1
|
Linsambarth S, Carvajal FJ, Moraga‐Amaro R, Mendez L, Tamburini G, Jimenez I, Verdugo DA, Gómez GI, Jury N, Martínez P, Zundert B, Varela‐Nallar L, Retamal MA, Martin C, Altenberg GA, Fiori MC, Cerpa W, Orellana JA, Stehberg J. Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR‐dependent transmission and short‐term fear memory in the basolateral amygdala. FASEB J 2022; 36:e22134. [DOI: 10.1096/fj.202100798rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sergio Linsambarth
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Rodrigo Moraga‐Amaro
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Luis Mendez
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Giovanni Tamburini
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Ivanka Jimenez
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Daniel Antonio Verdugo
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Gonzalo I. Gómez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago Chile
| | - Nur Jury
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Pablo Martínez
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Brigitte Zundert
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Lorena Varela‐Nallar
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa. Facultad de Medicina Clínica Alemana Universidad del Desarrollo Santiago Chile
| | - Claire Martin
- Unité de Biologie Fonctionnelle et Adaptative Centre National la Recherche Scientifique Unité Mixte de Recherche 8251 Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics Center for Membrane Protein Research Texas Tech University Health Sciences Center Lubbock Texas USA
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics Center for Membrane Protein Research Texas Tech University Health Sciences Center Lubbock Texas USA
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Juan A. Orellana
- Departamento de Neurología Escuela de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| |
Collapse
|
2
|
Moussa S, Rosini E, Chitsaz D, Pollegioni L, Kennedy TE, Mauzeroll J. High-Throughput Strategy for Glycine Oxidase Biosensor Development Reveals Glycine Release from Cultured Cells. Anal Chem 2021; 93:16504-16511. [PMID: 34843206 DOI: 10.1021/acs.analchem.1c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycine is an important biomarker in clinical analysis due to its involvement in multiple physiological processes. As such, the need for low-cost analytical tools for glycine detection is growing. As a neurotransmitter, glycine is involved in inhibitory and excitatory neurochemical transmission in the central nervous system. In this work, we present a 10 μM Pt-based electrochemical enzymatic biosensor based on the flavoenzyme glycine oxidase (GO) for localized real-time measurements of glycine. Among GO variants at position 244, the H244K variant with increased glycine turnover was selected to develop a functional biosensor. This biosensor relies on amperometric readouts and does not require additional redox mediators. The biosensor was characterized and applied for glycine detection from cells, mainly HEK 293 cells and primary rat astrocytes. We have identified an enzyme, GO H244K, with increased glycine turnover using mutagenesis but which can be developed into a functional biosensor. Noteworthy, a glycine release of 395.7 ± 123 μM from primary astrocytes was measured, which is ∼fivefold higher than glycine release from HEK 293 cells (75.4 ± 3.91 μM) using the GO H244K biosensor.
Collapse
Affiliation(s)
- Siba Moussa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi deII'Insubria, via J. H. Dunant 3, Varese 21100, Italy
| | - Daryan Chitsaz
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, Quebec H3A 1A1, Canada
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi deII'Insubria, via J. H. Dunant 3, Varese 21100, Italy
| | - Timothy E Kennedy
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
3
|
He W, Wu G. Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:167-185. [PMID: 32761576 DOI: 10.1007/978-3-030-45328-2_10] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amino acids (AAs) and their metabolites play an important role in neurological health and function. They are not only the building blocks of protein but are also neurotransmitters. In the brain, glutamate and aspartate are the major excitatory neurotransmitters, whereas γ-aminobutyrate (GABA, a metabolite of glutamate) and glycine are the major inhibitory neurotransmitters. Nitric oxide (NO, a metabolite of arginine), H2S (a metabolite of cysteine), serotonin (a metabolite of tryptophan) and histamine (a metabolite of histidine), as well as dopamine and norepinephrine (metabolites of tyrosine) are neurotransmitters to modulate synaptic plasticity, neuronal activity, learning, motor control, motivational behavior, emotion, and executive function. Concentrations of glutamine (a precursor of glutamate and aspartate), branched-chain AAs (precursors of glutamate, glutamine and aspartate), L-serine (a precursor of glycine and D-serine), methionine and phenylalanine in plasma are capable of affecting neurotransmission through the syntheses of glutamate, aspartate, and glycine, as well as the competitive transport of tryptophan and tyrosine across from the blood-brain barrier. Adequate consumption of AAs is crucial to maintain their concentrations and the production of neurotransmitters in the central nervous system. Thus, the content and balance of AAs in diets have a profound impact on food intake by animals. Knowledge of AA transport and metabolism in the brain is beneficial for improving the health and well-being of humans and animals.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Zhao J, Meng M, Zhang J, Li L, Zhu X, Zhang L, Wang C, Gao M. Astaxanthin ameliorates renal interstitial fibrosis and peritubular capillary rarefaction in unilateral ureteral obstruction. Mol Med Rep 2019; 19:3168-3178. [PMID: 30816496 PMCID: PMC6423568 DOI: 10.3892/mmr.2019.9970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Loss of peritubular capillaries is a notable feature of progressive renal interstitial fibrosis. Astaxanthin (ASX) is a natural carotenoid with various biological activities. The present study aimed to evaluate the effect of ASX on unilateral ureteral obstruction (UUO)‑induced renal fibrosis in mice. For that purpose, mice were randomly divided into five treatment groups: Sham, ASX 100 mg/kg, UUO, UUO + ASX 50 mg/kg and UUO + ASX 100 mg/kg. ASX was administered to the mice for 7 or 14 days following UUO. The results demonstrated that UUO‑induced histopathological changes in the kidney tissue were prevented by ASX. Renal function was improved by ASX treatment, as evidenced by decreased blood urea nitrogen and serum creatinine levels. Furthermore, the extent of renal fibrosis and collagen deposition induced by UUO was suppressed by ASX. The levels of collagen I, fibronectin and α‑smooth muscle actin were increased by UUO in mice or by transforming growth factor (TGF)‑β1 treatment in NRK‑52E cells, and were reduced by ASX administration. In addition, ASX inhibited the UUO‑induced decrease in peritubular capillary density by upregulating vascular endothelial growth factor and downregulating thrombospondin 1 levels. Inactivation of the TGF‑β1/Smad signaling pathway was involved in the anti‑fibrotic mechanism of ASX in UUO mice and TGF‑β1‑treated NRK‑52E cells. In conclusion, ASX attenuated renal interstitial fibrosis and peritubular capillary rarefaction via inactivation of the TGF‑β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Meixia Meng
