1
|
Mathias K, Machado RS, Stork S, Martins CD, da Silva Kursancew AC, de Rezende VL, Gonçalves CL, Barichello T, Prophiro JS, Petronilho F. Bacillus Calmette-Guérin (BCG)-Induced Protection in Brain Disorders. Inflammation 2024; 47:1902-1917. [PMID: 38664351 DOI: 10.1007/s10753-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/11/2024]
Abstract
The Bacille Calmette-Guerin (BCG) vaccine is one of the most widely used vaccines in the world for the prevention of tuberculosis. Its immunological capacity also includes epigenetic reprogramming, activation of T cells and inflammatory responses. Although the main usage of the vaccine is the prevention of tuberculosis, different works have shown that the effect of BCG can go beyond the peripheral immune response and be linked to the central nervous system by modulating the immune system at the level of the brain. This review therefore aims to describe the BCG vaccine, its origin, its relationship with the immune system, and its involvement at the brain level.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Josiane Somariva Prophiro
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil.
- Laboratory of Experimental Neurology, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
2
|
Yedke NG, Soni D, Kumar P. Effect of Bacille-Calmette-Guerin vaccine against rotenone-induced Parkinson's disease: Role of neuroinflammation and neurotransmitters. Fundam Clin Pharmacol 2024; 38:538-549. [PMID: 38041521 DOI: 10.1111/fcp.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is an extrapyramidal movement disorder associated with a hypokinetic condition generated by impairment in dopaminergic neuronal viability in the nigrostriatal region of the brain. Current medications can only provide symptomatic management; to date, no permanent cure is available. To compensate for this lacuna, researchers are gaining interest in antigen-based therapy, and Bacille-Calmette-Guerin (BCG) is one of the vaccines with a high safety margin that acts by stimulating immunoreactive T-cells in the CNS and reducing expression of pro-inflammatory cytokines including interleukin (IL)-1β and tumor necrotic factor (TNF-α) to produce neuroprotection. A previous study reported that BCG exerts a neuroprotective effect against several neurodegenerative disorders, such as Alzheimer's disease. OBJECTIVE The objective of this study is to explore the neuroprotective effect of the BCG vaccine against the rotenone model of PD. METHODS Rotenone (1.5 mg/kg, s.c) for 28 days, and BCG vaccine (2 × 107 cfu, i.p) single dose was injected to rats, and behavioral assessments were performed on the 21st and 28th day. On the 29th day, rats were sacrificed, and brains were isolated for biochemical and neurochemical estimation. RESULTS BCG vaccine significantly restored rotenone-induced motor deficits (open field test, narrow beam walk, and rotarod), biochemical levels (GSH, SOD, catalase, MDA, and nitrite), neurotransmitters (dopamine, 5-hydroxy tryptamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, hemovanillic acid, and 5-hydroxy indoleacetic acid), and levels of inflammatory cytokines (IL-1β and TNF-α) in the striatum. It also prevents histopathological changes by reducing eosinophilic lesions in the striatum. CONCLUSION From the results, we conclude that BCG vaccine showed neuroprotection through antioxidant and anti-inflammatory effect. Thus, in the future, it can be used as a neuroprotective agent for other neurological disorders, including PD.
Collapse
Affiliation(s)
- Narhari Gangaram Yedke
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Yedke NG, Kumar P. The Neuroprotective Role of BCG Vaccine in Movement Disorders: A Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:30-38. [PMID: 36567299 DOI: 10.2174/1871527322666221223142813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/27/2022]
Abstract
Bacillus Calmette-Guérin (BCG) is the first developed vaccine to prevent tuberculosis (TB) and is the world's most widely used vaccine. It has a reconcilable defense in opposition to tuberculosis, meningitis, and miliary disease in children but changeable protection against pulmonary TB. Immune activation is responsible for regulating neural development by activating it. The effect of the BCG vaccine on neuronal disorders due to subordinate immune provocation is useful. BCG vaccine can prevent neuronal degeneration in different neurological disorders by provoking auto-reactive T-cells. In the case of TB, CD4+ T-cells effectively protect the immune response by protecting the central defense. Because of the preceding fact, BCG induces protection by creating precise T-cells like CD4+ T-cells and CD8+ T-cells. Hence, vaccination-induced protection generates specific T-cells and CD4+ T-cells, and CD8+ T-cells. The BCG vaccine may have an essential effect on motor disorders and play a crucial role in neuroprotective management. The present review describes how the BCG vaccine might be interrelated with motor disorders and play a key role in such diseases.
Collapse
Affiliation(s)
- Narhari Gangaram Yedke
- Department of Pharmaceutical Sciences and Technology Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
4
|
Yedke NG, Upadhayay S, Singh R, Jamwal S, Ahmad SF, Kumar P. Bacillus Calmette-Guérin Vaccine Attenuates Haloperidol-Induced TD-like Behavioral and Neurochemical Alteration in Experimental Rats. Biomolecules 2023; 13:1667. [PMID: 38002349 PMCID: PMC10669047 DOI: 10.3390/biom13111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Tardive dyskinesia (TD) is a hyperkinetic movement disorder that displays unusual involuntary movement along with orofacial dysfunction. It is predominantly associated with the long-term use of antipsychotic medications, particularly typical or first-generation antipsychotic drugs such as haloperidol. Oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis are major pathophysiological mechanisms of TD. The BCG vaccine has been reported to suppress inflammation, oxidative stress, and apoptosis and exert neuroprotection via several mechanisms. Our study aimed to confirm the neuroprotective effect of the BCG vaccine against haloperidol-induced TD-like symptoms in rats. The rats were given haloperidol (1 mg/kg, i.p.) for 21 days after 1 h single administration of the BCG vaccine (2 × 107 cfu). Various behavioral parameters for orofacial dyskinesia and locomotor activity were assessed on the 14th and 21st days after haloperidol injection. On the 22nd day, all rats were euthanized, and the striatum was isolated to estimate the biochemical, apoptotic, inflammatory, and neurotransmitter levels. The administration of the BCG vaccine reversed orofacial dyskinesia and improved motor function in regard to haloperidol-induced TD-like symptoms in rats. The BCG vaccine also enhanced the levels of antioxidant enzymes (SOD, GSH) and reduced prooxidants (MDA, nitrite) and pro-apoptotic markers (Cas-3, Cas-6, Cas-9) in rat brains. Besides this, BCG treatment also restored the neurotransmitter (DA, NE, 5-HT) levels and decreased the levels of HVA in the striatum. The study findings suggest that the BCG vaccine has antioxidant, antiapoptotic, and neuromodulatory properties that could be relevant in the management of TD.
Collapse
Affiliation(s)
- Narhari Gangaram Yedke
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India;
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Sumit Jamwal
- Department of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
5
|
Yedke NG, Arthur R, Kumar P. Bacillus calmette gaurine vaccine ameliorates the neurotoxicity of quinolinic acid in rats via the modulation of antioxidant, inflammatory and apoptotic markers. J Chem Neuroanat 2023; 131:102287. [PMID: 37172828 DOI: 10.1016/j.jchemneu.2023.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
A mutation in the Huntingtin gene causes 'Huntington's disease, which presents as a motor and behavioral impairment. Due to the limited drug therapy for this disease, scientists are constantly searching for newer and alternative drugs that may either retard or prevent the progress of the disease. This study aims to explore the neuroprotective potential of Bacillus Calmette Gaurine (BCG) vaccine against quinolinic acid-induced (QA) neurotoxicity in rats. QA (200 nmol/2 µl, i.s) was injected bilaterally into the rat striatum, after which a single dose of BCG (2 × 10^7, cfu) was given to the rats. Animals were assessed for behavioral parameters on the 14th and 21st days. On the 22nd day, animals were sacrificed, brains were harvested, and striatum was separated to evaluate biochemical, inflammatory, and apoptotic mediators. Histopathological studies were performed using Hematoxyline and Eosin staining to assess neuronal morphology. BCG treatment reversed motor abnormalities, reduced oxidative stress and neuroinflammatory markers, apoptotic mediators and striatal lesions induced by QA treatment. In conclusion, treat' 'ing rats with BCG vaccine (2 × 10^7, cfu) mitigated the quinolinic acid-induced Huntington's disease-like symptoms. Hence, BCG vaccine (2 ×10^7, cfu) could be used as an adjuvant in managing HD.
