1
|
Lim JH, Olby NJ. Generation of pure cultures of autologous Schwann cells by use of biopsy specimens of the dorsal cutaneous branches of the cervical nerves of young adult dogs. Am J Vet Res 2017; 77:1166-74. [PMID: 27668589 DOI: 10.2460/ajvr.77.10.1166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify an optimal technique for isolation, purification, and amplification of Schwann cells (SCs) from biopsy specimens of the dorsal cutaneous branches of the cervical nerves of dogs. SAMPLE Biopsy specimens of dorsal cervical cutaneous nerves from the cadavers of three 1- to 2-year-old dogs. PROCEDURES Nerve specimens were dissected, predegenerated, and dissociated to isolate single cells. After culture to enhance SC growth, cells were immunopurified by use of magnetic beads. Cell purity was evaluated by assessing expression of cell surface antigens p75 (to detect SCs) and CD90 (to detect fibroblasts). Effects of various concentrations of recombinant human glial growth factor 2 (rhGGF2) on SC proliferation were tested. Cell doubling time was assessed in SC cultures with selected concentrations of rhGGF2. RESULTS Mean ± SD wet weight of nerve fascicles obtained from the biopsy specimens was 16.8 ± 2.8 mg. A mean predegeneration period of 8.6 days yielded approximately 6,000 cells/mg of nerve tissue, and primary culture yielded 43,000 cells/mg of nerve tissue in a mean of 11 days, of which 39.9 ± 9.1% expressed p75. Immunopurification with magnetic beads yielded a mean of 85.4 ± 1.9% p75-positive cells. Two passages of subculture with 10μM cytosine arabinoside further enhanced SC purity to a mean of 97.8 ± 1.2% p75-positive cells. Finally, rhGGF2 supplementation at a range of 40 to 100 ng/mL increased the SC proliferation rate up to 3-fold. CONCLUSIONS AND CLINICAL RELEVANCE SCs could be cultured from biopsy specimens of dorsal cervical cutaneous nerves and purified and expanded to generate adequate numbers for autologous transplants to treat dogs with spinal cord and peripheral nerve injuries.
Collapse
|
2
|
Wang HB, Wang XP, Zhong SZ, Shen ZL. Novel method for culturing Schwann cells from adult mouse sciatic nerve in vitro. Mol Med Rep 2012; 7:449-53. [PMID: 23152081 DOI: 10.3892/mmr.2012.1177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/21/2012] [Indexed: 11/06/2022] Open
Abstract
Schwann cells (SCs) are important in the recovery of peripheral nerve injury and are valuable cells for the tissue engineering of artificial neurons. Clinical applications that require pure SCs in large quantities are limited since human and mouse SCs do not attach well to the wall of the culture dish and have low proliferative potential. To obtain high quantities of highly pure SCs, we developed a new method for culturing SCs from the mouse sciatic nerve in vitro. Approximately 1.5 cm of the bilateral sciatic nerve of a c57 adult mouse was surgically removed and pre-cultured in DMEM containing either 10% FBS or growth factors. One week later, the in vitro SC culture was observed using light microscopy following enzyme digestion. Cell numbers and cell attachment were examined. The purity of the SCs was determined using s100β and p75NTR staining. Sciatic nerves that had not been pre-cultured were used as the control group. When the excised tissue was pre-cultured in vitro, high yields of SCs were obtained. The SCs were more likely to adhere and the purity was approximately 98% at the p1 generation following simple purification steps, which was significantly higher than the purity obtained from the control group. The pre-culturing of the sciatic nerve prior to in vitro tissue culturing significantly increased the quantity and quality of the SCs.
Collapse
Affiliation(s)
- Hai-Bin Wang
- Department of Anatomy, Nanfang Medical University, Guangzhou 510515, P.R. China
| | | | | | | |
Collapse
|
3
|
Myelination in coculture of established neuronal and Schwann cell lines. Histochem Cell Biol 2012; 137:829-39. [DOI: 10.1007/s00418-012-0934-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2012] [Indexed: 12/31/2022]
|
4
|
Immortalized adult rodent Schwann cells as in vitro models to study diabetic neuropathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:374943. [PMID: 21747827 PMCID: PMC3124069 DOI: 10.1155/2011/374943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/03/2011] [Accepted: 04/14/2011] [Indexed: 12/22/2022]
Abstract
We have established spontaneously immortalized Schwann cell lines from normal adult mice and rats and murine disease models. One of the normal mouse cell lines, IMS32, possesses some biological properties of mature Schwann cells and high proliferative activities. The IMS32 cells under hyperglycemic and/or hyperlipidemic conditions have been utilized to investigate the pathogenesis of diabetic neuropathy, especially the polyol pathway hyperactivity, glycation, increased oxidative stress, and reduced synthesis of neurotrophic factors. In addition to the mouse cell lines, our current study focuses on the characterization of a normal rat cell line, IFRS1, under normal and high glucose conditions. These Schwann cell lines can be valuable tools for exploring the detailed mechanisms leading to diabetic neuropathy and novel therapeutic approaches against that condition.