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Jinhua Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Lili Li
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaojing Zhu
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Chang Wang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Gao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
5
|
Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 2016; 35:239-57. [PMID: 26758544 DOI: 10.15252/embj.201592705] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Astrocytes are housekeepers of the central nervous system (CNS) and are important for CNS development, homeostasis and defence. They communicate with neurones and other glial cells through the release of signalling molecules. Astrocytes secrete a wide array of classic neurotransmitters, neuromodulators and hormones, as well as metabolic, trophic and plastic factors, all of which contribute to the gliocrine system. The release of neuroactive substances from astrocytes occurs through several distinct pathways that include diffusion through plasmalemmal channels, translocation by multiple transporters and regulated exocytosis. As in other eukaryotic cells, exocytotic secretion from astrocytes involves divergent secretory organelles (synaptic-like microvesicles, dense-core vesicles, lysosomes, exosomes and ectosomes), which differ in size, origin, cargo, membrane composition, dynamics and functions. In this review, we summarize the features and functions of secretory organelles in astrocytes. We focus on the biogenesis and trafficking of secretory organelles and on the regulation of the exocytotic secretory system in the context of healthy and diseased astrocytes.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Michela Matteoli
- CNR Institute of Neuroscience, Milano, Italy Humanitas Research Hospital, Rozzano, Italy
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jean-Pierre Mothet
- Team Gliotransmission & Synaptopathies, Aix-Marseille University CNRS, CRN2M UMR7286, Marseille, France
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
6
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
7
|
Papouin T, Oliet SHR. Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130601. [PMID: 25225095 DOI: 10.1098/rstb.2013.0601] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-methyl D-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U862, Bordeaux, France Université de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Role of astrocytes in memory and psychiatric disorders. ACTA ACUST UNITED AC 2014; 108:240-51. [PMID: 25169821 DOI: 10.1016/j.jphysparis.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/12/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023]
Abstract
Over the past decade, the traditional description of astrocytes as being merely accessories to brain function has shifted to one in which their role has been pushed into the forefront of importance. Current views suggest that astrocytes:(1) are excitable through calcium fluctuations and respond to neurotransmitters released at synapses; (2) communicate with each other via calcium waves and release their own gliotransmitters which are essential for synaptic plasticity; (3) activate hundreds of synapses at once, thereby synchronizing neuronal activity and activating or inhibiting complete neuronal networks; (4) release vasoactive substances to the smooth muscle surrounding blood vessels enabling the coupling of circulation (blood flow) to local brain activity; and (5) release lactate in an activity-dependent manner in order to supply neuronal metabolic demand. In consequence, the role of astrocytes and astrocytic gliotransmitters is now believed to be critical for higher brain function and recently, evidence begins to gather suggesting that astrocytes are pivotal for learning and memory. All of the above are reviewed here while focusing on the role of astrocytes in memory and psychiatric disorders.
Collapse
|
9
|
Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors. Neuropharmacology 2013; 76 Pt A:16-26. [PMID: 23973316 DOI: 10.1016/j.neuropharm.2013.08.013] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/03/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate (NMDA) receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic sites under physiological conditions. In addition, considering that there is currently no effective ways to cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD symptomatology. This review posits additional information on the role played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Sandra I Mota
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | |
Collapse
|
10
|
A MusD retrotransposon insertion in the mouse Slc6a5 gene causes alterations in neuromuscular junction maturation and behavioral phenotypes. PLoS One 2012; 7:e30217. [PMID: 22272310 PMCID: PMC3260239 DOI: 10.1371/journal.pone.0030217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/15/2011] [Indexed: 11/20/2022] Open
Abstract
Glycine is the major inhibitory neurotransmitter in the spinal cord and some brain regions. The presynaptic glycine transporter, GlyT2, is required for sustained glycinergic transmission through presynaptic reuptake and recycling of glycine. Mutations in SLC6A5, encoding GlyT2, cause hereditary hyperekplexia in humans, and similar phenotypes in knock-out mice, and variants are associated with schizophrenia. We identified a spontaneous mutation in mouse Slc6a5, caused by a MusD retrotransposon insertion. The GlyT2 protein is undetectable in homozygous mutants, indicating a null allele. Homozygous mutant mice are normal at birth, but develop handling-induced spasms at five days of age, and only survive for two weeks, but allow the study of early activity-regulated developmental processes. At the neuromuscular junction, synapse elimination and the switch from embryonic to adult acetylcholine receptor subunits are hastened, consistent with a presumed increase in motor neuron activity, and transcription of acetylcholine receptors is elevated. Heterozygous mice, which show no reduction in lifespan but nonetheless have reduced levels of GlyT2, have a normal thermal sensitivity with the hot-plate test, but differences in repetitive grooming and decreased sleep time with home-cage monitoring. Open-field and elevated plus-maze tests did not detect anxiety-like behaviors; however, the latter showed a hyperactivity phenotype. Importantly, grooming and hyperactivity are observed in mouse schizophrenia models. Thus, mutations in Slc6a5 show changes in neuromuscular junction development as homozygotes, and behavioral phenotypes as heterozygotes, indicating their usefulness for studies related to glycinergic dysfunction.