Collapse
Affiliation(s)
- Narhari Gangaram Yedke
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India; Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
6
|
Plocica J, Guo F, Das JK, Kobayashi KS, Ficht TA, Alaniz RC, Song J, de Figueiredo P. Engineering live attenuated vaccines: Old dogs learning new tricks. J Transl Autoimmun 2023; 6:100198. [PMID: 37090898 PMCID: PMC10113845 DOI: 10.1016/j.jtauto.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases such as rheumatoid arthritis and type 1 diabetes are increasingly common global problems. Concerns about increases in the prevalence of such diseases and the limited efficacy of conventional treatment regimens necessitates new therapies to address these challenges. Autoimmune disease severity and dysbiosis are interconnected. Although probiotics have been established as a therapy to rebalance the microbiome and suppress autoimmune symptoms, these microbes tend to lack a number of advantageous qualities found in non-commensal bacteria. Through attenuation and genetic manipulation, these non-commensal bacteria have been engineered into recombinant forms that offer malleable platforms capable of addressing the immune imbalances found in RA and T1D. Such bacteria have been engineered to express valuable gene products known to suppress autoimmunity such as anti-inflammatory cytokines, autoantigens, and enzymes synthesizing microbial metabolites. This review will highlight current and emerging trends in the field and discuss how they may be used to prevent and control autoimmune diseases.
Collapse
Affiliation(s)
- Julia Plocica
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Fengguang Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Koichi S. Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Department of Immunology, Graduate School of Medicine, Hokkaido University Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
- Institute of Vaccine Research and Development, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77845, USA
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77845, USA
| |
Collapse
|
7
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
8
|
Badr M, McFleder RL, Wu J, Knorr S, Koprich JB, Hünig T, Brotchie JM, Volkmann J, Lutz MB, Ip CW. Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson's disease mice. J Neuroinflammation 2022; 19:319. [PMID: 36587195 PMCID: PMC9805693 DOI: 10.1186/s12974-022-02685-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Regulatory CD4+CD25+FoxP3+ T cells (Treg) are a subgroup of T lymphocytes involved in maintaining immune balance. Disturbance of Treg number and impaired suppressive function of Treg correlate with Parkinson's disease severity. Superagonistic anti-CD28 monoclonal antibodies (CD28SA) activate Treg and cause their expansion to create an anti-inflammatory environment. METHODS Using the AAV1/2-A53T-α-synuclein Parkinson's disease mouse model that overexpresses the pathogenic human A53T-α-synuclein (hαSyn) variant in dopaminergic neurons of the substantia nigra, we assessed the neuroprotective and disease-modifying efficacy of a single intraperitoneal dose of CD28SA given at an early disease stage. RESULTS CD28SA led to Treg expansion 3 days after delivery in hαSyn Parkinson's disease mice. At this timepoint, an early pro-inflammation was observed in vehicle-treated hαSyn Parkinson's disease mice with elevated percentages of CD8+CD69+ T cells in brain and increased levels of interleukin-2 (IL-2) in the cervical lymph nodes and spleen. These immune responses were suppressed in CD28SA-treated hαSyn Parkinson's disease mice. Early treatment with CD28SA attenuated dopaminergic neurodegeneration in the SN of hαSyn Parkinson's disease mice accompanied with reduced brain numbers of activated CD4+, CD8+ T cells and CD11b+ microglia observed at the late disease-stage 10 weeks after AAV injection. In contrast, a later treatment 4 weeks after AAV delivery failed to reduce dopaminergic neurodegeneration. CONCLUSIONS Our data indicate that immune modulation by Treg expansion at a timepoint of overt inflammation is effective for treatment of hαSyn Parkinson's disease mice and suggest that the concept of early immune therapy could pose a disease-modifying option for Parkinson's disease patients.
Collapse
Affiliation(s)
- Mohammad Badr
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Rhonda L. McFleder
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jingjing Wu
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Knorr
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - James B. Koprich
- grid.417188.30000 0001 0012 4167Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada ,grid.511892.6Atuka Inc, Toronto, ON Canada
| | - Thomas Hünig
- grid.8379.50000 0001 1958 8658Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jonathan M. Brotchie
- grid.417188.30000 0001 0012 4167Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada ,grid.511892.6Atuka Inc, Toronto, ON Canada
| | - Jens Volkmann
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Manfred B. Lutz
- grid.8379.50000 0001 1958 8658Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Li Q, Wang X, Wang ZH, Lin Z, Yang J, Chen J, Wang R, Ye W, Li Y, Wu Y, Xuan A. Changes in dendritic complexity and spine morphology following BCG immunization in APP/PS1 mice. Hum Vaccin Immunother 2022; 18:2121568. [PMID: 36113067 DOI: 10.1080/21645515.2022.2121568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacillus Calmette - Guerin (BCG) is an immune regulator that can enhance hippocampal synaptic plasticity in rats; however, it is unclear whether it can improve synaptic function in a mouse model with Alzheimer's disease (AD). We hypothesized that BCG plays a protective role in AD mice and investigated its effect on dendritic morphology. The results obtained show that BCG immunization significantly increases dendritic complexity, as indicated by the increased number of dendritic intersections and branch points, as well as the increase in the fractal dimension. Furthermore, the number of primary neurites and dendritic length also increased following BCG immunization, which increased the number of spines and promoted maturation. IFN-γ and IL-4 levels increased, while TNF-α levels decreased following BCG immunization; expression levels of p-JAK2, P-STAT3, SYN, and PSD-95 also increased. Therefore, this study demonstrates that BCG immunization in APP/PS1 mice mitigated hippocampal dendritic spine pathology, especially after the third round of immunization. This effect could possibly be attributed to; changes in dendritic arborization and spine morphology or increases in SYN and PSD-95 expression levels. It could also be related to mechanisms of BCG-induced increases in IFN-γ or IL-4/JAK2/STAT3 levels.
Collapse
Affiliation(s)
| | | | | | - Zhenzong Lin
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Jieyi Yang
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Jichun Chen
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Rui Wang
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Wenfeng Ye
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Ya Li
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Yingying Wu
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Aiguo Xuan
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
10
|
Intravesical BCG and Incidence of Alzheimer Disease in Patients With Bladder Cancer: Results From an Administrative Dataset. Alzheimer Dis Assoc Disord 2022; 36:307-311. [PMID: 36183417 DOI: 10.1097/wad.0000000000000530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/25/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Alzheimer disease (AD) is a common neurodegenerative disease, and immunomodulation offers treatment opportunities. Preclinical data suggest that intravesical Bacillus Calmette-Guerin (BCG) treatment could delay AD development. We investigated this relationship in a population-based cancer database. SAMPLE AND METHODS We queried the Surveillance, Epidemiology, and End Results-Medicare database for patients with high-risk nonmuscle-invasive bladder cancer (hrNMIBC). BCG dosage and subsequent Alzheimer diagnosis were collected through ICD-9/10 codes. Multivariable Cox regression was performed to assess the association between BCG therapy and subsequent Alzheimer diagnosis. RESULTS We identified 26,584 hrNMIBC patients; 51% received BCG and 8.3% were diagnosed with Alzheimer. BCG exposure was significantly associated with lower Alzheimer occurrence (hazard ratio: 0.73, P <0.05), which was dose-dependent. Increasing age, female sex, Black race, and increasing comorbidity index were significantly associated with a greater risk of subsequent Alzheimer diagnosis. DISCUSSION Treatment with intravesical BCG among patients with hrNMIBC was associated with a significantly lower risk for subsequent Alzheimer diagnosis, which seemed dose-dependent.
Collapse
|
11
|
Dow CT, Kidess L. BCG Vaccine-The Road Not Taken. Microorganisms 2022; 10:1919. [PMID: 36296196 PMCID: PMC9609351 DOI: 10.3390/microorganisms10101919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine has been used for over one hundred years to protect against the most lethal infectious agent in human history, tuberculosis. Over four billion BCG doses have been given and, worldwide, most newborns receive BCG. A few countries, including the United States, did not adopt the WHO recommendation for routine use of BCG. Moreover, within the past several decades, most of Western Europe and Australia, having originally employed routine BCG, have discontinued its use. This review article articulates the impacts of those decisions. The suggested consequences include increased tuberculosis, increased infections caused by non-tuberculous mycobacteria (NTM), increased autoimmune disease (autoimmune diabetes and multiple sclerosis) and increased neurodegenerative disease (Parkinson's disease and Alzheimer's disease). This review also offers an emerged zoonotic pathogen, Mycobacteriumavium ss. paratuberculosis (MAP), as a mostly unrecognized NTM that may have a causal role in some, if not all, of these diseases. Current clinical trials with BCG for varied infectious, autoimmune and neurodegenerative diseases have brought this century-old vaccine to the fore due to its presumed immuno-modulating capacity. With its historic success and strong safety profile, the new and novel applications for BCG may lead to its universal use-putting the Western World back onto the road not taken.