Collapse
|
5
|
Wewetzer K, Radtke C, Kocsis J, Baumgärtner W. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 2011; 229:80-7. [DOI: 10.1016/j.expneurol.2010.08.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
|
6
|
Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K. Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 2011; 89:898-908. [DOI: 10.1002/jnr.22605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 01/11/2011] [Indexed: 01/17/2023]
|
7
|
Abstract
The importance and essential functions of glial cells in the nervous system are now beginning to be understood and appreciated. Glial cell lines have been instrumental in the elucidation of many of these properties. In this Overview, the origin and properties of most of the existing cell lines for the major glial types: oligodendroglia, astroglia, microglia and Schwann cells, are documented. Particular emphasis is given to the culture conditions for each cell line and the degree to which the line can differentiate in vitro and in vivo. The major molecular markers for each glial cell lines are indicated. Finally, methods by which the glial cell lines have been developed are noted and the future directions of glial cell line research are discussed.
Collapse
|
8
|
Padilla A, Descorbeth M, Almeyda AL, Payne K, De Leon M. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res 2010; 1370:64-79. [PMID: 21108938 DOI: 10.1016/j.brainres.2010.11.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/01/2010] [Accepted: 11/05/2010] [Indexed: 01/01/2023]
Abstract
Lipid overload resulting in lipotoxicity is prominent in a number of chronic diseases and has been associated with cellular dysfunction and cell death. This study characterizes palmitic acid-induced lipotoxicity (PA-LTx) in Schwann cell cultures grown in normal and high glucose concentrations. The study shows for the first time that Schwann cell (SC) cultures exposed to elevated levels of PA exhibit a dose- and time-dependent loss in cell viability. Hoescht and Annexin V/7AAD staining confirmed cell death through apoptosis and the lipotoxic effect was more dramatic in SC cultures grown under high glucose conditions. The first indication of cellular dysfunction in treated SC cultures was a decrease in Ca(++) levels in the endoplasmic reticulum (ER, [Ca(++)](ER)) observed five minutes following the initial challenge with PA. This decrease in [Ca(++) ](ER) was followed by a significant increase in the expression of ER stress signature genes CHOP, Xbp1 and GRP78. The early ER stress response induced by PA-LTx was followed by a strong mitochondrial membrane depolarization. Flow cytometry using 2', 7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) showed an increase in oxidative stress within three to six hours after PA treatment. Treatment of cultures undergoing PA-LTx with the calcium chelator BAPTA-AM and the anti-oxidant MCI-186 significantly reversed the lipotoxic effect by decreasing the generation of ROS and significantly increasing cell viability. We conclude that lipotoxicity in Schwann cells results in cellular dysfunction and cell death that involves a robust ER stress response, mitochondrial dysfunction and an augmented state of cellular oxidative stress (ASCOS).
Collapse
Affiliation(s)
- Amelia Padilla
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
9
|
Ban DX, Kong XH, Feng SQ, Ning GZ, Chen JT, Guo SF. Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury. Brain Res 2008; 1256:149-61. [PMID: 19103176 DOI: 10.1016/j.brainres.2008.11.098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/03/2023]
Abstract
Basic research in spinal cord injury (SCI) has made great strides in recent years, and some new insights and strategies have been applied in promoting effective axonal regrowth and sprouting. However, a relatively safe and efficient transplantation technique remains undetermined. This study, therefore, was aimed to address a question of how to graft Schwann cells to achieve the best possible therapeutic effects. To clarify the issue, the rats were subjected to spinal cord injury at T10. Autologous activated Schwann cells (AASCs) were obtained by prior ligation of saphenous nerve and subsequently isolated and purified in vitro and then grafted into spinal cord-injured rats via three different routes (group I: intravenous, group II: intrathecal and group III: intraspinal cord). Neurologic function was serially evaluated by Basso, Beattie, Bresnahan locomotor rating scale and footprint analysis. We also evaluated the migration of the transplanted cells at 2 weeks after transplantation. Using biotinylated dextran amine (BDA) anterograde tracing, we demonstrated that more regenerative axons of corticospinal tract (CST) surrounding the injured cavity in group III than those in the other two groups, and we also confirmed it further by quantitative analysis. The microenvironment surrounding the injured spinal cord has been improved to the greatest extent in group III, as determined by immunohistological staining. Relatively complete myelin sheaths and more neurofilaments in axons were found in groups II and III than those in group I under electron microscopy. The results showed that intraspinal cord injection of AASCs promoted recovery of hindlimb locomotor function of injured rats more efficiently than the other grafting routes. In addition, intact myelin sheaths and sufficient neurofilaments in axons were not adequate for full functional recovery after SCI, suggesting that reestablishment of normal synaptic connection is indispensable. The findings in this study strongly suggest that transplantation of AASCs directly into the spinal cord may be one of the promising candidates for potential scaffold for injured spinal cord, and such strategy of transplantation of AASCs could be hopeful to treat patients with SCI.
