injectable peptide hydrogels in biomedical research and an emerging recent trend of dipeptide-based injectable hydrogels, a timely review on dipeptide-based injectable hydrogels shall highlight various aspects of this interesting class of biomaterials. This concise review that focuses on the dipeptide injectable hydrogel may stimulate the current trends of research on this class of biomaterial to translate its significance as interesting products for biomedical applications.
Collapse
Affiliation(s)
- Neeraj Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Prajakta Rao
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Quality
Operations, Novartis Healthcare Pvt. Ltd., Knowledge City, Raidurg, Hyderabad 500081, Telangana, India
| | - Govinda Shivaji Jadhav
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bhakti Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Springer
Nature Technology and Publishing Solutions, Hadapsar, Pune 411013, Maharashtra, India
| | - Nagaraju Kanakavalli
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Aragen
Life Sciences Pvt, Ltd., Madhapur, Hyderabad 500076, Telangana, India
| | - Shivani Kirad
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Sujit Salunke
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Vrushali Tanpure
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bichismita Sahu
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| |
Collapse
|
9
|
Fu H, Hu D, Chen J, Wang Q, Zhang Y, Qi C, Yu T. Repair of the Injured Spinal Cord by Schwann Cell Transplantation. Front Neurosci 2022; 16:800513. [PMID: 35250447 PMCID: PMC8891437 DOI: 10.3389/fnins.2022.800513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/27/2022] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) can result in sensorimotor impairments or disability. Studies of the cellular response to SCI have increased our understanding of nerve regenerative failure following spinal cord trauma. Biological, engineering and rehabilitation strategies for repairing the injured spinal cord have shown impressive results in SCI models of both rodents and non-human primates. Cell transplantation, in particular, is becoming a highly promising approach due to the cells’ capacity to provide multiple benefits at the molecular, cellular, and circuit levels. While various cell types have been investigated, we focus on the use of Schwann cells (SCs) to promote SCI repair in this review. Transplantation of SCs promotes functional recovery in animal models and is safe for use in humans with subacute SCI. The rationales for the therapeutic use of SCs for SCI include enhancement of axon regeneration, remyelination of newborn or sparing axons, regulation of the inflammatory response, and maintenance of the survival of damaged tissue. However, little is known about the molecular mechanisms by which transplanted SCs exert a reparative effect on SCI. Moreover, SC-based therapeutic strategies face considerable challenges in preclinical studies. These issues must be clarified to make SC transplantation a feasible clinical option. In this review, we summarize the recent advances in SC transplantation for SCI, and highlight proposed mechanisms and challenges of SC-mediated therapy. The sparse information available on SC clinical application in patients with SCI is also discussed.
Collapse
Affiliation(s)
- Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Die Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Jinli Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qizun Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Key Laboratory of Biomechanics of Hebei Province, Department of Trauma Emergency Center, The Third Hospital of Hebei Medical University, Orthopaedics Research Institution of Hebei Province, Shijiazhuang, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Qi,
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Tengbo Yu,
| |
Collapse
|
10
|
Yousefifard M, Ramezani F, Vaccaro AR, Hosseini M, Rahimi-Movaghar V. The Role of Intraspinal Administration of Self-Assembled Peptide on Locomotion Recovery After Spinal Cord Injury: A Systematic Review and Meta-Analysis Study. Neuromodulation 2022:S1094-7159(22)00032-0. [PMID: 35227580 DOI: 10.1016/j.neurom.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) treatment is still a challenge and new treatments that help these patients are being considered. Recent studies showed that the use of self-assembled peptide (SAP) can be useful in SCI treatment. MATERIALS AND METHODS In this meta-analysis, we investigated the effect of SAP administration on locomotion recovery after SCI. Records were obtained from a comprehensive search of data bases. Articles were scrutinized for inclusion and exclusion criteria. Data were analyzed and results were reported as standardized mean difference (SMD) with 95% CI. Subgroup analysis was also performed. RESULTS A total of 14 studies and 17 separate experiments were included in the final analysis. Treatment with SAP structures after SCI resulted in a significant improvement in animal motor function (SMD = 1.13; 95% CI: 0.68-1.58; p < 0.0001). SAP treatment facilitated axon sprouting (SMD = 0.76; 95% CI: 0.33-1.18; p < 0.0001) and reduction of glial scar (SMD = -1.02; 95% CI: -1.94 to -0.09; p = 0.03). The difference in SAP type, its concentration, follow-up time, and SCI model had no effect on SAP effectiveness. In addition, SAP administration had a similar effect on improving locomotion in all three immediate, acute, and subacute phases which gives the good news of using this treatment for patients who are in the chronic phase. CONCLUSION SAP treatment can be considered as a potential treatment to help the motor recovery of SCI and axon regeneration.
Collapse
|
11
|
Zhang M, Li L, An H, Zhang P, Liu P. Repair of Peripheral Nerve Injury Using Hydrogels Based on Self-Assembled Peptides. Gels 2021; 7:152. [PMID: 34698159 PMCID: PMC8544532 DOI: 10.3390/gels7040152] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injury often occurs in young adults and is characterized by complex regeneration mechanisms, poor prognosis, and slow recovery, which not only creates psychological obstacles for the patients but also causes a significant burden on society, making it a fundamental problem in clinical medicine. Various steps are needed to promote regeneration of the peripheral nerve. As a bioremediation material, self-assembled peptide (SAP) hydrogels have attracted international attention. They can not only be designed with different characteristics but also be applied in the repair of peripheral nerve injury by promoting cell proliferation or drug-loaded sustained release. SAP hydrogels are widely used in tissue engineering and have become the focus of research. They have extensive application prospects and are of great potential biological value. In this paper, the application of SAP hydrogel in peripheral nerve injury repair is reviewed, and the latest progress in peptide composites and fabrication techniques are discussed.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China;
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Lei Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100044, China;
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China;
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peilai Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan 250012, China;
| |
Collapse
|
12
|
Tan C, Yang C, Liu H, Tang C, Huang S. Effect of Schwann cell transplantation combined with electroacupuncture on axonal regeneration and remyelination in rats with spinal cord injury. Anat Rec (Hoboken) 2021; 304:2506-2520. [PMID: 34319000 DOI: 10.1002/ar.24721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Axonal impairment and demyelination after compressed spinal cord injury lead to serious neurological dysfunction. Increasing studies have suggested that Schwann cells (SCs) transplantation is a reliable, effective, and promising method for treating spinal cord injury. However, single SCs transplantation is insufficient to promote the full recovery of neurological function. Additional approaches are required to support SCs transplantation as a treatment for spinal cord injury. In the study, we investigated whether the combination of electroacupuncture (EA) and SCs transplantation was a reliable intervention for spinal cord injury. We found that rats in the combination group had significantly higher functional locomotor scores than those received single treatment. By immunostaining, we found EA can not only improve survival and proliferation of transplanted SCs but also inhibit SC apoptosis and block the formation of an astrocytic scar. Additionally, EA promoted regenerated axons extending "bullet-shaped" growth cones into the lesion. Remarkably, EA can modify astrogliosis to promote axonal regeneration following SCs transplantation through inducing extension of astrocytic processes in the SCs graft interface. More importantly, the combination of SCs engraftment and EA can enhance corticospinal-tract axonal regeneration and remyelination after spinal cord injury through up-regulating neuregulin 1 type III in SCs and its downstream signaling mediators. Thus, it is concluded that SCs effectively promote axonal recovery after spinal cord injury when combined with EA stimulation. The experimental results have reinforced the theoretical basis of EA for its clinical efficacy in patients with spinal cord injury and merited further investigation for potential clinical application.