Collapse
Affiliation(s)
- Coad Thomas Dow
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, Madison, WI 53705, USA
- Mindful Diagnostics and Therapeutics, Eau Claire, WI 54701, USA
| | - Laith Kidess
- Department of Biochemistry, University of St. Thomas, St. Paul, MN 55105, USA
| |
Collapse
|
12
|
Amato MP, De Stefano N, Inglese M, Morena E, Ristori G, Salvetti M, Trojano M. Secondary Prevention in Radiologically Isolated Syndromes and Prodromal Stages of Multiple Sclerosis. Front Neurol 2022; 13:787160. [PMID: 35359637 PMCID: PMC8964010 DOI: 10.3389/fneur.2022.787160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Following the extraordinary progress in the treatment of multiple sclerosis (MS), two major unmet needs remain: understanding the etiology of the disease and, hence, designing definitive cures (this perspective is neither at hand, nor it can be taken for granted that the etiologic targets will be readily treatable); the prevention of an overt and disabling disease, which seems to be a more realistic and pragmatic perspective, as the integration of genetic data with endophenotypes, MRI, and other biomarkers ameliorates our ability to identify early neuroinflammation. Radiologically isolated syndrome (RIS; diagnosed when the unanticipated MRI finding of brain spatial dissemination of focal white matter lesions highly suggestive of MS occurs in subjects without symptoms of MS, and with normal neurological examinations) and the recently focused “prodromal MS” are conditions at risk of conversion toward overt disease. Here, we explore the possibility of secondary prevention approaches in these early stages of neuroinflammation. RIS and prodromal MS are rare conditions, which suggest the importance of Study Groups and Disease Registry to implement informative clinical trials. We summarize ongoing preventive approaches in the early stages of the demyelinating process, especially in RIS conditions. Moreover, we highlight the importance of the biomarkers and the predictors of evolution to overt disease, which may be useful to select the individuals at risk of conversion to clinically isolated syndrome (CIS) and/or clinically definite MS. Finally, we illustrate the importance of the endophenotypes to test the frontline immunomodulatory approach for preventive strategies. Future investigations, especially in relatives of patients, based on MRI techniques and biological studies (better with integrated approaches) may provide opportunities to understand the MS early causal cascade and may help to identify a “therapeutic window” to potentially reverse early disease processes.
Collapse
Affiliation(s)
- Maria Pia Amato
- Department of Neurosciences, Psycology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,San Martino Hospital-IRCCS, Genoa, Italy
| | - Emanuele Morena
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy
| | - Giovanni Ristori
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy.,Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
13
|
Cossu D, Ruberto S, Yokoyama K, Hattori N, Sechi LA. Efficacy of BCG vaccine in animal models of neurological disorders. Vaccine 2021; 40:432-436. [PMID: 34906393 DOI: 10.1016/j.vaccine.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
The Bacillus Calmette-Guerin (BCG) vaccine can modulate the immune response via antigen-specific immune response, but also it can confer nonspecific protection and therapeutic benefits in several neurological conditions through different heterologous effects of vaccination. However, the precise mechanism of action of BCG remains unclear. In this review, different mechanisms underlying BCG-mediated immunity will be explained in animal models that reflects characteristic feature of neuroinflammatory and neurodegenerative disorders such as multiple sclerosis, Alzheimer's and Parkinson's diseases. Furthermore, evidence for a beneficial effect of the BCG on neuropsychiatric disorders, will be also discussed.
Collapse
Affiliation(s)
- Davide Cossu
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy; Juntendo University, Department of Neurology, Tokyo 113-8431, Japan.
| | - Stefano Ruberto
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy
| | | | - Nobutaka Hattori
- Juntendo University, Department of Neurology, Tokyo 113-8431, Japan
| | - Leonardo A Sechi
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy; SC Microbiologia AOU Sassari, Sassari, Italy.
| |
Collapse
|
14
|
Targeted drug delivery systems to control neuroinflammation in central nervous system disorders. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Klinger D, Hill BL, Barda N, Halperin E, Gofrit ON, Greenblatt CL, Rappoport N, Linial M, Bercovier H. Bladder Cancer Immunotherapy by BCG Is Associated with a Significantly Reduced Risk of Alzheimer's Disease and Parkinson's Disease. Vaccines (Basel) 2021; 9:vaccines9050491. [PMID: 34064775 PMCID: PMC8151667 DOI: 10.3390/vaccines9050491] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Bacillus Calmette–Guerin (BCG) is a live attenuated form of Mycobacterium bovis that was developed 100 years ago as a vaccine against tuberculosis (TB) and has been used ever since to vaccinate children globally. It has also been used as the first-line treatment in patients with nonmuscle invasive bladder cancer (NMIBC), through repeated intravesical applications. Numerous studies have shown that BCG induces off-target immune effects in various pathologies. Accumulating data argue for the critical role of the immune system in the course of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this study, we tested whether repeated exposure to BCG during the treatment of NMIBC is associated with the risk of developing AD and PD. We presented a multi-center retrospective cohort study with patient data collected between 2000 and 2019 that included 12,185 bladder cancer (BC) patients, of which 2301 BCG-treated patients met all inclusion criteria, with a follow-up of 3.5 to 7 years. We considered the diagnosis date of AD and nonvascular dementia cases for BC patients. The BC patients were partitioned into those who underwent a transurethral resection of the bladder tumor followed by BCG therapy, and a disjoint group that had not received such treatment. By applying Cox proportional hazards (PH) regression and competing for risk analyses, we found that BCG treatment was associated with a significantly reduced risk of developing AD, especially in the population aged 75 years or older. The older population (≥75 years, 1578 BCG treated, and 5147 controls) showed a hazard ratio (HR) of 0.726 (95% CI: 0.529–0.996; p-value = 0.0473). While in a hospital-based cohort, BCG treatment resulted in an HR of 0.416 (95% CI: 0.203–0.853; p-value = 0.017), indicating a 58% lower risk of developing AD. The risk of developing PD showed the same trend with a 28% reduction in BCG-treated patients, while no BCG beneficial effect was observed for other age-related events such as Type 2 diabetes (T2D) and stroke. We attributed BCG’s beneficial effect on neurodegenerative diseases to a possible activation of long-term nonspecific immune effects. We proposed a prospective study in elderly people for testing intradermic BCG inoculation as a potential protective agent against AD and PD.
Collapse
Affiliation(s)
- Danielle Klinger
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Brian L. Hill
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095-1596, USA; (B.L.H.); (E.H.)
| | - Noam Barda
- Clalit Research Institute, Innovation Division, Clalit Health Services, Ramat-Gan 6578898, Israel;
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eran Halperin
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095-1596, USA; (B.L.H.); (E.H.)
| | - Ofer N. Gofrit
- Department of Urology, Hadassah University Hospital, Jerusalem 91904, Israel;
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (C.L.G.); (H.B.)
| | - Nadav Rappoport
- Department of Software and Information Systems Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Correspondence: ; Tel.: +972-54-882-0035
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (C.L.G.); (H.B.)
| |
Collapse
|
16
|
Vedam-Mai V. Harnessing the immune system for the treatment of Parkinson's disease. Brain Res 2021; 1758:147308. [PMID: 33524380 DOI: 10.1016/j.brainres.2021.147308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Current treatment options for Parkinson's disease (PD) typically aim to replace dopamine, and hence only provide symptomatic relief. However, in the long run, this approach alone loses its efficacy as it is associated with debilitating side effects. Hence there is an unmet clinical need for addressing levodopa resistant symptoms, and an urgency to develop therapies that can halt or prevent the course of PD. The premise that α-syn can transmit from cell-to-cell in a prion like manner has opened up the possibility for the use of immunotherapy in PD. There is evidence for inflammation in PD as is evidenced by microglial activation, as well as the involvement of the peripheral immune system in PD, and peripheral inflammation can exacerbate dopaminergic degeneration as seen in animal models of the disease. However, mechanisms that link the immune system with PD are not clear, and the sequence of immune responses with respect to PD are still unknown. Nevertheless, our present knowledge offers avenues for the development of immune-based therapies for PD. In order to successfully employ such strategies, we must comprehend the state of the peripheral immune system during the course of PD. This review describes the developments in the field of both active and passive immunotherapies in the treatment of PD, and highlights the crucial need for future research for clarifying the role of inflammation and immunity in this debilitating disease.
Collapse
|
17
|
BCG Provides Short-Term Protection from Experimental Cerebral Malaria in Mice. Vaccines (Basel) 2020; 8:vaccines8040745. [PMID: 33316929 PMCID: PMC7768457 DOI: 10.3390/vaccines8040745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Clinical and experimental evidence suggests that the tuberculosis vaccine BCG offers protection against unrelated pathogens including the malaria parasite. Cerebral malaria (CM) is the most severe complication associated with Plasmodium falciparum infection in humans and is responsible for most of the fatalities attributed to malaria. We investigated whether BCG protected C57BL/6 mice from P. berghei ANKA (PbA)-induced experimental CM (ECM). The majority of PbA-infected mice that were immunized with BCG showed prolonged survival without developing clinical symptoms of ECM. However, this protective effect waned over time and was associated with the recovery of viable BCG from liver and spleen. Intriguingly, BCG-mediated protection from ECM was not associated with a reduction in parasite burden, indicating that BCG immunization did not improve anti-parasite effector mechanisms. Instead, we found a significant reduction in pro-inflammatory mediators and CD8+ T cells in brains of BCG-vaccinated mice. Together these data suggest that brain recruitment of immune cells involved in the pathogenesis of ECM decreased after BCG vaccination. Understanding the mechanisms underlying the protective effects of BCG on PbA-induced ECM can provide a rationale for developing effective adjunctive therapies to reduce the risk of death and brain damage in CM.