Collapse
Affiliation(s)
- De-Xiang Ban
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Wojtkowiak JW, Fouad F, LaLonde DT, Kleinman MD, Gibbs RA, Reiners JJ, Borch RF, Mattingly RR. Induction of apoptosis in neurofibromatosis type 1 malignant peripheral nerve sheath tumor cell lines by a combination of novel farnesyl transferase inhibitors and lovastatin. J Pharmacol Exp Ther 2008; 326:1-11. [PMID: 18367665 PMCID: PMC3768167 DOI: 10.1124/jpet.107.135830] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that is driven by the loss of neurofibromin (Nf) protein function. Nf contains a Ras-GTPase-activating protein domain, which directly regulates Ras signaling. Numerous clinical manifestations are associated with the loss of Nf and increased Ras activity. Ras proteins must be prenylated to traffic and functionally localize with target membranes. Hence, Ras is a potential therapeutic target for treating NF1. We have tested the efficacy of two novel farnesyl transferase inhibitors (FTIs), 1 and 2, alone or in combination with lovastatin, on two NF1 malignant peripheral nerve sheath tumor (MPNST) cell lines, NF90-8 and ST88-14. Single treatments of 1, 2, or lovastatin had no effect on Ras prenylation or MPNST cell proliferation. However, low micromolar combinations of 1 or 2 with lovastatin (FTI/lovastatin) reduced Ras prenylation in both MPNST cell lines. Furthermore, this FTI/lovastatin combination treatment reduced cell proliferation and induced an apoptotic response as shown by morphological analysis, procaspase-3/-7 activation, loss of mitochondrial membrane potential, and accumulation of cells with sub-G(1) DNA content. Little to no detectable toxicity was observed in normal rat Schwann cells following FTI/lovastatin combination treatment. These data support the hypothesis that combination FTI plus lovastatin therapy may be a potential treatment for NF1 MPNSTs.
Collapse
Affiliation(s)
- Jonathan W Wojtkowiak
- Department of Pharmacology, Wayne State University, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Elgazzar RF, Mutabagani MA, Abdelaal SE, Sadakah AA. Platelet rich plasma may enhance peripheral nerve regeneration after cyanoacrylate reanastomosis: a controlled blind study on rats. Int J Oral Maxillofac Surg 2008; 37:748-55. [PMID: 18583097 DOI: 10.1016/j.ijom.2008.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 02/02/2008] [Accepted: 05/08/2008] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the ability of platelet rich plasma (PRP) to promote peripheral nerve regeneration after cyanoacrylate reanastomosis in rats. A total of 18 rats were used in this study. Bilateral sciatic neurotomies were performed in 15 rats, and then immediately reanastomosed with cyanoacrylate glue. On one side (G1), the anastomosed nerves were treated with prepared autologous PRP gel; on the contralateral side (G2) the nerves received no additional treatment. Sham surgery was undertaken on the remaining 3 rats (6 cases) where bilateral sciatic nerves were surgically approached but not cut (passive control group, (G3). Biopsies were harvested 12 weeks postoperatively and examined under the light microscope using osmic acid stain. The number of nerve fibers in the distal and proximal nerve segments of G1 and G2 as well as in G3 were counted and the results analyzed and compared. Animals in G1 and G2 showed some weakness and ulceration in their right and left feet for a few weeks postoperatively, which gradually improved during the follow-up period. The histomorphometric assessment showed a higher axon count in the distal segment of G1 (291.7 axons) compared with that of G2 (280.5 axons) (P=0.001). Similar results were noticed when the proximal segments of both groups were compared (P=0.040). These results were reflected in the values of the neurotization indices of G1 (91.9%) and G2 (89.5%) (P=0.008). The number of nerve fibers in G1 and G2 remained lower than in G3 (P=0.0001). The authors conclude that PRP may enhance the number of regenerating nerve fibers after cyanoacrylate neruoanastomosis.