Collapse
Affiliation(s)
- Chengfang Tan
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Cheng Yang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
14
|
Abdolahi S, Aligholi H, Khodakaram-Tafti A, Khaleghi Ghadiri M, Stummer W, Gorji A. Improvement of Rat Spinal Cord Injury Following Lentiviral Vector-Transduced Neural Stem/Progenitor Cells Derived from Human Epileptic Brain Tissue Transplantation with a Self-assembling Peptide Scaffold. Mol Neurobiol 2021; 58:2481-2493. [PMID: 33443682 PMCID: PMC8128971 DOI: 10.1007/s12035-020-02279-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 12/29/2022]
Abstract
Spinal cord injury (SCI) is a disabling neurological disorder that causes neural circuit dysfunction. Although various therapies have been applied to improve the neurological outcomes of SCI, little clinical progress has been achieved. Stem cell-based therapy aimed at restoring the lost cells and supporting micromilieu at the site of the injury has become a conceptually attractive option for tissue repair following SCI. Adult human neural stem/progenitor cells (hNS/PCs) were obtained from the epileptic human brain specimens. Induction of SCI was followed by the application of lentiviral vector-mediated green fluorescent protein-labeled hNS/PCs seeded in PuraMatrix peptide hydrogel (PM). The co-application of hNS/PCs and PM at the SCI injury site significantly enhanced cell survival and differentiation, reduced the lesion volume, and improved neurological functions compared to the control groups. Besides, the transplanted hNS/PCs seeded in PM revealed significantly higher migration abilities into the lesion site and the healthy host tissue as well as a greater differentiation into astrocytes and neurons in the vicinity of the lesion as well as in the host tissue. Our data suggest that the transplantation of hNS/PCs seeded in PM could be a promising approach to restore the damaged tissues and improve neurological functions after SCI.
Collapse
Affiliation(s)
- Sara Abdolahi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Epilepsy Research Center, Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Kucinska M, Plewinski A, Szczolko W, Kaczmarek M, Goslinski T, Murias M. Modeling the photodynamic effect in 2D versus 3D cell culture under normoxic and hypoxic conditions. Free Radic Biol Med 2021; 162:309-326. [PMID: 33141030 DOI: 10.1016/j.freeradbiomed.2020.10.304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT), mainly as a combined therapy, can still be considered a promising technology for targeted cancer treatment. Besides the several and essential benefits of PDT, there are some concerns and limitations, such as complex dosimetry, tumor hypoxia, and other mechanisms of resistance. In this study, we present how the cell culture model and cell culture conditions may affect the response to PDT treatment. It was studied by applying two different 3D cell culture, non-scaffold, and hydrogel-based models under normoxic and hypoxic conditions. In parallel, a detailed mechanism of the action of zinc phthalocyanine M2TG3 was presented. METHODS Hydrogel-based and tumor spheroids consisting of LNCaP cells, were used as 3D cell culture models in experiments performed under normoxic and hypoxic (1% of oxygen) conditions. Several analyses were performed to compare the activity of M2TG3 under different conditions, such as cytotoxicity, the level of proapoptotic and stress-related proteins, caspase activity, and antioxidant gene expression status. Additionally, we tested bioluminescence and fluorescence assays as a useful approach for a hydrogel-based 3D cell culture. RESULTS We found that M2TG3 might lead to apoptotic cancer cell death and is strongly dependent on the model and oxygen availability. Moreover, the expression of the genes modulated in the antioxidative system in 2D and 3D cell culture models were presented. The tested bioluminescence assay revealed several advantages, such as repetitive measurements on the same sample and simultaneous analysis of different parameters due to the non-lysing nature of this assay. CONCLUSIONS It was shown that M2TG3 can effectively cause cancer cell death via a different mechanism, depending on cell culture conditions such as the model and oxygen availability.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Street, 60-631, Poznan, Poland.
| | - Adam Plewinski
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytet Poznanski 10 Street, 61-614, Poznan, Poland
| | - Wojciech Szczolko
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 Street, 61-866, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Gene Therapy Unit, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - Tomasz Goslinski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780, Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Street, 60-631, Poznan, Poland; Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytet Poznanski 10 Street, 61-614, Poznan, Poland.