Collapse
|
18
|
Adesanya OA, Uche-Orji CI, Adedeji YA, Joshua JI, Adesola AA, Chukwudike CJ. Expanded Scope of Bacillus Calmette-Guerin (BCG) Vaccine Applicability in Disease Prophylaxis, Diagnostics, and Immunotherapeutics. INFECTIOUS MICROBES & DISEASES 2020; 2:144-150. [PMID: 38630099 PMCID: PMC7769055 DOI: 10.1097/im9.0000000000000040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Following the discovery of the Bacillus Calmette-Guerin (BCG) vaccine, its efficacy against Mycobacterium tuberculosis was soon established, with several countries adopting universal BCG vaccination schemes for their populations. Soon, however, studies aimed to further establish the efficacy of the vaccine in different populations discovered that the vaccine has a larger effect in reducing mortality rate than could be explained by its effect on tuberculosis alone, which sparked suggestions that the BCG vaccine could have effects on other unrelated or non-mycobacterial pathogens causing diseases in humans. These effects were termed heterologous, non-specific or off-target effects and have been shown to be due to both innate and adaptive immune system responses. Experiments carried out in a bid to further understand these effects led to many more discoveries about the applicability of the BCG vaccine for the prevention, diagnosis, and treatment of certain disease conditions. As we approach the second century since the discovery of the vaccine, we believe it is timely to review these interesting applications of the BCG vaccine, such as in the prevention of diabetes, atherosclerosis, and leukemia; the diagnosis of Kawasaki disease; and the treatment of multiple sclerosis, non-muscle invading bladder cancer, and stage III melanoma. Furthermore, complications associated with the administration of the BCG vaccine to certain groups of patients, including those with severe combined immunodeficiency and HIV, have been well described in literature, and we conclude by describing the mechanisms behind these complications and discuss their implications on vaccination strategies, especially in low-resource settings.
Collapse
Affiliation(s)
- Oluwafolajimi A. Adesanya
- Institute for Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Yeshua A. Adedeji
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - John I. Joshua
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeniyi A. Adesola
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
19
|
Fellah F, Djenidi R, Chebout I. Protective Effect of Sphaerococcus coronopifolius Crude Extract in Combination with Bacillus Calmette-Guerin on Ligature-Induced Depression in Female Wistar Rats. Psychiatry Investig 2020; 17:130-139. [PMID: 32023676 PMCID: PMC7046999 DOI: 10.30773/pi.2019.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Immunomodulation is a therapeutic technique that modulates the balance of cytokines in the body. In this regard, our experiment was conducted to investigate the potential effect of S. coronopifolius crude extract in combination with low dose of Bacillus Calmette-Guerin (BCG) on depression-like behaviors in female Wistar rats. METHODS Sciatic nerve injury was employed to induce depression and intradermal injection of 0.02 mL of BCG per rat was administered to lead an activation of innate immune system. Daily intra-peritoneal injections of 25 mg algae extract kg-1 body weight were performed for 14 continuous days. Forced Swimming (FS) and Open Field (OF) tests were conducted to assess despairing and spontaneous behaviors. At the end of the experiment, brain was removed to determine the activities of catalase (CAT) and glutathione-S-transferase (GST), whereas spleen and adrenals were used for the histopathological study. RESULTS The combined treatment exhibited antidepressant-like activity in FST by reducing immobility time, without inducing any significant change in ambulatory behavior in OFT. The histological analyses of spleen and adrenal structure showed a conserved architecture. CONCLUSION The results suggested that algae extract produce an antidepressant-like effect in combination with low dose of BCG, which is possibly trigged by its anti-oxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Fahima Fellah
- Département des Sciences Biologiques, Faculté SNV-STU, Université de Bordj Bou Arreridj, Bordj Bou Arreridj, Algérie.,Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie
| | - Rédha Djenidi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie.,Département des Sciences Agronomiques, Faculté SNV-STU, Université de Bordj Bou Arreridj, Bordj Bou Arreridj, Algérie
| | - Imen Chebout
- Laboratoire de l'anatomie et de Cytopathologie, Faculté de Médecine, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
20
|
Yamazaki-Nakashimada MA, Unzueta A, Berenise Gámez-González L, González-Saldaña N, Sorensen RU. BCG: a vaccine with multiple faces. Hum Vaccin Immunother 2020; 16:1841-1850. [PMID: 31995448 DOI: 10.1080/21645515.2019.1706930] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BCG has been recommended because of its efficacy against disseminated and meningeal tuberculosis. The BCG vaccine has other mechanisms of action besides tuberculosis protection, with immunomodulatory properties that are now being discovered. Reports have shown a significant protective effect against leprosy. Randomized controlled trials suggest that BCG vaccine has beneficial heterologous (nonspecific) effects on mortality in some developing countries. BCG immunotherapy is considered the gold standard adjuvant treatment for non-muscle-invasive bladder cancer. BCG vaccine has also been tested as treatment for diabetes and multiple sclerosis. Erythema of the BCG site is recognized as a clinical clue in Kawasaki disease. BCG administration in the immunodeficient patient is associated with local BCG disease (BCGitis) or disseminated BCG disease (BCGosis) with fatal consequences. BCG administration has been associated with the development of autoimmunity. We present a brief review of the diverse facets of the vaccine, with the discovery of its new modes of action providing new perspectives on this old, multifaceted and controversial vaccine.
Collapse
Affiliation(s)
| | - Alberto Unzueta
- Gastroenterology and Transplant Hepatology, Geisinger Medical Center , Danville, PA, USA
| | | | | | - Ricardo U Sorensen
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Primary Immunodeficiency Network , New Orleans, LA, USA.,Faculty of Medicine, University of La Frontera , Temuco, Chile
| |
Collapse
|
21
|
Gofrit ON, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL, Bercovier H. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer's disease in bladder cancer patients. PLoS One 2019; 14:e0224433. [PMID: 31697701 PMCID: PMC6837488 DOI: 10.1371/journal.pone.0224433] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects one in ten people older than 65 years. Thus far, there is no cure or even disease-modifying treatment for this disease. The immune system is a major player in the pathogenesis of AD. Bacillus Calmette-Guérin (BCG), developed as a vaccine against tuberculosis, modulates the immune system and reduces recurrence of non-muscle invasive bladder cancer. Theoretical considerations suggested that treatment with BCG may decrease the risk of AD. We tested this hypothesis on a natural population of bladder cancer patients. METHODS AND FINDINGS After removing all bladder cancer patients presenting with AD or developing AD within one-year following diagnosis of bladder cancer, we collected data on a total of 1371 patients (1134 males and 237 females) who were followed for at least one year after the diagnosis of bladder cancer. The mean age at diagnosis of bladder cancer was 68.1 years (SD 13.0). Adjuvant post-operative intra-vesical treatment with BCG was given to 878 (64%) of these patients. The median period post-operative follow-up was 8 years. During follow-up, 65 patients developed AD at a mean age of 84 years (SD 5.9), including 21 patients (2.4%) who had been treated with BCG and 44 patients (8.9%) who had not received BCG. Patients who had been treated with BCG manifested more than 4-fold less risk for AD than those not treated with BCG. The Cox proportional hazards regression model and the Kaplan-Meier analysis of AD free survival both indicated high significance: patients not treated with BCG had a significantly higher risk of developing AD compared to BCG treated patients (HR 4.778, 95%CI: 2.837-8.046, p = 4.08x10-9 and Log Rank Chi-square 42.438, df = 1, p = 7.30x10-11, respectively). Exposure to BCG did not modify the prevalence of Parkinson's disease, 1.9% in BCG treated patients and 1.6% in untreated (Fisher's Exact Test, p = 1). CONCLUSIONS Bladder cancer patients treated with BCG were significantly less likely to develop AD at any age than patients who were not so treated. This finding of a retrospective study suggests that BCG treatment might also reduce the incidence of AD in the general population. Confirmation of such effects of BCG in other retrospective studies would support prospective studies of BCG in AD.
Collapse
Affiliation(s)
- Ofer N. Gofrit
- Department of Urology, Hadassah- Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (HB); (ONG)
| | - Benjamin Y. Klein
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Irun R. Cohen
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | - Tamir Ben-Hur
- Department of Neurology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
- * E-mail: (HB); (ONG)
| |
Collapse
|
22
|
Li Q, Xuan A, Qi F, Yang J, Zou J, Yao Z. Synergistic effects of combined vaccination with BCG and influenza vaccines on spatial cognition and hippocampal plasticity in rats. Brain Res Bull 2019; 149:268-278. [PMID: 31051226 DOI: 10.1016/j.brainresbull.2019.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 11/25/2022]
Abstract
Previous study has demonstrated the neurobeneficial role of BCG and influenza vaccines. Based on this, our study concentrated on the synergistic effects on development of central nervous system by combined vaccination with BCG and influenza vaccines in rats. Our results displayed that pups combinedly vaccinated with BCG and influenza vaccines showed a significant enhance in spatial cognition, induction of LTP, hippocampal neurogenesis and morphology of dendritic spines compared with pups vaccinated with BCG solely. Furthermore, combined vaccination with BCG and influenza vaccines showed higher expression of BDNF, IGF-1, IL-4, IFN-γ and lower IL-1β, TNF-α and IL-6 than BCG. Taken together, combined vaccination with BCG and influenza vaccines presented synergistic effects on spatial cognition and hippocampal plasticity in rats.