Collapse
|
11
|
Zhang LH, Gong N, Fei D, Xu L, Xu TL. Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition. Neuropsychopharmacology 2008; 33:701-11. [PMID: 17522628 DOI: 10.1038/sj.npp.1301449] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their role in hippocampal function remains unclear. Since the concentration of ambient glycine is determined by the presence of powerful glycine transporter (GlyT), we blocked the reuptake of glycine in hippocampal slices to examine the role of GlyRs. Antagonists of GlyT type 1 (GlyT1) but not that of GlyT type 2 (GlyT2) induced excitatory postsynaptic potential (EPSP)-spike depression, which was reversed by the specific GlyR antagonist strychnine. Moreover, endogenously elevating the glycine concentration with the GlyT1 antagonists facilitated NMDA receptor-dependent long-term potentiation induction, and elicited a strychnine-sensitive chloride current. In addition, impairment of glial function with fluoroacetate blocked the effect of GlyT1 antagonists on the EPSP-spike curve. Furthermore, pretreatment with sarcosine was effective in controlling pentylenetetrazol-induced seizures. These results indicate an essential role of GlyTs in fine-tuning tonic activation of GlyRs and suggest a potential role of GlyR-dependent EPSP-spike depression in hippocampal network stability.
Collapse
Affiliation(s)
- Long-Hua Zhang
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
12
|
López E, Lee-Rivera I, López-Colomé AM. Characteristics and Regulation of Glycine Transport in Bergmann Glia. Neurochem Res 2005; 30:1567-77. [PMID: 16362776 DOI: 10.1007/s11064-005-8835-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
In the vertebrate CNS, glycine acts as an inhibitory neurotransmitter and as the obligatory coagonist of glutamate at N-methyl-D-aspartate receptors. These roles depend on extracellular glycine levels, regulated by Na+/Cl--dependent transporters GLYT1, present mainly in glial cells, and GLYT2, predominantly neuronal. In Bergmann glia, GLYT1 mediates both, glycine uptake and efflux, which, in turn, influences excitatory neurotransmission at Purkinje cell synapses. The biochemical properties of GLYTs and their regulation by signaling pathways in these cells are largely unknown. We characterized Gly uptake in confluent primary cultures of Bergmann glia from chick cerebellum. Transport was found to be energy- and Na+-dependent, and was resolved into a high (Km=25 microM) and a low affinity (Km=1.1 mM) components identified as GLYT1 and transport System A, respectively. Results show that high affinity transport by GLYT1 is regulated by calcium from intracellular stores, calmodulin, and myosin light chain kinase through an actin cytoskeleton-mediated action.
Collapse
Affiliation(s)
- Edith López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México(UNAM), Apdo. Postal 70-253, México, D.F., 04510, México
| | | | | |
Collapse
|
13
|
Huang H, Barakat L, Wang D, Bordey A. Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices. J Physiol 2004; 560:721-36. [PMID: 15331688 PMCID: PMC1665288 DOI: 10.1113/jphysiol.2004.067801] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycine is an inhibitory neurotransmitter and is critical for NMDA receptor activation. These roles are dependent on extracellular glycine levels, which are regulated by Na(+)/Cl(-)-dependent glycine transporters (GlyTs) in neurones and glia. The glial GlyT subtype GlyT1 is well located to activate NMDA receptors. However, glial GlyTs have not been studied in an intact system thus far. Whole-cell patch-clamp recordings were obtained from Bergmann glia in mice cerebellar slices to determine whether these glia express functional GlyT1 that can mediate both glycine uptake and efflux. In the presence of a glycine receptor blocker, glycine and a substrate agonist for GlyT1, sarcosine, induced voltage-dependent inward currents that were abolished by removing external Na(+), identifying them as transport currents. Inhibitors of glycine transport through GlyT1 (sarcosine and (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS)) reduced glycine currents by approximately 85%, consistent with positive immunostaining for GlyT1 in Bergmann glia while inhibitors of glycine transport through GlyT2 (4-benzyloxy-3,5-dimethoxy-N-[1-(dimethylaminocyclopently)methyl]benzamide (ORG 25543) and amoxapine) or through systems A and ASC did not affect glycine transport currents. Following internal glycine perfusion during the recording, outward currents progressively developed at -50 mV and external glycine-induced uptake currents were reduced. Using paired recordings of a Bergmann glial cell and a granule cell in the whole cell and outside-out modes, respectively, depolarizations of Bergmann glia to +20 mV induced a 73% increase in the open probability of glycine receptor channels in membrane patches of granule cells. This increase was prevented when NFPS was included in the bath solution. Overall, these results demonstrate for the first time that Bergmann glia express functional GlyT1 that can work in reverse at near-physiological ionic and internal glycine conditions in brain slices. These glial GlyTs can probably mediate glycine efflux under conditions of metabolic impairments like ischaemia.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | | | | | | |
Collapse
|
14
|
Takeda A, Minami A, Seki Y, Nakajima S, Oku N. Release of amino acids by zinc in the hippocampus. Brain Res Bull 2004; 63:253-7. [PMID: 15145144 DOI: 10.1016/j.brainresbull.2004.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/23/2004] [Accepted: 03/06/2004] [Indexed: 10/26/2022]
Abstract
Zinc exists in the synaptic vesicles of hippocampal mossy fibers in high concentrations. On the basis of inhibitory zinc action against glutamate release in the hippocampus, the role of zinc in release of several amino acids were studied in rat hippocampus by using in vivo microdialysis. When the hippocampal CA3 region was perfused with 10 microM ZnCl(2), the concentrations of glutamine, serine, arginine, aspartate, and glycine in the perfusate were significantly increased, whereas the concentrations of amino acids except for glycine were not increased by perfusion with 30 microM ZnCl(2). Chelation of endogenous zinc with 50 microM CaEDTA significantly decreased the concentrations of amino acids in the perfusate except for glycine. In the CA1 region, on the other hand, the concentrations of these five amino acids were not increased by perfusion with 10 microM ZnCl(2) and the concentrations of glutamine and glycine were decreased significantly. The present study suggests that zinc enhances release of glutamine, serine, arginine, and aspartate in the CA3 region and attenuates release of glutamine and glycine in the CA1 region. Zinc seems to modulate glutamatergic synapses multifunctionally in the hippocampus, because glutamine, serine, aspartate, and glycine are involved in synaptic neurotransmission.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | |
Collapse
|
15
|
Polazzi E, Contestabile A. Neuron-conditioned media differentially affect the survival of activated or unstimulated microglia: evidence for neuronal control on apoptotic elimination of activated microglia. J Neuropathol Exp Neurol 2003; 62:351-62. [PMID: 12722827 DOI: 10.1093/jnen/62.4.351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is presently unknown what types of neuronal signals maintain microglial cells resting in the normal brain or control their activation in neuropathology. Recent data suggest that microglia activation induces apoptosis and that healthy neurons are controllers of the activation state and immune functions of microglia. In the present study we have evaluated, on microglial cells in cultures, whether neurons are able to affect their survival in resting conditions or upon activation with the bacterial endotoxin, lipopolysaccharide (LPS). We report that neuron-conditioned culture media induced apoptosis of LPS-stimulated, but not of unstimulated, microglia. This effect was, however, only present when conditioned media had been exposed to differentiated neurons and not to immature ones, and was absent when glutamate receptors had been pharmacologically blocked in neuronal cultures. The effect was also blocked by heat-inactivation of the conditioned media. Media conditioned with either differentiated or undifferentiated cerebellar granule neurons positively affected the survival of unstimulated microglial cells when the standard concentration of fetal bovine serum (10%) was included in the culture media. Our results highlight the ability of differentiated neurons to maintain a controlled inflammatory state through production of factor(s) favoring the apoptotic elimination of activated microglia. They also suggest that immature neurons may, on the contrary, favor the survival of microglia during development.
Collapse
|
16
|
Abstract
Manganese, an essential trace metal, is supplied to the brain via both the blood-brain and the blood-cerebrospinal fluid barriers. There are some mechanisms in this process and transferrin may be involved in manganese transport into the brain. A large portion of manganese is bound to manganese metalloproteins, especially glutamine synthetase in astrocytes. A portion of manganese probably exists in the synaptic vesicles in glutamatergic neurons and the manganese is dynamically coupled to the electrophysiological activity of the neurons. Manganese released into the synaptic cleft may influence synaptic neurotransmission. Dietary manganese deficiency, which may enhance susceptibility to epileptic functions, appears to affect manganese homeostasis in the brain, probably followed by alteration of neural activity. On the other hand, manganese also acts as a toxicant to the brain because this metal has prooxidant activity. Abnormal concentrations of manganese in the brain, especially in the basal ganglia, are associated with neurological disorders similar to Parkinson's disease. Understanding the movement and action of manganese in synapses may be important to clarify the function and toxicity of manganese in the brain.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, 422-8526, Shizuoka, Japan.