| |
Collapse
|
16
|
Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, Su Z, Wei G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. SOFT MATTER 2020; 16:10029-10045. [PMID: 32696801 DOI: 10.1039/d0sm00966k] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled peptide-based nanomaterials have exhibited wide application potential in the fields of materials science, nanodevices, biomedicine, tissue engineering, biosensors, energy storage, environmental science, and others. Due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization, three-dimensional self-assembled peptide hydrogels revealed promising potential in bio-related applications. To present the advances in this interesting topic, we present a review on the synthesis and functionalization of peptide hydrogels, as well as their applications in drug delivery, antibacterial materials, cell culture, biomineralization, bone tissue engineering, and biosensors. Specifically, we focus on the fabrication methods of peptide hydrogels through physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by incorporation with polymers, DNA, protein, nanoparticles, and carbon materials is introduced and discussed in detail. It is expected that this work will be helpful not only for the design and synthesis of various peptide-based nanostructures and nanomaterials, but also for the structural and functional tailoring of peptide-based nanomaterials to meet specific demands.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sun W, Zhang S, Zhou T, Shan Y, Gao F, Zhang Y, Zhang D, Xiong Y, Mai Y, Fan K, Davidson AJ, Pan G, Zhang X. Human Urinal Cell Reprogramming: Synthetic 3D Peptide Hydrogels Enhance Induced Pluripotent Stem Cell Population Homogeneity. ACS Biomater Sci Eng 2020; 6:6263-6275. [PMID: 33449655 DOI: 10.1021/acsbiomaterials.0c00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which have promising potential applications in regenerative medicine. However, the challenges of successful applications of human iPSCs for medical purposes are the low generation efficiency, heterogeneous colonies, and exposure to the animal-derived product Matrigel. We aimed to investigate whether human urinal cells could be efficiently reprogrammed into iPSCs in three-dimensional Puramatrix (3D-PM) compared to two-dimensional Matrigel (2D-MG) and to understand how this 3D hydrogel environment affects the reprogramming process. Human urinal cells were successfully reprogrammed into iPSCs in the defined synthetic animal-free 3D-PM. Interestingly, although the colony efficiency in 3D-PM was similar to that in 2D-MG (∼0.05%), the reprogrammed colonies in 3D-PM contained an iPSC population with significantly higher homogeneity, as evidenced by the pluripotent-like morphology and expression of markers. This was further confirmed by transcriptome profile analysis in bulk cells and at the single cell level. Moreover, the homogeneity of the iPSC population in 3D-PM colonies was correlated with the downregulation of integrin β1 (ITGB1) and phosphorylated focal adhesion kinase (FAK). Collectively, 3D-PM provides an alternative approach for obtaining iPSCs with enhanced homogeneity. This work also unveiled the regulation of human somatic cell reprogramming via the extracellular microenvironment.
Collapse
Affiliation(s)
- Wei Sun
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Sheng Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fenglin Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Ying Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanbang Mai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ke Fan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
18
|
Zhai H, Zhou J, Xu J, Sun X, Xu Y, Qiu X, Zhang C, Wu Z, Long H, Bai Y, Quan D. Mechanically strengthened hybrid peptide-polyester hydrogel and potential applications in spinal cord injury repair. Biomed Mater 2020; 15:055031. [DOI: 10.1088/1748-605x/ab9e45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Attari F, Ghadiri T, Hashemi M. Combination of curcumin with autologous transplantation of adult neural stem/progenitor cells leads to more efficient repair of damaged cerebral tissue of rat. Exp Physiol 2020; 105:1610-1622. [PMID: 32627273 DOI: 10.1113/ep088697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can the neuroprotective agent curcumin affect restorative action of neural stem/progenitor cells in the injured rat brain? What is the main finding and its importance? In the presence of curcumin, transplantation of neural stem/progenitor cells in the context of PuraMatrix reduced lesion size and reactive inflammatory responses, and boosted survival rate of grafted neurons. In addition it improved the neurological status of injured animals. This could be beneficial in designing new therapeutic approaches for brain injury based on this combination therapy. ABSTRACT Traumatic brain injury (TBI) is catastrophic neurological damage associated with substantial morbidity and mortality. To date, there is no specific treatment for restoring lost brain tissue. In light of the complex pathology of brain injury, the present study evaluated the effects of combination therapy using autologous neural stem/progenitor cells (NS/PCs), PuraMatrix (PM) and curcumin in an animal model of brain injury. After stereotactic biopsy of subventricular zone tissue and culture of NS/PCs, 36 male Wistar rats (150-200 g) were randomly divided into six groups receiving dimethyl sulfoxide (DMSO), curcumin (100 mg kg-1 in DMSO), PM + curcumin (100 mg kg-1 in DMSO), NS/PCs + curcumin (100 mg kg-1 in DMSO), NS/PCs + PM + curcumin (100 mg kg-1 in DMSO) and NS/PCs + PM + curcumin (1 µm) following acute brain injury. The animals were evaluated in term of neurological status for 4 weeks, then decapitated. Nissl and TUNEL staining and immunohistochemistry for bromodeoxyuridine, glial fibrillary acidic protein, doublecortin, Map2, Olig2, Iba1 and CD68 were performed. We found that combination therapy by NS/PCs + PM + curcumin reduced the lesion size, astrogliosis, macrophage and microglial reaction as well as the number of apoptotic cells. Moreover, the transplanted cells were able to survive and differentiate after 4 weeks. Besides these findings, transplantation of NS/PCs in the context of PM and curcumin improved the neurological status of injured animals. In conclusion, our data suggest that this combination therapy can be beneficial in developing future therapeutic approaches for brain injury.
Collapse
Affiliation(s)
- Fatemeh Attari
- Department of Neuroscience, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mansoureh Hashemi
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Invited review: Utilizing peripheral nerve regenerative elements to repair damage in the CNS. J Neurosci Methods 2020; 335:108623. [DOI: 10.1016/j.jneumeth.2020.108623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
|
21
|
Tran KA, Partyka PP, Jin Y, Bouyer J, Fischer I, Galie PA. Vascularization of self-assembled peptide scaffolds for spinal cord injury repair. Acta Biomater 2020; 104:76-84. [PMID: 31904559 DOI: 10.1016/j.actbio.2019.12.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 01/05/2023]
Abstract
The disruption of the blood-spinal cord barrier (BSCB) following spinal cord injury contributes to inflammation and glial scarring that inhibits axon growth and diminishes the effectiveness of conduits transplanted to the injury site to promote this growth. The purpose of this study is to evaluate whether scaffolds containing microvessels that exhibit BSCB integrity reduce inflammation and scar formation at the injury site and lead to increased axon growth. For these studies, a self-assembling peptide scaffold, RADA-16I, is used due to its established permissiveness to axon growth and ability to support vascularization. Immunocytochemistry and permeability transport assays verify the formation of tight-junction containing microvessels within the scaffold. Peptide scaffolds seeded with different concentrations of microvascular cells are then injected into a spinal contusion injury in rats to evaluate how microvessels affect axon growth and neurovascular interaction. The effect of the vascularized scaffold on inflammation and scar formation is evaluated by quantifying histological sections stained with ED-1 and GFAP, respectively. Our results indicate that the peptide scaffolds containing microvessels reduce inflammation and glial scar formation and increase the density of axons growing into the injury/transplant site. These results demonstrate the potential benefit of scaffold vascularization to treat spinal cord injury. STATEMENT OF SIGNIFICANCE: This study evaluates the benefit of transplanting microvascular cells within a self-assembling peptide scaffold, RADA-16I, that has shown promise for facilitating regeneration in the central nervous system in previous studies. Our results indicate that vasculature featuring tight junctions that give rise to the blood-spinal cord barrier can be formed within the peptide scaffold both in vitro and in a rat model of a subacute contusion spinal cord injury. Histological analysis indicates that the presence of the microvessels encourages axon infiltration into the site of injury and reduces the area of astrocyte activation and inflammation. Overall, these results demonstrate the potential of vascularizing scaffolds for the repair of spinal cord injury.