Collapse
Affiliation(s)
- Qingqing Li
- Key Laboratory of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Junhua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China.
| |
Collapse
|
23
|
Fuzzati-Armentero MT, Cerri S, Blandini F. Peripheral-Central Neuroimmune Crosstalk in Parkinson's Disease: What Do Patients and Animal Models Tell Us? Front Neurol 2019; 10:232. [PMID: 30941089 PMCID: PMC6433876 DOI: 10.3389/fneur.2019.00232] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
The brain is no longer considered an immune privileged organ and neuroinflammation has long been associated with Parkinson's disease. Accumulating evidence demonstrates that innate and adaptive responses take place in the CNS. The extent to which peripheral immune alterations impacts on the CNS, or vice and versa, is, however, still a matter of debate. Gaining a better knowledge of the molecular and cellular immune dysfunctions present in these two compartments and clarifying their mutual interactions is a fundamental step in understanding and preventing Parkinson's disease (PD) pathogenesis. This review provides an overview of the current knowledge on inflammatory processes evidenced both in PD patients and in toxin-induced animal models of the disease. It discusses differences and similarities between human and animal studies in the context of neuroinflammation and immune responses and how they have guided therapeutic strategies to slow down disease progression. Future longitudinal studies are necessary and can help gain a better understanding on peripheral-central nervous system crosstalk to improve therapeutic strategies for PD.
Collapse
|
24
|
Rane P, Sarmah D, Bhute S, Kaur H, Goswami A, Kalia K, Borah A, Dave KR, Sharma N, Bhattacharya P. Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chem Neurosci 2019; 10:44-57. [PMID: 29957921 DOI: 10.1021/acschemneuro.8b00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is pathologically characterized by degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc). PD leads to clinical motor features that include rigidity, tremor, and bradykinesia. Despite multiple available therapies for PD, the clinical features continue to progress, and patients suffer progressive disability. Many advances have been made in PD therapy which directly target the cause of the disease rather than providing symptomatic relief. A neuroprotective or disease modifying strategy that can slow or cease clinical progression and worsening disability remains as a major unmet medical need for PD management. The present review discusses potential novel therapies for PD that include recent interventions in the form of immunomodulatory techniques and stem cell therapy. Further, an introspective approach to identify numerous other novel targets that can alleviate PD pathogenesis and enable physicians to practice multitargeted therapy and that may provide a ray of hope to PD patients in the future are discussed.
Collapse
Affiliation(s)
- Pallavi Rane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Shashikala Bhute
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
25
|
Bridging the gap between vaccination with Bacille Calmette-Guérin (BCG) and immunological tolerance: the cases of type 1 diabetes and multiple sclerosis. Curr Opin Immunol 2018; 55:89-96. [PMID: 30447407 DOI: 10.1016/j.coi.2018.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
At the end of past century, when the prevailing view was that treatment of autoimmunity required immune suppression, experimental evidence suggested an approach of immune-stimulation such as with the BCG vaccine in type 1 diabetes (T1D) and multiple sclerosis (MS). Translating these basic studies into clinical trials, we showed the following: BCG harnessed the immune system to 'permanently' lower blood sugar, even in advanced T1D; BCG appeared to delay the disease progression in early MS; the effects were long-lasting (years after vaccination) in both diseases. The recently demonstrated capacity of BCG to boost glycolysis may explain both the improvement of metabolic indexes in T1D, and the more efficient generation of inducible regulatory T cells, which counteract the autoimmune attack and foster repair mechanisms.
Collapse
|
26
|
The key role of T cells in Parkinson's disease pathogenesis and therapy. Parkinsonism Relat Disord 2018; 60:25-31. [PMID: 30404763 DOI: 10.1016/j.parkreldis.2018.10.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
This review focuses on the role of T lymphocytes in the pathogenesis of Parkinson's disease and highlights evidence for modulation of the T cell response as an effective neuroprotective strategy. In preclinical models of Parkinson's disease, modulation of the T cell response results in neuroprotection. Peripheral markers of T cell response show changes in Parkinson's patients relative to controls that have potential application as diagnostic and therapeutic biomarkers. The article also discusses the important immunomodulatory effects of dopamine which may confound study of T cells in patients on dopaminergic therapies, and highlights glatiramer acetate, an FDA-approved therapy for multiple sclerosis that works through modulating the T cell response, as a promising target for translation.
Collapse
|
27
|
Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018; 169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Recent evidence has shown that neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). However, different components of the brain's immune system may exert diverse effects on neuroinflammatory events in PD. The adaptive immune response, especially the T cell response, can trigger type 1 pro-inflammatory activities and suppress type 2 anti-inflammatory activities, eventually resulting in deregulated neuroinflammation and subsequent dopaminergic neurodegeneration. Additionally, studies have increasingly shown that therapies targeting T cells can alleviate neurodegeneration and motor behavior impairment in animal models of PD. Therefore, we conclude that abnormal T cell-mediated immunity is a fundamental pathological process that may be a promising translational therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
28
|
The Mycobacterial Adjuvant Analogue TDB Attenuates Neuroinflammation via Mincle-Independent PLC-γ1/PKC/ERK Signaling and Microglial Polarization. Mol Neurobiol 2018; 56:1167-1187. [PMID: 29876879 DOI: 10.1007/s12035-018-1135-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Microglial activation has long been recognized as a hallmark of neuroinflammation. Recently, the bacillus Calmette-Guerin (BCG) vaccine has been reported to exert neuroprotective effects against several neurodegenerative disorders. Trehalose-6,6'-dibehenate (TDB) is a synthetic analogue of trehalose-6,6'-dimycolate (TDM, also known as the mycobacterial cord factor) and is a new adjuvant of tuberculosis subunit vaccine currently in clinical trials. Both TDM and TDB can activate macrophages and dendritic cells through binding to C-type lectin receptor Mincle; however, its action mechanism in microglia and their relationship with neuroinflammation are still unknown. In this article, we found that TDB inhibited LPS-induced M1 microglial polarization in primary microglia and BV-2 cells. However, TDB itself had no effects on IKK, p38, and JNK activities or cytokine expression. In contrast, TDB activated ERK1/2 through PLC-γ1/PKC signaling and in turn decreased LPS-induced NF-κB nuclear translocation. Furthermore, TDB-induced AMPK activation via PLC-γ1/calcium/CaMKKβ-dependent pathway and thereby enhanced M2 gene expressions. Interestingly, knocking out Mincle did not alter the anti-inflammatory and M2 polarization effects of TDB in microglia. Conditional media from LPS-stimulated microglial cells can induce in vitro neurotoxicity, and this action was attenuated by TDB. Using a mouse neuroinflammation model, we found that TDB suppressed LPS-induced M1 microglial activation and sickness behavior, but promoted M2 microglial polarization in both WT and Mincle-/- mice. Taken together, our results suggest that TDB can act independently of Mincle to inhibit LPS-induced inflammatory response through PLC-γ1/PKC/ERK signaling and promote microglial polarization towards M2 phenotype via PLC-γ1/calcium/CaMKKβ/AMPK pathway. Thus, TDB may be a promising therapeutic agent for the treatment of neuroinflammatory diseases.
Collapse
|
29
|
Schwamborn K. Back to the future – Is the drug repositioning concept applicable to vaccines? Vaccine 2018; 36:2743-2744. [DOI: 10.1016/j.vaccine.2018.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/28/2022]
|
30
|
von Euler Chelpin M, Vorup-Jensen T. Targets and Mechanisms in Prevention of Parkinson's Disease through Immunomodulatory Treatments. Scand J Immunol 2017; 85:321-330. [PMID: 28231624 DOI: 10.1111/sji.12542] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world; however, there is no cure for it. Current treatments only relieve some of the symptoms, without ceasing the disease, and lose efficacy with prolonged treatment. Considerable evidence shows that persistent inflammatory responses, involving T cell infiltration and glial cell activation, are common characteristics of human patients and play a crucial role in the degeneration of dopaminergic neurons. Therefore, it is important to develop therapeutic strategies that can impede or halt the disease through the modulation of the peripheral immune system by aiming at controlling the existing neuroinflammation. Most of the immunomodulatory therapies designed for the treatment of Parkinson's disease are based on vaccines using AS or antibodies against it; yet, it is of significant interest to explore other formulations that could be used as therapeutic agents. Several vaccination procedures have shown that inducing regulatory T cells in the periphery is protective in PD animal models. In this regard, the formulation glatiramer acetate (Copaxone® ), extensively used for the treatment of multiple sclerosis, could be a suitable candidate due to its capability to increase the number and suppressor capacity of regulatory T cells. In this review, we will present some of the recent immunomodulatory therapies for PD including vaccinations with AS or glatiramoids, or both, as treatments of PD pathology.