| |
Collapse
|
17
|
Takeda A, Sotogaku N, Oku N. Manganese influences the levels of neurotransmitters in synapses in rat brain. Neuroscience 2002; 114:669-74. [PMID: 12220568 DOI: 10.1016/s0306-4522(02)00353-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
54Mn previously taken up by the amygdala is released along with known neurotransmitters into the extracellular space during stimulation with 100 mM KCl. The possibility of manganese release from neuron terminals in a calcium- and impulse-dependent manner was examined by using the in vivo microdialysis method in the present study. The increase of (54)Mn release into the amygdalar extracellular space during stimulation with high K(+) was inhibited by addition of 1 microM tetrodotoxin. This increase of (54)Mn release into the extracellular space by stimulation with high K(+) was also observed in the hippocampus, but not in the substantia nigra. The increment of glutamate in the extracellular space during stimulation with high K(+) was highly correlated with that of (54)Mn, suggesting that manganese is concurrently released with glutamate from neuron terminals. The level of (54)Mn in the extracellular space in the hippocampus was increased with that of glutamate, but not with those of GABA and glycine, during stimulation with 100 mM KCl in the presence of 30 microM kainate. This increase was more marked than during stimulation with 30 microM kainate alone. It is likely that manganese is released from glutamatergic neuron terminals. When the rat hippocampus was perfused with artificial cerebrospinal fluid containing 20 or 200 nM MnCl(2), the levels of glutamate, aspartate and GABA in the perfusate were dose-dependently decreased during perfusion with manganese. The present findings demonstrate that manganese released into the synaptic cleft may influence synaptic neurotransmission.
Collapse
Affiliation(s)
- A Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | |
Collapse
|
18
|
Dringen R, Gutterer JM, Gros C, Hirrlinger J. Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 2001; 66:1003-8. [PMID: 11746430 DOI: 10.1002/jnr.10042] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurons in culture rely on the supply of exogenous cysteine for their glutathione synthesis. After application of cysteine to neuron-rich primary cultures, the glutathione content was doubled after a 4-hr incubation. The dipeptide cysteinylglycine (CysGly) was able to substitute for cysteine as exogenous glutathione precursor. In kidneys, the ectopeptidase aminopeptidase N (ApN) has been reported to hydrolyze CysGly. Expression of mRNA of ApN in rat brain and cultured rat neurons was demonstrated by reverse transcriptase polymerase chain reaction and sequencing of the cDNA fragment obtained. In addition, the presence of ApN protein in cultured neurons was demonstrated by its immunocytochemical localization. In the presence of an activity-inhibiting antiserum against ApN the utilization of CysGly as neuronal glutathione precursor was completely prevented, whereas that of cysteine plus glycine was not affected. The data presented demonstrates that cultured rat neurons express ApN and that this ectopeptidase participates in the utilization of CysGly as precursor for neuronal glutathione.
Collapse
Affiliation(s)
- R Dringen
- Physiologisch-Chemisches Institut der Universität, Hoppe-Seyler Street, 4, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
19
|
Gadea A, López-Colomé AM. Glial transporters for glutamate, glycine, and GABA III. Glycine transporters. J Neurosci Res 2001; 64:218-22. [PMID: 11319765 DOI: 10.1002/jnr.1069] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glial cells possess transport systems for the three major amino acid neurotransmitters glutamate, gamma-aminobutyric acid (GABA) and glycine, involved in the arrest of neurotransmission mediated by these compounds. Two glycine transporters have been cloned: GLYT1, mainly expressed by glial cells and shown to colocalize with NMDA receptors, and GLYT2, exclusively expressed by neurons and colocalized with the inhibitory glycine receptors. The way in which the regulation of extracellular glycine concentration by glial glycine transporters affects physiological and pathological conditions is discussed. The presence, differential pharmacology and specific regulation of glycine transporters in glial cells strongly support an important role for glia in the modulation of both, excitatory and inhibitory neurotransmission.
Collapse
Affiliation(s)
- A Gadea
- Instituto de Fisiología Celular, Departamento de Neurociencias, UNAM, México
| | | |
Collapse
|
20
|
Liu QY, Schaffner AE, Chang YH, Maric D, Barker JL. Persistent activation of GABA(A) receptor/Cl(-) channels by astrocyte-derived GABA in cultured embryonic rat hippocampal neurons. J Neurophysiol 2000; 84:1392-403. [PMID: 10980012 DOI: 10.1152/jn.2000.84.3.1392] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recordings using Cl(-)-filled pipettes revealed more negative levels of baseline current and associated current variance in embryonic rat hippocampal neurons co-cultured on a monolayer of astrocytes than those cultured on poly-D-lysine. These effects were mimicked by culturing neurons on poly-D-lysine in astrocyte-conditioned medium (ACM). The baseline current and variance decreased immediately in all cells after either local perfusion with saline or exposure to bicuculline, an antagonist of GABA at GABA(A) receptor/Cl(-) channels. Baseline current and variance in all cells reached a nadir at approximately 0 mV, the calculated equilibrium potential for Cl(-). Perfusion of ACM rapidly induced a sustained current in neurons, which also reversed polarity at approximately 0 mV. Bicuculline attenuated or eliminated the ACM-induced current at a concentration that completely blocked micromolar GABA-induced current. Quantitative analyses of spontaneously occurring fluctuations superimposed on the ACM-induced current revealed estimated unitary properties of the underlying channel activity similar to those calculated for GABA's activation of GABA(A) receptor/Cl(-) channels. Bicuculline-sensitive synaptic-like transients, which reversed at approximately 0 mV, were also detected in neurons cultured in ACM, and these were immediately eliminated along with the negative baseline current and superimposed current fluctuations by perfusion. Furthermore bicuculline-sensitive synaptic-like transients were rapidly and reversibly triggered when ACM was acutely applied. ACM induced an increase in cytoplasmic Ca(2+) in cultured embryonic hippocampal neurons that was completely blocked by bicuculline and strychnine. We conclude that astrocytes release diffusible substances, most likely GABA, that persistently activate GABA(A) receptor/Cl(-) channels in co-cultured neurons.