Collapse
Affiliation(s)
- R F Elgazzar
- Faculty of Dentistry, Tanta University, Tanta, Egypt.
| | | | | | | |
Collapse
|
12
|
Elgazzar RF, Abdulmajeed I, Mutabbakani M. Cyanoacrylate glue versus suture in peripheral nerve reanastomosis. ACTA ACUST UNITED AC 2007; 104:465-72. [PMID: 17507261 DOI: 10.1016/j.tripleo.2007.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/18/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To assess the effectiveness of n-butyl-2-cyanoacrylate glue compared with microsuturing technique in peripheral nerve reanastomosis in rats. STUDY DESIGN Fourteen young adult white rats were used. Bilateral sciatic neurotomies were performed in 12 of them and then reanastomosed with 3 epineural microsutures in the right side (study group G1) and with n-butyl-2-cyanoacrylate glue in the left side (study group G2). On the remaining 2 rats (control group G3), sham surgery was done on both sides. Biopsies were harvested 12 weeks after surgery and examined under light microscope using Osmic acid stains. The number of nerve fibers was counted in the distal and proximal nerve segments, and the results were analyzed and compared in all groups. RESULTS Adequate regeneration with no anastomotic ruptures was seen 12 weeks after surgery in G1 and G2. The histomorphometric assessment showed no statistically significant difference (P = .960) in the neurotization index of G1 (89.01%) compared with G2 (88.97%). There was a significant (P = .001) reduction in the mean number of axon counts distal to the repair in G1 (271.3) and G2 (272.8) compared with that of the proximal segments of each study group (304.6 and 303, respectively, as well as to that of G3 (348.5). CONCLUSION Both n-butyl-2-cyanoacrylate adhesive and 3-microsuture techniques showed comparable neurotization indices and were equally adequate to stabilize the nerve during regeneration period.
Collapse
Affiliation(s)
- Reda F Elgazzar
- College of Dentistry, King Faisal University, Damman, Saudi Arabia.
| | | | | |
Collapse
|
13
|
Huang YC, Huang CC, Huang YY, Chen KS. Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J Biomed Mater Res A 2007; 82:842-51. [PMID: 17335016 DOI: 10.1002/jbm.a.31036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Attachment to and proliferation on the substrate are deemed important considerations when Schwann cells (SCs) are to be seeded in synthetic nerve grafts. Good attachment is a prerequisite for the SCs to survive. Fast proliferation will yield large numbers of SCs in a short time, which appears to be promising for stimulating peripheral nerve regeneration. However, surface properties are the dominating factor in influencing the interactions between cells and synthetic nerve grafts. The aim of this study was to investigate the surface effects of laminin modified PLGA and chitosan membranes after chemical method and plasma treatment. Laminin, the extracellular matrix protein, is a permissive protein for SCs adhesion used in neural regeneration. The surface properties of laminin modified membranes were assayed by BCA, FTIR and XPS analysis. Results showed that laminin was covalently bonded onto the surface of both PLGA and chitosan membranes either by chemical method or by oxygen plasma treatment. The cell affinity of the laminin modified membranes was verified by Schwann cells culturing. Our results also indicate that oxygen plasma is indeed a better method to incorporate laminin onto the surface of membrane. Laminin-modified chitosan membrane significantly increases SCs attachment and affinity for directing peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
14
|
Gao X, Daugherty RL, Tourtellotte WG. Regulation of low affinity neurotrophin receptor (p75(NTR)) by early growth response (Egr) transcriptional regulators. Mol Cell Neurosci 2007; 36:501-14. [PMID: 17916431 DOI: 10.1016/j.mcn.2007.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 12/21/2022] Open
Abstract
The low affinity neurotrophin receptor p75(NTR) is a multifunctional receptor with important roles in neurotrophin signaling, axon outgrowth, and oligodendroglia and neuron survival. It is transcriptionally regulated with spatial and temporal precision during nervous system development, injury and regeneration. Very little is known about how p75(NTR) expression is dynamically regulated but it is likely to influence how p75(NTR) signals in particular cellular contexts. Here, we identify the early growth response (Egr) transcriptional regulators, Egr1 and Egr3, as direct modulators of p75(NTR) gene expression. Egr1 and Egr3 bind and transactivate the p75(NTR) promoter in vitro and in vivo, using distinct response elements on the p75(NTR) promoter. Consistent with these results, p75(NTR) expression is greatly diminished in muscle spindle stretch receptors and in peripheral nerve Schwann cells in Egr gene deficient mice. Taken together, the results elucidate a novel mechanism whereby Egr proteins can directly modulate p75(NTR) expression and signaling in vivo.