Collapse
Affiliation(s)
| | - T Vorup-Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Prochetto E, Roldán C, Bontempi IA, Bertona D, Peverengo L, Vicco MH, Rodeles LM, Pérez AR, Marcipar IS, Cabrera G. Trans-sialidase-based vaccine candidate protects against Trypanosoma cruzi infection, not only inducing an effector immune response but also affecting cells with regulatory/suppressor phenotype. Oncotarget 2017; 8:58003-58020. [PMID: 28938533 PMCID: PMC5601629 DOI: 10.18632/oncotarget.18217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control. Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice. In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC. Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested.
Collapse
Affiliation(s)
- Estefanía Prochetto
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carolina Roldán
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Iván A Bontempi
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Daiana Bertona
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luz Peverengo
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Miguel H Vicco
- Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luz M Rodeles
- Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana R Pérez
- IDICER-CONICET and Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Iván S Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
32
|
Gendelman HE, Zhang Y, Santamaria P, Olson KE, Schutt CR, Bhatti D, Shetty BLD, Lu Y, Estes KA, Standaert DG, Heinrichs-Graham E, Larson L, Meza JL, Follett M, Forsberg E, Siuzdak G, Wilson TW, Peterson C, Mosley RL. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson's disease trial. NPJ PARKINSONS DISEASE 2017. [PMID: 28649610 PMCID: PMC5445595 DOI: 10.1038/s41531-017-0013-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A potential therapeutic role for immune transformation in Parkinson’s disease evolves from more than a decade of animal investigations demonstrating regulatory T cell (Treg) nigrostriatal neuroprotection. To bridge these results to human disease, we conducted a randomized, placebo-controlled double-blind phase 1 trial with a well-studied immune modulator, sargramostim (granulocyte-macrophage colony-stimulating factor). We enrolled 17 age-matched non-Parkinsonian subjects as non-treated controls and 20 Parkinson’s disease patients. Both Parkinson’s disease patients and controls were monitored for 2 months for baseline profiling. Parkinson’s disease patients were then randomized into two equal groups to self-administer placebo (saline) or sargramostim subcutaneously at 6 μg/kg/day for 56 days. Adverse events for the sargramostim and placebo groups were 100% (10/10) and 80% (8/10), respectively. These included injection site reactions, increased total white cell counts, and upper extremity bone pain. One urticarial and one vasculitis reaction were found to be drug and benzyl alcohol related, respectively. An additional patient with a history of cerebrovascular disease suffered a stroke on study. Unified Parkinson’s disease rating scale, Part III scores in the sargramostim group showed modest improvement after 6 and 8 weeks of treatment when compared with placebo. This paralleled improved magnetoencephalography-recorded cortical motor activities and Treg numbers and function compared with pretreated Parkinson’s disease patients and non-Parkinsonian controls. Peripheral Treg transformation was linked to serum tryptophan metabolites, including L-kynurenine, quinolinic acid, and serotonin. These data offer a potential paradigm shift in modulating immune responses for potential therapeutic gain for Parkinson’s disease. Confirmation of these early study results requires larger numbers of enrolled patients and further clinical investigation. The immune system modulating drug sargramostim shows promising results in a small clinical trial with Parkinson’s disease (PD) patients. Previous studies have shown that sargramostim increases the number of regulatory T cells, attenuates immune responses, and confers neuroprotection in animal models of neurodegenerative disease. To determine whether these findings translate to humans, Howard E. Gendelman at the University of Nebraska Medical Center, USA, and colleagues examined the effects of sargramostim in 20 patients with PD. Despite the high number of mild to moderate reported adverse events, the drug was generally well tolerated and led to an increase in regulatory T cell number and activity. Moreover, preliminary assessments after 6 and 8 weeks of treatment suggested an overall improvement in the motor skills of patients that received the drug compared with those that received a placebo.
Collapse
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Yuning Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Pamela Santamaria
- Neurology Consultants of Nebraska, PC and Nebraska Medicine, Omaha, NE USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Charles R Schutt
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Danish Bhatti
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Katherine A Estes
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - David G Standaert
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Elizabeth Heinrichs-Graham
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - LuAnn Larson
- Great Plains Center for Clinical and Translational Research, University of Nebraska Medical Center, Omaha, NE USA
| | - Jane L Meza
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE USA
| | - Matthew Follett
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Erica Forsberg
- Scripps Center for Metabolomics, Scripps Research Institute, La Jolla, CA USA
| | - Gary Siuzdak
- Departments of Chemistry, Cell and Molecular Biology, and Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA USA
| | - Tony W Wilson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE USA
| | - Carolyn Peterson
- Great Plains Center for Clinical and Translational Research, University of Nebraska Medical Center, Omaha, NE USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
33
|
Zuo Z, Qi F, Yang J, Wang X, Wu Y, Wen Y, Yuan Q, Zou J, Guo K, Yao ZB. Immunization with Bacillus Calmette-Guérin (BCG) alleviates neuroinflammation and cognitive deficits in APP/PS1 mice via the recruitment of inflammation-resolving monocytes to the brain. Neurobiol Dis 2017; 101:27-39. [PMID: 28189498 DOI: 10.1016/j.nbd.2017.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
The immune system plays a crucial role in the progression of Alzheimer's disease (AD). Recently, immune-dependent cascade induced by systemic immune activation has been verified to play a beneficial role in AD mouse models. Here, we tested whether Bacillus Calmette-Guérin (BCG) immunization alters AD pathology and cognitive dysfunction in APP/PS1 AD mouse model, and with 4Aβ1-15 vaccination as positive control. It was found that BCG treatment reversed the cognitive decline to the extent observed in 4Aβ1-15 group, but did not reduce the β-amyloid (Aβ) burden in the brain. Then, we demonstrated the enhanced recruitment of inflammation-resolving monocytes across the choroid plexus and perivascular spaces to cerebral sites of plaque pathology in APP/PS1 mice immunized with BCG. Furthermore, elevated splenocyte Foxp3+ regulatory T cell levels in the control APP/PS1 mice were down-regulated back to the wild-type (WT) levels by BCG treatment but not 4Aβ1-15 vaccination. In addition, BCG treatment induced the production of more circulating interferon (IFN)-γ than the controls and 4Aβ1-15 vaccination. Though the similar reductions in brain levels of pro-inflammatory cytokines were observed in the BCG and 4Aβ1-15 groups compared to the controls, only BCG had the great effect in upregulating cerebral anti-inflammatory cytokine levels as well as elevating the expression of neurotrophic factors in the brain of APP/PS1 mice. Thus, it is suggested that BCG exerts a beneficial immunomodulatory effect in APP/PS1 mice through mitigation of systemic immune suppression, induction of IFN-γ response and alleviation of the neuroinflammatory response.
Collapse
Affiliation(s)
- Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Junhua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Yingying Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Yaru Wen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Qunfang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Zhi Bin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China.
| |
Collapse
|
34
|
Yang J, Qi F, Yang Y, Yuan Q, Zou J, Guo K, Yao Z. Neonatal hepatitis B vaccination impaired the behavior and neurogenesis of mice transiently in early adulthood. Psychoneuroendocrinology 2016; 73:166-176. [PMID: 27501128 DOI: 10.1016/j.psyneuen.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/09/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023]
Abstract
The immune system plays a vital role in brain development. The hepatitis B vaccine (HBV) is administered to more than 70% of neonates worldwide. Whether this neonatal vaccination affects brain development is unknown. Newborn C57BL/6 mice were injected intraperitoneally with HBV or phosphate-buffered saline. HBV induced impaired behavioral performances and hippocampal long-term potentiation at 8 weeks (w) of age without influence at 4 or 12w. At 6w, there was decreased neurogenesis, M1 microglial activation and a neurotoxic profile of neuroimmune molecule expression [increased tumor necrosis factor-α and reduced interferon (IFN)-γ, brain-derived neurotrophic factor and insulin-like growth factor-1] in the hippocampus of the HBV-vaccinated mice. In the serum, HBV induced significantly higher levels of interleukin (IL)-4, indicating a T helper (Th)-2 bias. Moreover, the serum IFN-γ/IL-4 ratio was positively correlated with the levels of neurotrophins and neurogenesis in the hippocampus at the individual level. These findings suggest that neonatal HBV vaccination of mice results in neurobehavioral impairments in early adulthood by inducing a proinflammatory and low neurotrophic milieu in the hippocampus, which follows the HBV-induced systemic Th2 bias.