Collapse
Affiliation(s)
- Q Y Liu
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4066, USA
| | | | | | | | | |
Collapse
|
21
|
Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4912-6. [PMID: 10931173 DOI: 10.1046/j.1432-1327.2000.01597.x] [Citation(s) in RCA: 559] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cells of the adult human brain consume approximately 20% of the oxygen utilized by the body although the brain comprises only 2% of the body weight. Reactive oxygen species, which are produced continuously during oxidative metabolism, are generated at high rates within the brain. Therefore, the defense against the toxic effects of reactive oxygen species is an essential task within the brain. An important component of the cellular detoxification of reactive oxygen species is the antioxidant glutathione. The main focus of this short review is recent results on glutathione metabolism of brain astrocytes and neurons in culture. These two types of cell prefer different extracellular precursors for glutathione. Glutathione is involved in the disposal of exogenous peroxides by astrocytes and neurons. In coculture astrocytes protect neurons against the toxicity of reactive oxygen species. One mechanism of this interaction is the supply by astrocytes of glutathione precursors to neurons.
Collapse
Affiliation(s)
- R Dringen
- Physiologisch-chemisches Institut der Universität, Tübingen, Germany.
| | | | | |
Collapse
|
22
|
Verleysdonk S, Martin H, Willker W, Leibfritz D, Hamprecht B. Rapid uptake and degradation of glycine by astroglial cells in culture: synthesis and release of serine and lactate. Glia 1999; 27:239-48. [PMID: 10457370 DOI: 10.1002/(sici)1098-1136(199909)27:3<239::aid-glia5>3.0.co;2-k] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Free glycine is known to have vital functions in the mammalian brain, where it serves mainly as both neurotransmitter and neuromodulator. Despite its importance, little is known about the metabolic pathways of glycine synthesis and degradation in the central nervous system. In this study, the pathway of glycine metabolism in astroglia-rich primary cultures from rat brain was examined. The cells were allowed to degrade glycine in the presence of [U-(14)C]glycine, [U-(13)C]glycine or [(15)N]glycine. The resulting intra- and extracellular metabolites were analyzed both by high-performance liquid chromatography and by (13)C/(15)N nuclear magnetic resonance spectroscopy. Glycine was rapidly consumed in a process obeying first-order kinetics. The initial glycine consumption rate was 0.47 nmol per mg protein. The half-life of glycine radiolabel in the incubation medium was shorter than that of glycine mass. This suggests that glycine is produced from endogenous sources and released simultaneously with glycine uptake and metabolism. As the main metabolites of the glycine carbon skeleton in astroglia-rich primary cultures from rat brain, serine and lactate were released during glycine consumption. The main metabolite containing the glycine amino nitrogen was glutamine. To establish a metabolic pathway from glycine to serine in neural tissue, homogenates of rat brain and of neural primary cultures were assayed for their content of serine hydroxymethyltransferase (SHMT) and glycine cleavage system (GCS). SHMT activity was present in homogenates of rat brain as well as of astroglia-rich and neuron-rich primary cultures, whereas GCS activity was detectable only in homogenates of rat brain and astroglia-rich primary culture. Of the two known SHMT isoenzymes, only the mitochondrial form was found in rat brain homogenate. It is proposed that, in neural tissue, glycine is metabolized by the combined action of SHMT and the GCS. Owing to the absence of the GCS from neurons, astrocytes appear to be the only site of this part of glycine metabolism in brain. However, neurons are able to utilize as energy source the lactate formed by astroglial cells in this metabolic pathway.
Collapse
Affiliation(s)
- S Verleysdonk
- Physiologisch-chemisches Institut der Universität, Tübingen, Germany
| | | | | | | | | |
Collapse
|
23
|
Saransaari P, Oja SS. Beta-alanine release from the adult and developing hippocampus is enhanced by ionotropic glutamate receptor agonists and cell-damaging conditions. Neurochem Res 1999; 24:407-14. [PMID: 10215515 DOI: 10.1023/a:1020941818168] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The release of the inhibitory amino acid beta-alanine was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice, using a superfusion system. The release was enhanced by beta-alanine itself and the structural analogs taurine and y-aminobutyrate. It was dependent on Na+, but independent of Ca2+ in both mature and immature hippocampus, being thus mostly mediated by uptake carriers operating in an outward direction. The release was potentiated in the developing mice, but not affected in the adults, by the ionotropic glutamate receptor agonists N-methyl-D-aspartate, kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and tetrazolylglycine in a receptor-mediated manner. Cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals, greatly enhanced beta-alanine release at both ages, but more markedly in the adults. The great amounts of beta-alanine, together with the inhibitory amino acids taurine and gamma-aminobutyrate, released simultaneously with the excitatory amino acids in the hippocampus may constitute an important protective mechanism against excitotoxicity, which leads to neuronal death.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland.