Collapse
Affiliation(s)
- Xiaoguang Gao
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
15
|
Lee H, Park C, Cho IH, Kim HY, Jo EK, Lee S, Kho HS, Choi SY, Oh SB, Park K, Kim JS, Lee SJ. Double-stranded RNA induces iNOS gene expression in Schwann cells, sensory neuronal death, and peripheral nerve demyelination. Glia 2007; 55:712-22. [PMID: 17348024 DOI: 10.1002/glia.20493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammation in the peripheral nervous system (PNS) is one of the characteristics of virus-induced peripheral neuropathy. In this inflammatory response, Schwann cells are actively involved. Previously, toll-like receptor 3 (TLR3) was reported as a receptor for double-stranded RNA (dsRNA) that induces antiviral and inflammatory responses in cells of the innate immune system. In this study, we investigated the expression and putative role of TLR3 in Schwann cells. TLR3 was constitutively expressed in Schwann cells. Stimulation with polyinosinic-polycytidylic acid, a synthetic dsRNA analogue, induced the expression of inducible nitric oxide synthase (iNOS) gene in Schwann cells. Studies on the intracellular signal transduction pathways using iSC, an immortalized Schwann cell line, revealed that dsRNA induces the activation of NF-kappaB, p38, and c-Jun N-terminal kinase (JNK). The activation of NF-kappaB, p38, JNK, and dsRNA-dependent protein kinase is required for dsRNA-mediated iNOS gene expression. However, the activation of PI3 kinase and GSK-3beta inhibited iNOS gene induction, a process mediated by their inhibitory effects on NF-kappaB and p38 activation. dsRNA-induced NO production caused neuronal cell death in cultured dorsal root ganglion. Finally, the introduction of dsRNA into the rat sciatic nerve induced iNOS gene expression and peripheral nerve demyelination in vivo. Taken together, these data suggest that viral RNA may induce inflammatory Schwann cell activation via TLR3 and peripheral nerve damage in the PNS.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Line, Transformed
- Cells, Cultured
- Coculture Techniques
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/pathology
- Demyelinating Diseases/physiopathology
- Enzyme Induction/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Inflammation/chemically induced
- Inflammation/enzymology
- Inflammation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Degeneration/chemically induced
- Nerve Degeneration/enzymology
- Nerve Degeneration/genetics
- Neurons, Afferent/drug effects
- Neurons, Afferent/pathology
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/genetics
- Peripheral Nerves/drug effects
- Peripheral Nerves/pathology
- Peripheral Nerves/physiopathology
- Peripheral Nervous System Diseases/chemically induced
- Peripheral Nervous System Diseases/enzymology
- Peripheral Nervous System Diseases/pathology
- Poly I-C/pharmacology
- RNA, Double-Stranded/pharmacology
- Rats
- Rats, Sprague-Dawley
- Schwann Cells/drug effects
- Schwann Cells/enzymology
- Signal Transduction/physiology
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Hyunkyoung Lee
- Program in Molecular and Cellular Neuroscience, Dental Research Institute, Seoul National University, 28 Yeongun-dong, Jongno-gu, Seoul 110-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Saravanan K, Büssow H, Weiler N, Gieselmann V, Franken S. A spontaneously immortalized Schwann cell line to study the molecular aspects of metachromatic leukodystrophy. J Neurosci Methods 2007; 161:223-33. [PMID: 17204333 DOI: 10.1016/j.jneumeth.2006.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 11/16/2006] [Accepted: 11/19/2006] [Indexed: 11/29/2022]
Abstract
The arylsulfatase A (ASA)-deficient mouse is a murine model of human metachromatic leukodystrophy (MLD) caused by a genetic defect in the ASA gene. Deficiency of ASA causes accumulation of cerebroside-3-sulfate (sulfatide) in visceral organs and in the central and peripheral nervous system, which subsequently causes demyelination in these areas. To investigate further the cellular pathomechanism of MLD, we established spontaneously immortalized Schwann cell lines from ASA-deficient mice. Cells showed marked sulfatide storage in the late endosomal/lysosomal compartment. This sulfatide accumulation can be further increased by external treatment with sulfatide using a lipid based transfection reagent as a cargo. The accumulated sulfatide was degraded in response to ASA treatment and first examination revealed that alteration on the molecular level found in ASA-deficient mice can also be observed in the presented cell culture model. Hence, these cells could be a suitable model to study MLD at a molecular level.