Collapse
Affiliation(s)
- Junhua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, PR China
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, PR China
| | - Yang Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, PR China
| | - Qunfang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, PR China
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, PR China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, PR China
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, PR China.
| |
Collapse
|
35
|
Neonatal Bacillus Calmette-Guérin vaccination alleviates lipopolysaccharide-induced neurobehavioral impairments and neuroinflammation in adult mice. Mol Med Rep 2016; 14:1574-86. [PMID: 27357155 PMCID: PMC4940080 DOI: 10.3892/mmr.2016.5425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 04/29/2016] [Indexed: 12/23/2022] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine is routinely administered to human neonates worldwide. BCG has recently been identified as a neuroprotective immune mediator in several neuropathological conditions, exerting neuroprotection in a mouse model of Parkinson's disease and slowing the progression of clinically isolated syndrome in patients with multiple sclerosis. The immune system is significantly involved in brain development, and several types of neonatal immune activations exert influences on the brain and behavior following a secondary immune challenge in adulthood. However, whether the neonatal BCG vaccination affects the brain in adulthood remains to be elucidated. In the present study, newborn C57BL/6 mice were injected subcutaneously with BCG (105 colony forming units) or phosphate-buffered saline (PBS). A total of 12 weeks later, the mice were injected intraperitoneally with 330 µg/kg lipopolysaccharide (LPS) or PBS. The present study reported that the neonatal BCG vaccination alleviated sickness, anxiety and depression-like behavior, lessened the impairments in hippocampal cell proliferation and downregulated the proinflammatory responses in the serum and brain that were induced by the adult LPS challenge. However, BCG vaccination alone had no evident influence on the brain and behavior in adulthood. In conclusion, the neonatal BCG vaccination alleviated the neurobehavioral impairments and neuroinflammation induced by LPS exposure in adult mice, suggesting a potential neuroprotective role of the neonatal BCG vaccination in adulthood.
Collapse
|
36
|
Shen T, Pu J, Si X, Ye R, Zhang B. An update on potential therapeutic strategies for Parkinson's disease based on pathogenic mechanisms. Expert Rev Neurother 2016; 16:711-22. [PMID: 27138872 DOI: 10.1080/14737175.2016.1179112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Parkinson's disease is a common neurodegenerative disorder mainly caused by the loss of nigral dopaminergic neurons, of which the pathogenesis remains essentially unknown. Current therapeutic strategies help manage signs and symptoms but have no effect in disease modification. Over the past several decades, scientists have devoted a lot of effort to clarifying the pathological mechanism and searching for new targets for Parkinson's disease treatment. AREAS COVERED Treatment of Parkinson's disease. Expert Commentary: Illustrated in this review are newly found discoveries and evidence that contribute to the understanding of Parkinson's disease pathogenic mechanism. Also discussed are potential therapeutic strategies that are being studied, including disease-modifying and genetically mediated small molecule compounds, cell- and gene-based therapeutic strategies, immunization strategies and anti-diabetic therapy, which may be very promising therapeutic methods in the future.
Collapse
Affiliation(s)
- Ting Shen
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Jiali Pu
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Xiaoli Si
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Rong Ye
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Baorong Zhang
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
37
|
Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the Role of T Cells in CNS Homeostasis. Trends Immunol 2016; 37:154-165. [DOI: 10.1016/j.it.2015.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
|
38
|
Olson KE, Gendelman HE. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson's disease. Curr Opin Pharmacol 2015; 26:87-95. [PMID: 26571205 DOI: 10.1016/j.coph.2015.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 01/06/2023]
Abstract
While immune control is associated with nigrostriatal neuroprotection for Parkinson's disease, direct cause and effect relationships have not yet been realized, and modulating the immune system for therapeutic gain has been openly debated. Here, we review how innate and adaptive immunity affect disease pathobiology, and how each could be harnessed for treatment. The overarching idea is to employ immunopharmacologics as neuroprotective strategies for disease. The aim of the current work is to review disease-modifying treatments that are currently being developed as neuroprotective strategies for PD in experimental animal models and for human disease translation. The long-term goal of this research is to effectively harness the immune system to slow or prevent PD pathobiology.
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
39
|
Zhou TT, Zu G, Wang X, Zhang XG, Li S, Liang ZH, Zhao J. Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) -induced mouse model of Parkinson's disease. Int Immunopharmacol 2015; 29:334-343. [PMID: 26548343 DOI: 10.1016/j.intimp.2015.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Ginsenoside Rg1, one of the biologically active ingredients of ginseng, has been considered to be a candidate neuroprotective drug. The objective of the study was to study the protective effects of Rg1 through the peripheral and central inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Rg1 treatment protected TH-positive cells in the SNpc region from MPTP toxicity measured with immunofluoresence. The protein expression levels of TH in the SNpc region of MPTP-induced mice following treatment with Rg1 were higher than MPTP-induced mice which were tested with Western blot. The ratio of CD3(+)CD4(+) to CD3(+)CD8(+) T cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells in the blood increased in MPTP-induced mice following treatment with Rg1 which were detected by flow cytometry analysis. Moreover, Rg1 reduced the serum concentrations of proinflammatory cytokines TNF-α, IFN-γ, IL-1β and IL-6 which were tested with enzyme-linked immunosorbent assay (ELISA). In addition, Rg1 inhibited the activation of microglia and reduced the infiltration of CD3(+) T cells into the SNpc region which were measured by immunofluorescence. Our results indicated that Rg1 may represent a promising drug for the treatment of PD via the regulation of the peripheral and central inflammation.
Collapse
Affiliation(s)
- Ting-Ting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guo Zu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xi Wang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Xiao-Gang Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Zhan-Hua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Zhao
- Department of Physiology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
40
|
Yang J, Qi F, Gu H, Zou J, Yang Y, Yuan Q, Yao Z. Neonatal BCG vaccination of mice improves neurogenesis and behavior in early life. Brain Res Bull 2015; 120:25-33. [PMID: 26536170 DOI: 10.1016/j.brainresbull.2015.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022]
Abstract
Bacillus Calmette-Guérin (BCG) is administered to neonates worldwide, but it is still unknown whether this neonatal vaccination affects brain development during early postnatal life, despite the close association of the immune system with the brain. Newborn C57BL/6 mice were injected subcutaneously with BCG or phosphate-buffered saline (PBS) and their mood status and spatial cognition were observed at four and eight weeks (w) old. The mice were also subjected to tests at 2 and 6 w to examine BCG's effects on neurogenesis, the hippocampal microglia phenotype and number, and the expression of hippocampal neuroimmune molecules and peripheral cytokines. The BCG-injected mice showed better behavioral performances at 4 w. We observed elevated neurogenesis, M2 microglial activation and a neurotrophic profile of neuroimmune molecules [more interferon (IFN)-γ, interleukin (IL)-4, transforming growth factor (TGF)-β, brain-derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF)-1 and less tumor necrosis factor (TNF)-α and IL-1β] in the hippocampus of the 2-w-old BCG-mice. In the periphery, BCG induced a T helper (Th)-1 serum response. At the individual level, there were positive correlations between the serum IFN-γ/IL-4 ratio and the levels of neurotrophins and neurogenesis in the hippocampus. These findings suggest that neonatal BCG vaccination improved neurogenesis and mouse behavior in early life by affecting the neuroimmune milieu in the brain, which may be associated with a systemic Th1 bias.
Collapse
Affiliation(s)
- Junhua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Yang Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Qunfang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China.
| |
Collapse
|
41
|
Li Q, Zhang Y, Zou J, Qi F, Yang J, Yuan Q, Yao Z. Neonatal vaccination with bacille Calmette-Guérin promotes the dendritic development of hippocampal neurons. Hum Vaccin Immunother 2015; 12:140-9. [PMID: 26375414 DOI: 10.1080/21645515.2015.1056954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dendritic structure is sensitive to changes in the environment during brain development. Accumulating evidence has demonstrated that early immune activation can significantly affect neuronal development. Our study concentrated on the morphological study of neural dendrites and spines in the hippocampal CA1 area using Diolistic labeling with Sholl analysis and fractal analysis. The results revealed that Bacille Calmette-Guérin (BCG) vaccination enhanced dendritic complexity, as reflected by the increased number of intersections, number of branch points and fractal dimension, and promoted neurite outgrowth. In addition, BCG increased the density and promoted the maturation of dendritic spines. The alterations in dendritic structure and spine morphology were observed at 2 and 4 w, but the differences were more apparent at 4 w than at 2 w. However, no significant difference was observed at 8 w. Furthermore, we observed that BCG increased the expression of hippocampal brain derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1). Hippocampal BDNF/IGF-1 was positively correlated with apical dendritic length, fractal dimension, and spine density. Taken together, we show in this study that neonatal BCG vaccination promotes dendritic development in developing hippocampal CA1 neurons, most likely by increasing the expression of BDNF and IGF-1 in the hippocampus.