| | | |
Collapse
|
24
|
Saransaari P, Oja SS. Glycine release from hippocampal slices in developing and ageing mice: modulation by glutamatergic receptors. Mech Ageing Dev 1994; 76:113-24. [PMID: 7533869 DOI: 10.1016/0047-6374(94)91586-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The release of preloaded [3H]glycine from hippocampal slices in developing and ageing mice (from 7 days to 22 months) was characterized using a superfusion system. The release was Ca(2+)-independent in each age group studied. The basal release and the responses to potassium stimulation were fairly constant during the whole life span. The release was potentiated by the glutamate receptor agonists kainate, N-methyl-D-aspartate (NMDA), tetrazolylglycine, quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) in developing mice, but only kainate was effective in adult and aged animals. The kainate effect was not modified by the antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in adult and old mice, indicating that glutamatergic systems may not be involved in the release. On the other hand, hippocampal glycine release in immature mice seems to be subject to regulation by both NMDA and non-NMDA (kainate and AMPA) receptors. The potentiations by NMDA and AMPA were antagonized by dizocilpine (MK-801) and CNQX, respectively. The modulation of glycine release by glutamatergic receptors could be of importance in the regulation of synaptic glycine levels in the developing hippocampus.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
25
|
Wahl P, Elster L, Schousboe A. Identification and function of glycine receptors in cultured cerebellar granule cells. J Neurochem 1994; 62:2457-63. [PMID: 7910635 DOI: 10.1046/j.1471-4159.1994.62062457.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Poly(A)+ mRNA was isolated from cultured mouse cerebellar granule cells and injected into Xenopus oocytes. This led to the expression of receptors that evoked large membrane currents in response to glycine. Current-responses were also obtained after application of beta-alanine and taurine, but these were very low relative to that of glycine (maximal beta-alanine and taurine responses were 8 and 3% of that of glycine, respectively). The role of glycine receptors on K(+)-evoked transmitter release in cultured cerebellar granule cells was also assayed. Release of preloaded D-[3H]aspartate evoked by 40 mM K+ was dose dependently inhibited by glycine, and the concentration producing half-maximal inhibition was 50 microM. Taurine, beta-alanine, and the specific GABAA receptor agonist isoguvacine also inhibited K(+)-evoked release, and the maximal inhibition was similar for all agonists (approximately 40%). The EC50 value was 200 microM for taurine, 70 microM for beta-alanine, and 4 microM for isoguvacine. Bicuculline (150 microM) antagonized the inhibitory effect of isoguvacine (150 microM) but not that of glycine (1 mM). In contrast, strychnine (20 microM) antagonized the inhibitory effect of glycine (1 mM) but not that of isoguvacine (150 microM). The pharmacology of the responses to beta-alanine and taurine showed that these agonists activate both glycine and GABAA receptors. The results indicate that cultured cerebellar granule cells translate the gene for the glycine receptor and that activation of glycine receptors produces neuronal inhibition.
Collapse
Affiliation(s)
- P Wahl
- Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen
| | | | | |
Collapse
|
26
|
Galli A, Mori F, Bargellini M, Coppini L. Sodium-dependent release of exogenous glycine from preloaded rat hippocampal synaptosomes. J Neural Transm (Vienna) 1993; 93:167-79. [PMID: 8217056 DOI: 10.1007/bf01244994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of high potassium, veratridine, and ouabain stimulation upon the release of exogenously-loaded [3H]glycine was evaluated in crude synaptosomal preparations from rat hippocampi by means of a superfusion technique in the presence of media with different ionic compositions and of tetrodotoxin (TTX). Four minute superfusion of synaptosomes with 30 mM KCl, 10 microM veratridine or 0.4 mM ouabain caused a significant increase in the [3H]glycine efflux which averaged 6.6 +/- 0.2, 25.5 +/- 1.0, and 8.9 +/- 1.0% of the total radioactivity present in the synaptosomes, respectively. The omission of Ca2+ ions in the superfusion medium markedly decreased K(+)-evoked [3H]glycine efflux (2.5 +/- 0.5%), did not appreciably modify that evoked by veratridine (24.2 +/- 2.0%) and significantly increased that evoked by ouabain (18.5 +/- 0.5%). The superfusion of synaptosomes with Na(+)-free media always resulted in a drastic decrease of the depolarization-stimulated [3H]glycine efflux, whereas the omission of Cl- generally resulted in a moderate increase of [3H]glycine efflux. TTX (0.8 microM) markedly affected the stimulatory effect of veratridine (2.5 +/- 0.9%) and ouabain (2.2 +/- 0.5%), but failed to modify significantly that evoked by high potassium (6.5 +/- 0.7%). Finally, [3H]glycine was seen readily to exchange in a partially sodium-dependent way with unlabelled glycine present in the medium. On the whole these findings appear to be consistent with the neurotransmitter character of the glycine release from hippocampal synaptosomes.
Collapse
Affiliation(s)
- A Galli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | |
Collapse
|
27
|
Yadid G, Youdim MB, Zinder O. Uptake and receptor sites for glycine in isolated bovine adrenal medulla chromaffin cells. Neuroscience 1993; 55:1147-52. [PMID: 7694180 DOI: 10.1016/0306-4522(93)90328-d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
[3H]Glycine is actively taken up into bovine isolated adrenal medulla chromaffin cells with the subsequent catecholamine release. [3H]Glycine uptake has two interaction sites based on relative Km measurements. These sites are inherently distinct since the effects of strychnine and temperature on glycine binding are significantly different. The high affinity site (Km = 6 x 10(-7) M) is strychnine-sensitive and its activity is unaltered at 4 degrees C. These results point to a receptor-like function. The low-affinity site (Km = 1.4 x 10(-3) is strychnine-insensitive and is significantly inhibited (75%) by low temperature (4 degrees C), by low Na+ concentration and 50% by ouabain (10(-4) M). Compounds structurally similar to glycine and known to antagonize its uptake to neuronal cells, such as beta-alanine, N-methyl-d,l-alanine and sarcosine, also inhibit the low affinity site which indicate a glycine uptake function for this site. The relative activity of the uptake inhibitors indicate that in the adrenal chromaffin cell, glycine uptake is carried out by a System A amino acid transporter mechanism. GABA does not affect glycine binding or uptake in the chromaffin cells, suggesting that these two inhibitory amino acid neurotransmitters act via different mechanisms in the adrenal medulla. The results for glycine activity in adrenal medulla chromaffin cells are remarkably similar to those seen in CNS neuronal cells, and thus support the use of chromaffin cells as a model system for studying the mechanism of action of glycine in the central nervous system.