Collapse
Affiliation(s)
- Karumbayaram Saravanan
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
17
|
Ulloth JE, Almaguel FG, Padilla A, Bu L, Liu JW, De Leon M. Characterization of methyl-beta-cyclodextrin toxicity in NGF-differentiated PC12 cell death. Neurotoxicology 2007; 28:613-21. [PMID: 17292476 PMCID: PMC1994916 DOI: 10.1016/j.neuro.2007.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 12/21/2006] [Accepted: 01/04/2007] [Indexed: 12/17/2022]
Abstract
Cyclodextrins (CDs) are used to deliver hydrophobic molecules in aqueous environments. Methyl-beta-cyclodextrin (MbetaCD), a member of this family of molecules, has been proposed to be a good carrier to deliver fatty acids to cells in culture. This report focuses on studying the in vitro effects of MbetaCD on nerve growth factor-differentiated PC12 (NGFDPC12) cells, a tissue culture model to study neuronal survival and differentiation. The main findings are: (1) NGFDPC12 cells have normal viability when exposed to 0.12% MbetaCD but showed a significant loss in cell viability at higher concentrations; (2) NGFDPC12 cells exposed to 0.25% MbetaCD exhibit nuclear condensation, blebbing and apoptotic bodies, and whole cell lysates exhibited an increase in caspase-3-like activity and high levels of Bax and Bcl-X(L) protein expression compared to control. Cultures treated with 0.25% MbetaCD also showed cleavage of normal 21-kDa Bax protein into a 18-kDa fragment. (3) Experiments using 0.12% MbetaCD to deliver oleic acid did not affect cell viability, in contrast NGFDPC12 cultures in which 0.25% MbetaCD concentration is used exhibited similar loss of cell viability as observed with 0.25% MbetaCD alone. Treating these cultures with caspase-3 inhibitor z-VAD-fmk did not protect the cells from MbetaCD toxic effects. (4) Immortalized Schwann cells (iSC) exposed to MbetaCD 0.12% did not show loss of cell viability while 0.25% MbetaCD triggered a significant toxicity but with a different dose and time course dynamic than NGFDPC12 cells. Thus, NGFDPC12 or iSC cell cultures exposed to 0.12% MbetaCD exhibits normal viability while higher concentrations increase in cell death and apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Marino De Leon
- *Corresponding author address: Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus Street, Loma Linda University, School of Medicine, Loma Linda CA, 92350. Tel: 909–558–8777. Fax: 909–558–0177.
| |
Collapse
|
18
|
Lee H, Jo EK, Choi SY, Oh SB, Park K, Kim JS, Lee SJ. Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun 2006; 350:742-7. [PMID: 17027917 DOI: 10.1016/j.bbrc.2006.09.108] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/22/2006] [Indexed: 01/21/2023]
Abstract
Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory cytokines and chemokines, resulting in the recruitment of macrophages and the phagocytosis of myelin debris. However, it is unclear how nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve injury by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore such a possibility, we stimulated rat Schwann cells with necrotic neuronal cells (NNC). The stimulation of Schwann cells with NNC induced the expression of various inflammatory mediators, including TNF-alpha and iNOS. Studies on the NNC-mediated intracellular signaling pathways revealed that p38 and JNK are involved in the NNC-mediated Schwann cell activation. In addition, NNC-induced proinflammatory gene expression was reduced in mouse Schwann cells derived from TLR2 or TLR3 knockout mice. In summary, these results suggest that necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3, which might be involved in Wallerian degeneration upon peripheral nerve injury.