Collapse
|
22
|
Zhou P, Guan J, Xu P, Zhao J, Zhang C, Zhang B, Mao Y, Cui W. Cell Therapeutic Strategies for Spinal Cord Injury. Adv Wound Care (New Rochelle) 2019; 8:585-605. [PMID: 31637103 PMCID: PMC6798812 DOI: 10.1089/wound.2019.1046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Significance: Spinal cord injury (SCI) is a neurological disorder that resulted from destroyed long axis of spinal cord, affecting thousands of people every year. With the occurrence of SCI, the lesions can form cystic cavities and produce glial scar, myelin inhibitor, and inflammation that negatively impact repair of spinal cord. Therefore, SCI remains a difficult problem to overcome with present therapeutics. This review of cell therapeutics in SCI provides a systematic review of combinatory therapeutics of SCI and helps the realization of regeneration of spinal cord in the future. Recent Advances: With major breakthroughs in neurobiology in recent years, present therapeutic strategies for SCI mainly aim at nerve regeneration or neuroprotection. For nerve regeneration, the application approaches are tissue engineering and cell transplantation, while drug therapeutics is applied for neuroprotection. Cell therapeutics is a new approach that treats SCI by cell transplantation. Cell therapeutics possesses advantages of neuroprotection, immune regulation, axonal regeneration, neuron relay formation, and remyelination. Critical Issues: Neurons cannot regenerate at the site of injury. Therefore, it is essential to find a repair strategy for remyelination, axon regeneration, and functional recovery. Cell therapeutics is emerging as the most promising approach for treating SCI. Future Directions: The future application of SCI therapy in clinical practice may require a combination of multiple strategies. A comprehensive treatment of injury of spinal cord is the focus of the present research. With the combination of different cell therapy strategies, future experiments will achieve more dramatic success in spinal cord repair.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Jingjing Guan
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Panpan Xu
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Changchun Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- School of Life Science, Bengbu Medical College, Bengbu, P.R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
23
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
24
|
Sahab Negah S, Oliazadeh P, Jahanbazi Jahan-Abad A, Eshaghabadi A, Samini F, Ghasemi S, Asghari A, Gorji A. Transplantation of human meningioma stem cells loaded on a self-assembling peptide nanoscaffold containing IKVAV improves traumatic brain injury in rats. Acta Biomater 2019; 92:132-144. [PMID: 31075516 DOI: 10.1016/j.actbio.2019.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) can result in permanent brain function impairment due to the poor regenerative ability of neural tissue. Tissue engineering has appeared as a promising approach to promote nerve regeneration and to ameliorate brain damage. The present study was designed to investigate the effect of transplantation of the human meningioma stem-like cells (hMgSCs) seeded in a promising three-dimensional scaffold (RADA4GGSIKVAV; R-GSIK) on the functional recovery of the brain and neuroinflammatory responses following TBI in rats. After induction of TBI, hMgSCs seeded in R-GSIK was transplanted within the injury site and its effect was compared to several control groups. Application of hMgSCs with R-GSIK improved functional recovery after TBI. A significant higher number of hMgSCs was observed in the brain when transplanted with R-GSIK scaffold compared to the control groups. Application of hMgSCs seeded in R-GSIK significantly decreased the lesion volume, reactive gliosis, and apoptosis at the injury site. Furthermore, treatment with hMgSCs seeded in R-GSIK significantly inhibited the expression of Toll-like receptor 4 and its downstream signaling molecules, including interleukin-1β and tumor necrosis factor. These data revealed the potential for hMgSCs seeded in R-GSIK to improve the functional recovery of the brain after TBI; possibly via amelioration of inflammatory responses. STATEMENT OF SIGNIFICANCE: Tissue engineered scaffolds that mimic the natural extracellular matrix of the brain may modulate stem cell fate and contribute to tissue repair following traumatic brain injury (TBI). Among several scaffolds, self-assembly peptide nanofiber scaffolds markedly promotes cellular behaviors, including cell survival and differentiation. We developed a novel three-dimensional scaffold (RADA16GGSIKVAV; R-GSIK). Transplantation of the human meningioma stem-like cells seeded in R-GSIK in an animal model of TBI significantly improved functional recovery of the brain, possibly via enhancement of stem cell survival as well as reduction of the lesion volume, inflammatory process, and reactive gliosis at the injury site. R-GSIK is a suitable microenvironment for human stem cells and could be a potential biomaterial for the reconstruction of the injured brain after TBI.