Collapse
Affiliation(s)
- Qingqing Li
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Yuwei Zhang
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Juntao Zou
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Fangfang Qi
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Junhua Yang
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Qunfang Yuan
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Zhibin Yao
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| |
Collapse
|
42
|
Regulation of the Neurodegenerative Process Associated to Parkinson's Disease by CD4+ T-cells. J Neuroimmune Pharmacol 2015; 10:561-75. [PMID: 26018603 DOI: 10.1007/s11481-015-9618-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 01/09/2023]
Abstract
Neuroinflammation constitutes a fundamental process involved in the physiopathology of Parkinson's disease (PD). Microglial cells play a central role in the outcome of neuroinflammation and consequent neurodegeneration of dopaminergic neurons in the substantia nigra. Current evidence indicates that CD4+ T-cells infiltrate the central nervous system (CNS) in PD, where they play a critical role determining the functional phenotype of microglia, thus regulating the progression of the neurodegenerative process. Here, we first analysed the pathogenic role of inflammatory phenotypes and the beneficial role of anti-inflammatory phenotypes of encephalitogenic CD4+ T-cells involved in the physiopathology of PD. Next, we discussed how alterations of neurotransmitter levels observed in the basal ganglia throughout the time course of PD progression could be strongly affecting the behaviour of encephalitogenic CD4+ T-cells and thereby the outcome of the neuroinflammatory process and the consequent neurodegeneration of dopaminergic neurons. Afterward, we integrated the evidence indicating the involvement of an antigen-specific immune response mediated by T-cells and B-cells against CNS-derived self-constituents in PD. Consistent with the involvement of a relevant autoimmune component in PD, we also reviewed the polymorphisms of both, class I and class II major histocompatibility complexes, associated to the risk of PD. Overall, this study gives an overview of how an autoimmune component involved in PD plays a fundamental role in the progression of the neurodegenerative process.
Collapse
|
43
|
Boer MC, Joosten SA, Ottenhoff THM. Regulatory T-Cells at the Interface between Human Host and Pathogens in Infectious Diseases and Vaccination. Front Immunol 2015; 6:217. [PMID: 26029205 PMCID: PMC4426762 DOI: 10.3389/fimmu.2015.00217] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022] Open
Abstract
Regulatory T-cells (Tregs) act at the interface of host and pathogen interactions in human infectious diseases. Tregs are induced by a wide range of pathogens, but distinct effects of Tregs have been demonstrated for different pathogens and in different stages of infection. Moreover, Tregs that are induced by a specific pathogen may non-specifically suppress immunity against other microbes and parasites. Thus, Treg effects need to be assessed not only in homologous but also in heterologous infections and vaccinations. Though Tregs protect the human host against excessive inflammation, they probably also increase the risk of pathogen persistence and chronic disease, and the possibility of disease reactivation later in life. Mycobacterium leprae and Mycobacterium tuberculosis, causing leprosy and tuberculosis, respectively, are among the most ancient microbes known to mankind, and are master manipulators of the immune system toward tolerance and pathogen persistence. The majority of mycobacterial infections occur in settings co-endemic for viral, parasitic, and (other) bacterial coinfections. In this paper, we discuss recent insights in the activation and activity of Tregs in human infectious diseases, with emphasis on early, late, and non-specific effects in disease, coinfections, and vaccination. We highlight mycobacterial infections as important models of modulation of host responses and vaccine-induced immunity by Tregs.
Collapse
Affiliation(s)
- Mardi C Boer
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
44
|
Parkash O. T Regulatory Cells and BCG as a Vaccine against Tuberculosis: An Overview. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjv.2015.52012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Ndure J, Flanagan KL. Targeting regulatory T cells to improve vaccine immunogenicity in early life. Front Microbiol 2014; 5:477. [PMID: 25309517 PMCID: PMC4161046 DOI: 10.3389/fmicb.2014.00477] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/25/2014] [Indexed: 12/26/2022] Open
Abstract
Human newborns and infants are bombarded with multiple pathogens on leaving the sterile intra-uterine environment, and yet have suboptimal innate immunity and limited immunological memory, thus leading to increased susceptibility to infections in early life. They are thus the target age group for a host of vaccines against common bacterial and viral pathogens. They are also the target group for many vaccines in development, including those against tuberculosis (TB), malaria, and HIV infection. However, neonatal and infant responses too many vaccines are suboptimal, and in the case of the polysaccharide vaccines, it has been necessary to develop the alternative conjugated formulations in order to induce immunity in early life. Immunoregulatory factors are an intrinsic component of natural immunity necessary to dampen or control immune responses, with the caveat that they may also decrease immunity to infections or lead to chronic infection. This review explores the key immunoregulatory factors at play in early life, with a particular emphasis on regulatory T cells (Tregs). It goes on to explore the role that Tregs play in limiting vaccine immunogenicity, and describes animal and human studies in which Tregs have been depleted in order to enhance vaccine responses. A deeper understanding of the role that Tregs play in limiting or controlling vaccine-induced immunity would provide strategies to improve vaccine immunogenicity in this critical age group. New adjuvants and drugs are being developed that can transiently suppress Treg function, and their use as part of human vaccination strategies against infections is becoming a real prospect for the future.
Collapse
Affiliation(s)
- Jorjoh Ndure
- Infant Immunology Group, Vaccinology Theme, Medical Research Council Laboratories Fajara, The Gambia
| | - Katie L Flanagan
- Vaccine and Infectious Diseases Laboratory, Department of Immunology, Monash University Melbourne, VIC, Australia
| |
Collapse
|
46
|
Jones TB. Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 2014; 258:78-90. [PMID: 25017889 DOI: 10.1016/j.expneurol.2014.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
Abstract
Over the past 15 years an immense amount of data has accumulated regarding the infiltration and activation of lymphocytes in the traumatized spinal cord. Although the impact of the intraspinal accumulation of lymphocytes is still unclear, modulation of the adaptive immune response via active and passive vaccination is being evaluated for its preclinical efficacy in improving the outcome for spinal-injured individuals. The complexity of the interaction between the nervous and the immune systems is highlighted in the contradictions that appear in response to these modulations. Current evidence regarding augmentation and inhibition of the adaptive immune response to spinal cord injury is reviewed with an aim toward reconciling conflicting data and providing consensus issues that may be exploited in future therapies. Opportunities such an approach may provide are highlighted as well as the obstacles that must be overcome before such approaches can be translated into clinical trials.
Collapse
Affiliation(s)
- T Bucky Jones
- Department of Anatomy, Arizona College of Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
47
|
Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014; 10:852-67. [PMID: 24670306 DOI: 10.4161/hv.28578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disease in the world, but there is currently no available cure for it. Current treatments only alleviate some of the symptoms for a few years, but they become ineffective in the long run and do not stop the disease. Therefore it is of outmost importance to develop therapeutic strategies that can prevent, stop, or cure Parkinson disease. A very promising target for these therapies is the peripheral immune system due to its probable involvement in the disease and its potential as a tool to modulate neuroinflammation. But for such strategies to be successful, we need to understand the particular state of the peripheral immune system during Parkinson disease in order to avoid its weaknesses. In this review we examine the available data regarding how dopamine regulates the peripheral immune system and how this regulation is affected in Parkinson disease; the specific cytokine profiles observed during disease progression and the alterations documented to date in patients' peripheral blood mononuclear cells. We also review the different strategies used in Parkinson disease animal models to modulate the adaptive immune response to salvage dopaminergic neurons from cell death. After analyzing the evidence, we hypothesize the need to prime the immune system to restore natural tolerance against α-synuclein in Parkinson disease, including at the same time B and T cells, so that T cells can reprogram microglia activation to a beneficial pattern and B cell/IgG can help neurons cope with the pathological forms of α-synuclein.
Collapse
Affiliation(s)
- Marina Romero-Ramos
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Marianne von Euler Chelpin
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| |
Collapse
|
48
|
Parkash O. How to avoid the impact of environmental mycobacteria towards the efficacy of BCG vaccination against tuberculosis? Int J Mycobacteriol 2014; 3:1-4. [PMID: 26786215 DOI: 10.1016/j.ijmyco.2014.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) remains the only widely used vaccine against tuberculosis (TB). Consistent efficacy has been proved in infants but not in adults from developing countries. Epidemiological and experimental studies have pointed out that, prior exposure to prevailing environmental mycobacteria could be responsible for the poor efficacy of BCG as an anti-TB vaccine in adults living in developing countries. Sensitization by environmental mycobacteria may down-modulate the immunologic behavior of BCG on the one hand and may mask its efficacy on the other hand. Some of the important deciding factors for poor efficacy of BCG, due to exposure of the subjects to prevailing environmental mycobacteria, are thought to be (i) Life stage: neonatus versus adolescence; (ii) shared antigens between prevailing environmental mycobacteria and BCG; and (iii) generation of cross-reactive T-regulatory cells against environmental mycobacteria and BCG. In this communication, some novel strategies have been discussed for countering the down modulating impact of environmental mycobacteria towards performance of BCG as an anti-TB vaccine.
Collapse
Affiliation(s)
- Om Parkash
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| |
Collapse
|
49
|
Utheim TP. Why Test BCG in Sjögren’s Syndrome? THE VALUE OF BCG AND TNF IN AUTOIMMUNITY 2014:105-125. [DOI: 10.1016/b978-0-12-799964-7.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|