Collapse
Affiliation(s)
- Hyunkyoung Lee
- Program in Neuroscience, DRI, and Department of Oral Physiology, School of Dentistry, Seoul National University, 28 Yeongun-dong, Jongno-gu, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Iwase T, Jung CG, Bae H, Zhang M, Soliven B. Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. J Neurochem 2005; 94:1488-99. [PMID: 16086701 DOI: 10.1111/j.1471-4159.2005.03290.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a known survival factor for neurons, has recently been shown to stimulate the migration of Schwann cells (SCs) and to enhance myelination. GDNF exerts its biological effects by activating the Ret tyrosine kinase in the presence of glycosylphosphatidylinositol-linked receptor, GDNF family receptor (GFR) alpha1. In Ret-negative cells, the alternative transmembrane coreceptor is the 140-kDa isoform of neural cell adhesion molecule (NCAM) associated with a non-receptor tyrosine kinase Fyn. We confirmed that GDNF, GFRalpha1 and NCAM are expressed in neonatal rat SCs. We found that GDNF induces an increase in the partitioning of NCAM and heparan sulfate proteoglycan agrin into lipid rafts and that heparinase inhibits GDNF-signaling in SCs. In addition to activation of extracellular signal-regulated kinases, and phosphorylation of cAMP response element binding protein, we found that cAMP-dependent protein kinase A and protein kinase C are involved in GDNF-mediated signaling in SCs. Although GDNF did not promote the differentiation of purified SCs into the myelinating phenotype, it enhanced myelination in neuron-SC cocultures. We conclude that GDNF utilizes NCAM signaling pathways to regulate SC function prior to myelination and at early stages of myelin formation.
Collapse
Affiliation(s)
- T Iwase
- Department of Neurology and Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
20
|
Pannunzio ME, Jou IM, Long A, Wind TC, Beck G, Balian G. A new method of selecting Schwann cells from adult mouse sciatic nerve. J Neurosci Methods 2005; 149:74-81. [PMID: 15970332 DOI: 10.1016/j.jneumeth.2005.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 05/05/2005] [Accepted: 05/09/2005] [Indexed: 12/31/2022]
Abstract
We describe a method of using laminin for the selection and purification of Schwann cells in vitro. We also studied the viability of the selected cells suspended in alginate beads both in vitro and in vivo. We observed that the homogeneity of the Schwann cell culture increased with each round of laminin selection and reached 85-90% after five passages. The viability of cells after incubation within an alginate bead in vivo was between 73 and 76% compared with greater than 90% viability for cells that were maintained in monolayer culture. This new method of serial selection using laminin-coated surfaces has optimized the purification of a Schwann cell culture expanded from cells harvested from the adult sciatic nerve of a mouse. This method has the advantage of being technically easier than other methods described and results in a Schwann cell culture that is 80-90% homogenous.
Collapse
Affiliation(s)
- Michael E Pannunzio
- Department of Orthopaedic Surgery, University of Virginia, School of Medicine, Box 800159, Charlottesville, VA 22908, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Vleggeert-Lankamp CLAMCLAM, Pêgo APAP, Lakke EAJFEAJF, Deenen M, Marani E, Thomeer RTWMRTWM. Adhesion and proliferation of human Schwann cells on adhesive coatings. Biomaterials 2004; 25:2741-51. [PMID: 14962553 DOI: 10.1016/j.biomaterials.2003.09.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 09/18/2003] [Indexed: 10/26/2022]
Abstract
Attachment to and proliferation on the substrate are deemed important considerations when Schwann cells (SCs) are to be seeded in synthetic nerve grafts. Attachment is a prerequisite for the SCs to survive and fast proliferation will yield large numbers of SCs in a short time, which appears promising for stimulation of peripheral nerve regeneration. The aim of the present study was to compare the adhesion and proliferation of human Schwann cells (HSCs) on different substrates. The following were selected for their suitability as an internal coating of synthetic nerve grafts; the extracellular matrix proteins fibronectin, laminin and collagen type I and the poly-electrolytes poly(d-lysine) (PDL) and poly(ethylene-imine) (PEI). On all coatings, attachment of HSCs was satisfactory and comparable, indicating that this factor is not a major consideration in choosing a suitable coating. Proliferation was best on fibronectin, laminin and PDL, and worst on collagen type I and PEI. Since nerve regeneration is enhanced by laminin and/or fibronectin, these are preferred as coatings for synthetic nerve grafts seeded with SCs.