Collapse
|
25
|
Wang R, Wang Z, Guo Y, Li H, Chen Z. Design of a RADA16-based self-assembling peptide nanofiber scaffold for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:713-736. [DOI: 10.1080/09205063.2019.1605868] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rongrong Wang
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Zhaoyue Wang
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Yayuan Guo
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Hongmin Li
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Zhuoyue Chen
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| |
Collapse
|
26
|
Wen X, Shen M, Bai Y, Xu C, Han X, Yang H, Yang L. Biodegradable cell‐laden starch foams for the rapid fabrication of 3D tissue constructs and the application in neural tissue engineering. J Biomed Mater Res B Appl Biomater 2019; 108:104-116. [PMID: 30916468 DOI: 10.1002/jbm.b.34370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoxiao Wen
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
| | - Minjie Shen
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University Suzhou 215006 China
| | - Yanjie Bai
- School of Public Health, Medical CollegeSoochow University Suzhou 215006 China
| | - Changlu Xu
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
- Materials Science and Engineering ProgramUniversity of California Riverside, Riverside California 92521
| | - Xinglong Han
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical CollegeSoochow University Suzhou 215000 China
| | - Huilin Yang
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University Suzhou 215006 China
- International Research Center for Translational Orthopaedics (IRCTO) Suzhou 215006 China
| | - Lei Yang
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
- International Research Center for Translational Orthopaedics (IRCTO) Suzhou 215006 China
| |
Collapse
|
27
|
Namjoo Z, Mortezaee K, Joghataei MT, Moradi F, Piryaei A, Abbasi Y, Hosseini A, Majidpoor J. Targeting axonal degeneration and demyelination using combination administration of 17β‐estradiol and Schwann cells in the rat model of spinal cord injury. J Cell Biochem 2018; 119:10195-10203. [DOI: 10.1002/jcb.27361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Zeinab Namjoo
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Mohammad T. Joghataei
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Faculty of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Fateme Moradi
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Faculty of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Yusef Abbasi
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Amir Hosseini
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Jamal Majidpoor
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
28
|
Namjoo Z, Moradi F, Aryanpour R, Piryaei A, Joghataei MT, Abbasi Y, Hosseini A, Hassanzadeh S, Taklimie FR, Beyer C, Zendedel A. Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model. Metab Brain Dis 2018; 33:1229-1242. [PMID: 29658057 DOI: 10.1007/s11011-018-0220-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
Spinal cord injury (SCI) is a devastating traumatic event which burdens the affected individuals and the health system. Schwann cell (SC) transplantation is a promising repair strategy after SCI. However, a large number of SCs do not survive following transplantation. Previous studies demonstrated that 17β-estradiol (E2) protects different cell types and reduces tissue damage in SCI experimental animal model. In the current study, we evaluated the protective potential of E2 on SCs in vitro and investigated whether the combination of hormonal and SC therapeutic strategy has a better effect on the outcome after SCI. Primary SC cultures were incubated with E2 for 72 h. In a subsequent experiment, thoracic contusion SCI was induced in male rats followed by sustained administration of E2 or vehicle. Eight days after SCI, DiI-labeled SCs were transplanted into the injury epicenter in vehicle and E2-treated animals. The combinatory regimen decreased neurological and behavioral deficits and protected neurons and oligodendrocytes in comparison to vehicle rats. Moreover, E2 and SC significantly decreased the number of Iba-1+ (microglia) and GFAP+ cells (astrocyte) in the SCI group. In addition, we found a significant reduction of mitochondrial fission-markers (Fis1) and an increase of fusion-markers (Mfn1 and Mfn2) in the injured spinal cord after E2 and SC treatment. These data demonstrated that E2 protects SCs against hypoxia-induced SCI and improves the survival of transplanted SCs.
Collapse
Affiliation(s)
- Zeinab Namjoo
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
| | - Fateme Moradi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Aryanpour
- Department of Anatomy, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran.
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Yusef Abbasi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
| | - Amir Hosseini
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
| | - Sajad Hassanzadeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
| | | | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Jahanbazi Jahan-Abad A, Sahab Negah S, Hosseini Ravandi H, Ghasemi S, Borhani-Haghighi M, Stummer W, Gorji A, Khaleghi Ghadiri M. Human Neural Stem/Progenitor Cells Derived From Epileptic Human Brain in a Self-Assembling Peptide Nanoscaffold Improve Traumatic Brain Injury in Rats. Mol Neurobiol 2018; 55:9122-9138. [PMID: 29651746 DOI: 10.1007/s12035-018-1050-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Among different cell types, human neural stem cells cultured in self-assembling peptide scaffolds have been suggested as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/PCs) derived from epileptic human brain and human adipose-derived stromal/stem cells (hADSCs) seeded in PuraMatrix hydrogel (PM) on brain function after TBI in an animal model of brain injury. hNS/PCs were isolated from patients with medically intractable epilepsy undergone epilepsy surgery. hNS/PCs and hADSCs have the potential for proliferation and differentiation into both neuronal and glial lineages. Assessment of the growth characteristics of hNS/PCs and hADSCs revealed that the hNS/PCs doubling time was significantly longer and the growth rate was lower than hADSCs. Transplantation of hNS/PCs and hADSCs seeded in PM improved functional recovery, decreased lesion volume, inhibited neuroinflammation, and reduced the reactive gliosis at the injury site. The data suggest the transplantation of hNS/PCs or hADSCs cultured in PM as a promising treatment option for cell replacement therapy in TBI.
Collapse
Affiliation(s)
- Ali Jahanbazi Jahan-Abad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Clinical Biochemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sedigheh Ghasemi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran. .,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany. .,Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany. .,Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 45, 48149, Münster, Germany.
| | | |
Collapse
|
30
|
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7848901. [PMID: 29805977 PMCID: PMC5899851 DOI: 10.1155/2018/7848901] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration.
Collapse
|
31
|
Morton MC, Neckles VN, Feliciano DM. Isolation of Extracellular Vesicles from Subventricular Zone Neural Stem Cells. Methods Mol Biol 2018; 2002:75-85. [PMID: 30244437 DOI: 10.1007/7651_2018_183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neonatal subventricular zone (SVZ) is a neurogenic niche that contains neural stem cells (NSCs). NSCs release particles called extracellular vesicles (EVs) that contain biological material. EVs are transferred to cells, including immune cells in the brain called microglia. A standard approach to identify EV functions is to isolate and transplant EVs. Here, a detailed protocol is provided that will allow one to culture neonatal SVZ NSCs and to isolate, label, and transplant EVs. The protocol will permit careful and thorough examination of EVs in a wide range of physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Mary C Morton
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
32
|
Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:297-312. [DOI: 10.1007/978-981-13-0445-3_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Tsukamoto J, Naruse K, Nagai Y, Kan S, Nakamura N, Hata M, Omi M, Hayashi T, Kawai T, Matsubara T. Efficacy of a Self-Assembling Peptide Hydrogel, SPG-178-Gel, for Bone Regeneration and Three-Dimensional Osteogenic Induction of Dental Pulp Stem Cells. Tissue Eng Part A 2017; 23:1394-1402. [DOI: 10.1089/ten.tea.2017.0025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jun Tsukamoto
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Keiko Naruse
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yusuke Nagai
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Shuhei Kan
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Nobuhisa Nakamura
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Masaki Hata
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Maiko Omi
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuhide Hayashi
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsushi Kawai
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuaki Matsubara
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
34
|
Abstract
The present study presented a protocol that can be used to obtain rapidly a high purity of proliferating rat Schwann cells from freshly dissociated rat peripheral nerves. The sciatic nerves of newborn rats (1–3 day old) were dissociated, and the Schwann cells (SCs) were purified using fluorescence-activated cell sorting (FACS) based on the SC membrane-specific expression of the low-affinity nerve growth factor receptor, p75NGFR and oligodendrocyte marker 4. Following sorting, the cells were plated on poly-l-lysine-coated dishes in SC culture medium containing DMEM with 10% FBS, 1% penicillin/streptomycin, 2 µM forskolin and 10 ng/ml HRG. The purified rat SCs were propagated for passaging until confluent. This protocol resulted in SC cultures, which were >98% pure. This FACS-based protocol can be used to facilitate future investigations of general SC biology.