Collapse
Affiliation(s)
- G Yadid
- Pharmacology Department, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | | | | |
Collapse
|
28
|
Borowsky B, Mezey E, Hoffman BJ. Two glycine transporter variants with distinct localization in the CNS and peripheral tissues are encoded by a common gene. Neuron 1993; 10:851-63. [PMID: 8494645 DOI: 10.1016/0896-6273(93)90201-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have isolated a cDNA encoding a high affinity, Na+/Cl(-)-dependent glycine transporter, GLYT-2, which is distinct from another glycine transporter, GLYT-1. While the 3' sequences of these two cDNAs are identical, the 5' noncoding regions and the N-termini are completely different. GLYT-1 is found only in the white matter of the CNS, while GLYT-2 is found in the gray matter of the CNS as well as in macrophages and mast cells in peripheral tissues. Our findings suggest that tissue-specific alternative splicing or alternative promoter usage from a single gene results in two mRNA products encoding similar but distinct glycine transporters. The anatomic distribution of GLYT-2 mRNA supports the emerging status of glycine as a supraspinal neurotransmitter and suggests that glycine may function as a chemical messenger outside the CNS.
Collapse
Affiliation(s)
- B Borowsky
- Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
29
|
Saransaari P, Oja SS. Uptake and release of beta-alanine in cerebellar granule cells in primary culture: regulation of release by glutamatergic and GABAergic receptors. Neuroscience 1993; 53:475-81. [PMID: 8098513 DOI: 10.1016/0306-4522(93)90211-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The uptake and release of beta-[3H]alanine were studied in cultured glutamatergic cerebellar granule cells of the rat. The uptake of beta-alanine was saturable and sodium-dependent, comprising one high-affinity transport component. It was inhibited by hypotaurine, taurine, GABA and homotaurine but not by glycine or glutamate. The release was enhanced by homoexchange, veratridine and high K+ concentrations (50 mM). The K(+)-stimulated release was at least partially Ca(2+)-dependent. The release was shown to be subject to regulation by GABAA receptors and glutamate receptors of the kainate type. The results signify that beta-alanine may have a functional role in cerebellar granule cells.
Collapse
Affiliation(s)
- P Saransaari
- Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
30
|
Müller CM. A role for glial cells in activity-dependent central nervous plasticity? Review and hypothesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1992; 34:215-81. [PMID: 1587716 DOI: 10.1016/s0074-7742(08)60099-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activity-dependent plasticity relies on changes in neuronal transmission that are controlled by coincidence or noncoincidence of presynaptic and postsynaptic activity. These changes may rely on modulation of neural transmission or on structural changes in neuronal circuitry. The present overview summarizes experimental data that support the involvement of glial cells in central nervous activity-dependent plasticity. A role for glial cells in plastic changes of synaptic transmission may be based on modulation of transmitter uptake or on regulation of the extracellular ion composition. Both mechanisms can be initiated via neuronal-glial information transfer by potassium ions, transmitters, or other diffusible factor originating from active neurons. In addition, the importance of changes in neuronal circuitry in many model systems of activity-dependent plasticity is summarized. Structural changes in neuronal connectivity can be influenced or mediated by glial cells via release of growth or growth permissive factors on neuronal activation, and by active displacement and subsequent elimination of axonal boutons. A unifying hypothesis that integrates these possibilities into a model of activity-dependent plasticity is proposed. In this model glial cells interact with neurons to establish plastic changes; while glial cells have a global effect on plasticity, neuronal mechanisms underlie the induction and local specificity of the plastic change. The proposed hypothesis not only explains conventional findings on activity-dependent plastic changes, but offers an intriguing possibility to explain several paradoxical findings from studies on CNS plasticity that are not yet fully understood. Although the accumulated data seem to support the proposed role for glial cells in plasticity, it has to be emphasized that several steps in the proposed cascades of events require further detailed investigation, and several "missing links" have to be addressed by experimental work. Because of the increasing evidence for glial heterogeneity (for review see Wilkin et al., 1990) it seems to be of great importance to relate findings on glial populations to the developmental stage and topographical origin of the studied cells. The present overview is intended to serve as a guideline for future studies and to expand the view of "neuro" physiologists interested in activity-dependent plasticity. Key questions that have to be addressed relate to the mechanisms of release of growth and growth-permissive factors from glial cells and neuronal-glial information transfer. It is said that every complex problem has a simple, logical, wrong solution. Future studies will reveal the contribution of the proposed simple and logical solution to the understanding of central nervous plasticity.
Collapse
Affiliation(s)
- C M Müller
- Department of Physical Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|