Collapse
Affiliation(s)
- Mi Shen
- School of Biology and Basic Medical Science, Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Tang
- Jiangsu Key Laboratory of Neuroregeneration, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zheng Cao
- Jiangsu Key Laboratory of Neuroregeneration, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xuemin Cao
- Jiangsu Key Laboratory of Neuroregeneration, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
35
|
Hosseini M, Yousefifard M, Baikpour M, Rahimi-Movaghar V, Nasirinezhad F, Younesian S, Safari S, Ghelichkhani P, Moghadas Jafari A. The efficacy of Schwann cell transplantation on motor function recovery after spinal cord injuries in animal models: A systematic review and meta-analysis. J Chem Neuroanat 2016; 78:102-111. [PMID: 27609084 DOI: 10.1016/j.jchemneu.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/09/2016] [Accepted: 09/04/2016] [Indexed: 12/31/2022]
Abstract
AIM This article aimed to assess the efficacy of Schwann cell transplantation on motor function recovery in animal model of spinal cord injuries via meta-analysis. METHODS An extended search was carried out in the electronic databases of Medline (via PubMed), EMBASE (via OvidSP), CENTRAL, SCOPUS, Web of Science (BIOSIS), and ProQuest. Finally, 41 eligible studies conducted on 1046 animals including 517 control animals and 529 transplanted animals were included in the meta-analysis. Pooled standardized mean difference (SMD) and odds ratio (OR) with 95% confidence interval (95% CI) were reported. RESULTS The findings showed that treatment with Schwann cells leads to a modest motor function recovery after spinal cord injury (SMD=0.85; 95% CI: 0.63-1.07; p<0.001). Transplantation of these cells in acute phase of the injury (immediately after the injury) (OR=4.30; 95% CI: 1.53-12.05; p=0.007), application of mesenchymal/skin-derived precursors (OR=2.34; 95% CI: 1.28-4.29; p=0.008), and cells with human sources are associated with an increase in efficacy of Schwann cells (OR=10.96; 95% CI: 1.49-80.77; p=0.02). Finally, it seems that the efficacy of Schwann cells in mice is significantly lower than rats (OR=0.03; 95% CI: 0.003-0.41; p=0.009). CONCLUSION Transplantation of Schwann cells can moderately improve motor function recovery. It seems that inter-species differences might exist regarding the efficacy of this cells. Therefore, this should be taken into account when using Schwann cells in clinical trials regarding spinal cord injuries.
Collapse
Affiliation(s)
- Mostafa Hosseini
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoud Baikpour
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Younesian
- Department of Emergency Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Saeed Safari
- Department of Emergency Medicine, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Ghelichkhani
- Department of Intensive Care Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moghadas Jafari
- Department of Emergency Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
36
|
Enhancement of Neural Stem Cell Survival, Proliferation, Migration, and Differentiation in a Novel Self-Assembly Peptide Nanofibber Scaffold. Mol Neurobiol 2016; 54:8050-8062. [PMID: 27878763 DOI: 10.1007/s12035-016-0295-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
Considerable efforts have been made to combine biologically active molecules into the self-assembling peptide in order to improve cells growth, survival, and differentiation. In this study, a novel three-dimensional scaffold (RADA4GGSIKVAV; R-GSIK) was designed by adding glycine and serine between RADA4 and IKVAV to promote the strength of the peptide. The cell adhesion, viability, proliferation, migration, and differentiation of rat embryonic neural stem cells (NSCs) in R-GSIK were investigated and compared to laminin-coated, two-dimensional, and Puramatrix cultures. The scanning electron microscopy studies of the R-GSIK showed an open porous structure and a suitable surface area available for cell interaction. R-GSIK promoted the cell adhesion, viability, proliferation, and migration compared to the other cultures. In addition, the R-GSIK enhanced NSCs differentiation into neuronal cells. The NSCs injected in R-GSIK had a lower glial differentiation rate than in the Puramatrix. The results suggest that R-GSIK holds great promise for cell therapies and neuronal tissue repair.
Collapse
|
37
|
Zhang N, Luo Y, He L, Zhou L, Wu W. A self-assembly peptide nanofibrous scaffold reduces inflammatory response and promotes functional recovery in a mouse model of intracerebral hemorrhage. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1205-17. [DOI: 10.1016/j.nano.2015.12.387] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
38
|
PLGA nanofibers blended with designer self-assembling peptides for peripheral neural regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:329-37. [DOI: 10.1016/j.msec.2016.01.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/31/2015] [Accepted: 01/24/2016] [Indexed: 12/30/2022]
|
39
|
Aligholi H, Rezayat SM, Azari H, Ejtemaei Mehr S, Akbari M, Modarres Mousavi SM, Attari F, Alipour F, Hassanzadeh G, Gorji A. Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study. Brain Res 2016; 1642:197-208. [PMID: 27038753 DOI: 10.1016/j.brainres.2016.03.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022]
Abstract
Cultivation of neural stem/progenitor cells (NS/PCs) in PuraMatrix (PM) hydrogel is an option for stem cell transplantation. The efficacy of a novel method for placing adult rat NS/PCs in PM (injection method) was compared to encapsulation and surface plating approaches. In addition, the efficacy of injection method for transplantation of autologous NS/PCs was studied in a rat model of brain injury. NS/PCs were obtained from the subventricular zone (SVZ) and cultivated without (control) or with scaffold (three-dimensional cultures; 3D). The effect of different approaches on survival, proliferation, and differentiation of NS/PCs were investigated. In in vivo study, brain injury was induced 45 days after NS/PCs were harvested from the SVZ and phosphate buffered saline, PM, NS/PCs, or PM+NS/PCs were injected into the brain lesion. There was an increase in cell viability and proliferation after injection and surface plating of NS/PCs compared to encapsulation and neural differentiation markers were expressed seven days after culturing the cells. Using injection method, transplantation of NS/PCs cultured in PM resulted in significant reduction of lesion volume, improvement of neurological deficits, and enhancement of surviving cells. In addition, the transplanted cells could differentiate in to neurons, astrocytes, or oligodendrocytes. Our results indicate that the injection and surface plating methods enhanced cell survival and proliferation of NS/PCs and suggest the injection method as a promising approach for transplantation of NS/PCs in brain injury.
Collapse
Affiliation(s)
- Hadi Aligholi
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Azari
- Neural Stem Cell & Regenerative Neuroscience Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz, Iran; Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Attari
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran; Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
40
|
Zarbakhsh S, Goudarzi N, Shirmohammadi M, Safari M. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve. CELL JOURNAL 2016; 17:668-77. [PMID: 26862526 PMCID: PMC4746417 DOI: 10.22074/cellj.2016.3839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
Objective Bone marrow and umbilical cord stromal cells are multipotential stem cells
that have the ability to produce growth factors that play an important role in survival and
generation of axons. The goal of this study was to evaluate the effects of the two different
mesenchymal stem cells on peripheral nerve regeneration.
Materials and Methods In this experimental study, a 10 mm segment of the left sciatic
nerve of male Wistar rats (250-300 g) was removed with a silicone tube interposed into
this nerve gap. Bone marrow stromal cells (BMSCs) and human umbilical cord stromal
cells (HUCSCs) were respectively obtained from rat and human. The cells were sepa-
rately cultured and transplanted into the nerve gap. The sciatic nerve regeneration was
evaluated by immunohistochemistry, and light and electron microscopy. Moreover, histo-
morphology of the gastrocnemius muscle was observed.
Results The nerve regeneration in the BMSCs and HUCSCs groups that had received
the stem cells was significantly more favorable than the control group. In addition, the BM-
SCs group was significantly more favorable than the HUCSCs group (P<0.05).
Conclusion The results of this study suggest that both homograft BMSCs and het-
erograft HUCSCs may have the potential to regenerate peripheral nerve injury and
transplantation of BMSCs may be more effective than HUCSCs in rat.
Collapse
Affiliation(s)
- Sam Zarbakhsh
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Goudarzi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shirmohammadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Safari
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
41
|
Wu M, Ye Z, Zhu H, Zhao X. Self-Assembling Peptide Nanofibrous Hydrogel on Immediate Hemostasis and Accelerative Osteosis. Biomacromolecules 2015; 16:3112-8. [PMID: 26348089 DOI: 10.1021/acs.biomac.5b00493] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of local agents to achieve hemostasis of bone that does not interfere with repair and recovery is a complex and emergency subject in surgery. In this study, the dual functional biodegradable self-assembling nanopeptide (SAP) RADA16-I was synthesized by solid phase synthesis and was shown to exhibit immediate hemostasis and accelerative osteosis. The RADA16-I showed good performance as a hemostatic agent, which was investigated by comparison with the effects of bone wax in the ilium bone defect model of New Zealand rabbits. The RADA16-I exhibited efficient function of bone regeneration in both radiographic analysis and histological examination, while the bone wax inhibited osteogenesis. Moreover, in in vivo experiment, the RADA16-I was shown to exhibit excellent biocompatibility, while the group with bone wax showed a severe inflammatory response at the interface with bone. Thus, the RADA16-I is proven to be an excellent biocompatible material with effective dual function of hemostasis and osteosis.
Collapse
Affiliation(s)
- Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University , Chengdu, 610041 Sichuan, China.,Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University , Chengdu, 610041 Sichuan, China
| | - Zhaoyang Ye
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University , Chengdu, 610041 Sichuan, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University , Chengdu, 610041 Sichuan, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University , Chengdu, 610041 Sichuan, China.,Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
42
|
Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release 2015; 219:141-154. [PMID: 26343846 DOI: 10.1016/j.jconrel.2015.08.060] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/28/2022]
Abstract
Spinal cord injury (SCI) results in devastating neurological and pathological consequences, causing major dysfunction to the motor, sensory, and autonomic systems. The primary traumatic injury to the spinal cord triggers a cascade of acute and chronic degenerative events, leading to further secondary injury. Many therapeutic strategies have been developed to potentially intervene in these progressive neurodegenerative events and minimize secondary damage to the spinal cord. Additionally, significant efforts have been directed toward regenerative therapies that may facilitate neuronal repair and establish connectivity across the injury site. Despite the promise that these approaches have shown in preclinical animal models of SCI, challenges with respect to successful clinical translation still remain. The factors that could have contributed to failure include important biologic and physiologic differences between the preclinical models and the human condition, study designs that do not mirror clinical reality, discrepancies in dosing and the timing of therapeutic interventions, and dose-limiting toxicity. With a better understanding of the pathobiology of events following acute SCI, developing integrated approaches aimed at preventing secondary damage and also facilitating neuroregenerative recovery is possible and hopefully will lead to effective treatments for this devastating injury. The focus of this review is to highlight the progress that has been made in drug therapies and delivery systems, and also cell-based and tissue engineering approaches for SCI.
Collapse
Affiliation(s)
- Shushi Kabu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K Kwon
- Department of Orthopaedics, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada V5Z 1M9
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
43
|
Worthington P, Pochan DJ, Langhans SA. Peptide Hydrogels - Versatile Matrices for 3D Cell Culture in Cancer Medicine. Front Oncol 2015; 5:92. [PMID: 25941663 PMCID: PMC4403249 DOI: 10.3389/fonc.2015.00092] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022] Open
Abstract
Traditional two-dimensional (2D) cell culture systems have contributed tremendously to our understanding of cancer biology but have significant limitations in mimicking in vivo conditions such as the tumor microenvironment. In vitro, three-dimensional (3D) cell culture models represent a more accurate, intermediate platform between simplified 2D culture models and complex and expensive in vivo models. 3D in vitro models can overcome 2D in vitro limitations caused by the oversupply of nutrients, and unphysiological cell-cell and cell-material interactions, and allow for dynamic interactions between cells, stroma, and extracellular matrix. In addition, 3D cultures allow for the development of concentration gradients, including oxygen, metabolites, and growth factors, with chemical gradients playing an integral role in many cellular functions ranging from development to signaling in normal epithelia and cancer environments in vivo. Currently, the most common matrices used for 3D culture are biologically derived materials such as matrigel and collagen. However, in recent years, more defined, synthetic materials have become available as scaffolds for 3D culture with the advantage of forming well-defined, designed, tunable materials to control matrix charge, stiffness, porosity, nanostructure, degradability, and adhesion properties, in addition to other material and biological properties. One important area of synthetic materials currently available for 3D cell culture is short sequence, self-assembling peptide hydrogels. In addition to the review of recent work toward the control of material, structure, and mechanical properties, we will also discuss the biochemical functionalization of peptide hydrogels and how this functionalization, coupled with desired hydrogel material characteristics, affects tumor cell behavior in 3D culture.
Collapse
Affiliation(s)
- Peter Worthington
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Biomedical Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Sigrid A. Langhans
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
44
|
Abstract
ABSTRACT Restoration of lost neuronal function after spinal cord injury still remains a considerable challenge for current medicine. Over the last decade, regenerative medicine has recorded rapid and promising advancements in stem cell research, genetic engineering and the progression of new sophisticated biomaterials as well as nanotechnology. This advancement has also been reflected in neural tissue engineering, where, along with the development of a new generation of well-designed biopolymer scaffolds, multifactorial therapeutic strategies are being validated in order to determine the greatest possible repair efficacy of the complex CNS pathophysiology. Much attention is currently focused on the designing of multifunctional polymer scaffolds as systems for targeted drug or gene delivery, electrical stimulation or as substrates creating a special micro-environment, promoting the growth and desired differentiation of various cell lines. In this review, the latest advances in biomaterial technology together with various combinatorial strategies designed to treat spinal cord injury treatment are summarized and discussed.
Collapse
|
45
|
Carballo-Molina OA, Velasco I. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front Cell Neurosci 2015; 9:13. [PMID: 25741236 PMCID: PMC4330895 DOI: 10.3389/fncel.2015.00013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/09/2015] [Indexed: 01/24/2023] Open
Abstract
Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system (NS). Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult NS, particularly the Central Nervous System (CNS). The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS). Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased NS. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the CNS and PNS. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of the NS.
Collapse
Affiliation(s)
- Oscar A. Carballo-Molina
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de MéxicoMexico, D.F., Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de MéxicoMexico, D.F., Mexico
| |
Collapse
|
46
|
Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater 2015; 10:015008. [DOI: 10.1088/1748-6041/10/1/015008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Rev Neurosci 2015; 26:121-8. [DOI: 10.1515/revneuro-2014-0068] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
AbstractTransplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. The introduction of SCs into the injured spinal cord has been shown to reduce tissue loss, promote axonal regeneration, and facilitate myelination of axons for improved sensorimotor function. The pathology of spinal cord injury (SCI) comprises multiple processes characterized by extensive cell death, development of a milieu inhibitory to growth, and glial scar formation, which together limits axonal regeneration. Many studies have suggested that significant functional recovery following SCI will not be possible with a single therapeutic strategy. The use of additional approaches with SC transplantation may be needed for successful axonal regeneration and sufficient functional recovery after SCI. An example of such a combination strategy with SC transplantation has been the complementary administration of neuroprotective agents/growth factors, which improves the effect of SCs after SCI. Suspension of SCs in bioactive matrices can also enhance transplanted SC survival and increase their capacity for supporting axonal regeneration in the injured spinal cord. Inhibition of glial scar formation produces a more permissive interface between the SC transplant and host spinal cord for axonal growth. Co-transplantation of SCs and other types of cells such as olfactory ensheathing cells, bone marrow mesenchymal stromal cells, and neural stem cells can be a more effective therapy than transplantation of SCs alone following SCI. This article reviews some of the evidence supporting the combination of SC transplantation with additional strategies for SCI repair and presents a prospectus for achieving better outcomes for persons with SCI.
Collapse
|
48
|
Wang J, Zheng J, Zheng Q, Wu Y, Wu B, Huang S, Fang W, Guo X. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:140-7. [DOI: 10.1016/j.msec.2014.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/11/2014] [Accepted: 10/08/2014] [Indexed: 11/16/2022]
|
49
|
Komatsu S, Nagai Y, Naruse K, Kimata Y. The neutral self-assembling peptide hydrogel SPG-178 as a topical hemostatic agent. PLoS One 2014; 9:e102778. [PMID: 25047639 PMCID: PMC4105593 DOI: 10.1371/journal.pone.0102778] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 06/23/2014] [Indexed: 12/29/2022] Open
Abstract
Conventional self-assembling peptide hydrogels are effective as topical hemostatic agents. However, there is a possibility to harm living tissues due to their low pH. The aim of the present study was to demonstrate the efficacy of SPG-178, a neutral self-assembling peptide hydrogel, as a topical hemostatic agent. First, we measured the bleeding duration of incisions made on rat livers after application of SPG-178 (1.0% w/v), SPG-178 (1.5% w/v), RADA16 (1.0% w/v), and saline (n = 12/group). Second, we observed the bleeding surfaces by transmission electron microscopy immediately after hemostasis. Third, we measured the elastic and viscous responses (G' and G″, respectively) of the hydrogels using a rheometer. Our results showed that bleeding duration was significantly shorter in the SPG-178 group than in the RADA16 group and that there were no significant differences in transmission electron microscopy findings between the groups. The greater the G' value of a hydrogel, the shorter was the bleeding duration. We concluded that SPG-178 is more effective and has several advantages: it is non-biological, transparent, nonadherent, and neutral and can be sterilized by autoclaving.
Collapse
Affiliation(s)
- Seiji Komatsu
- Department of Plastic and Reconstructive Surgery, Okayama Saiseikai General Hospital, Okayama, Japan
- * E-mail:
| | - Yusuke Nagai
- Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Kimata
- Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
50
|
The arrhythmogenic effect of self-assembling nanopeptide hydrogel scaffolds on neonatal mouse cardiomyocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1065-73. [PMID: 24491398 DOI: 10.1016/j.nano.2014.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 01/16/2023]
Abstract
UNLABELLED The chaotic spatial disarray due to extracellular matrix expansion disrupts cardiomyocytes interaction and causes arrhythmia. We hypothesized that disordered nanopeptide scaffolds can mimic the chaotic spatial disarray related to cardiac fibrosis and have arrhythmogenic effects on cardiomyocytes. Primary mouse cardiomyocytes were cultured in 2D traditional and 3D nanopeptide hydrogel scaffold systems. Cardiomyocytes in 3D scaffolds showed irregular spontaneous contractile activity as compared with 2D culture controls. Calcium fluorimetric imaging revealed that basal intracellular calcium level increased 1.42-fold in cardiomyocytes cultured in the 3D scaffold, in vitro. The mRNA levels of sarcoplasmic reticulum calcium transport ATPase, ryanodine 2 receptor and connexin 43 elevated 2.14-fold, 2.33-fold and 2.62-fold in 3D compared with 2D. Immunofluorescence imaging revealed lateralization of the distribution of connexin 43 in 3D group. These findings suggest that 3D hydrogel culture system provides a model for the development of cardiac dysrhythmia. These limitations should be considered during cardiac tissue engineering. FROM THE CLINICAL EDITOR This team of scientists has established a unique 3D hydrogel culture system as a model for the development of cardiac dysrhythmia.
Collapse
|