Collapse
|
22
|
Kusano KF, Allendoerfer KL, Munger W, Pola R, Bosch-Marce M, Kirchmair R, Yoon YS, Curry C, Silver M, Kearney M, Asahara T, Losordo DW. Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic neuropathy. Arterioscler Thromb Vasc Biol 2004; 24:2102-7. [PMID: 15358602 DOI: 10.1161/01.atv.0000144813.44650.75] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The embryonic morphogen sonic hedgehog (SHh) has been shown to induce neovascularization of ischemic tissue but has not been shown to play a role in regulating vascular nerve supply. Accordingly, we investigated the hypothesis that systemic injection of SHh protein could improve nerve blood flow and function in diabetic neuropathy (DN). METHODS AND RESULTS Twelve weeks after induction of diabetes with streptozotocin, motor and sensory nerve conduction velocities (MCV and SCV) of the sciatic nerves were significantly reduced in diabetic rats. SHh-treated diabetic rats demonstrated marked improvement of both MCV and SCV (P<0.05). Laser Doppler perfusion imaging showed that nerve blood flow was significantly reduced in the diabetic rats but was restored in SHh-treated diabetic rats (P<0.05 versus diabetic saline-treated rats) to levels similar to those achieved with vascular endothelial growth factor-2 (VEGF-2) gene therapy. In vivo perfusion of Bandeuraea simplicifolia (BS)-1 lectin showed marked reduction in the vasa nervora in diabetic sciatic nerves but restoration of nerve vasculature to nondiabetic levels in the SHh-treated and plasmid DNA encoding human VEGF-2 (phVEGF-2)-treated diabetic nerves. Interestingly, the SHh-induced vasculature was characterized by larger diameter and more smooth muscle cell-containing vessels, compared with VEGF-2 gene-treated diabetic rats. CONCLUSIONS These data indicate that Shh induces arteriogenesis and restores nerve function in DN.
Collapse
Affiliation(s)
- Kengo F Kusano
- Division of Cardiovascular Research, St. Elizabeth Medical Center Boston, Boston, MA 02135, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu J, Zou S, Tang Z, Wang D, Li J, Gao Z. Response of Schwann cells in the inferior alveolar nerve to distraction osteogenesis: an ultrastructural and immunohistochemical study. Int J Oral Maxillofac Surg 2003; 32:318-24. [PMID: 12767881 DOI: 10.1054/ijom.2002.0356] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The biological mechanisms of nerve adaptation to distraction osteogenesis have not yet been elucidated. This study observed response of Schwann cells in the inferior alveolar nerve (IAN) following mandibular lengthening by electron microscopy and immunohistochemistry of S-100 protein, a specific marker of Schwann cells. Unilateral mandibular distraction (10mm elongation) was performed in nine young adult goats. Three animals were sacrificed at 7, 14 and 28 days after completion of distraction, respectively. The distracted IAN specimens and control nerves (from the contralateral sides) were harvested and processed for histological, ultrastructural and immunohistochemical examinations. Wallerian degeneration was observed in the distracted IAN, and Signs of axonal regeneration, as well as many activated Schwann cells were seen in the lengthened nerves. The expression of S-100 protein increased significantly at early stage of distraction osteogenesis, but almost returned to the normal level at 28 days after distraction. This study suggests that Wallerian degeneration caused by mechanical stretching may stimulate Schwann cells to enter a proliferated and activated state. Schwann cells and S-100 protein appear to play crucial roles in axonal regeneration that contributes to nerve adaptation to gradual distraction. Therefore, the IAN injury caused by mandibular gradual distraction was not serious; it seems to recover totally through a complicated repair mechanism.
Collapse
Affiliation(s)
- J Hu
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.
| | | | | | | | | | | |
Collapse
|
24
|
Manent J, Oguievetskaia K, Bayer J, Ratner N, Giovannini M. Magnetic cell sorting for enriching Schwann cells from adult mouse peripheral nerves. J Neurosci Methods 2003; 123:167-73. [PMID: 12606065 DOI: 10.1016/s0165-0270(02)00349-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have devised a simple method to purify mitotically active Schwann cells (SC) from peripheral nerves of adult mice. Nerves were predegenerated in vitro for 7 days and after dissociation cells were plated on poly-L-lysine/laminin coated dishes in N2 serum-free culture medium supplemented with forskolin and heregulin-beta1. Primary cultures were purified from contaminating fibroblasts by magnetic cell sorting (MACS) based on SC membrane specific expression of p75(NGFR) and enriched to about 99% of SC after MACS from 34 to 91% before sorting. After sorting, purified adult mouse SC were propagated for three passages until confluent to a total surface of 160 cm(2) per mouse (two sciatic and two trigeminal nerves). In addition, we show that this method can be used to purify tumoral SC from mouse NF2-related schwannomas.
Collapse
Affiliation(s)
- Jan Manent
- INSERM U434, Fondation Jean Dausset-CEPH, 27, rue Juliette Dodu, 75010 Paris, France
| | | | | | | | | |
Collapse
|
25
|
Watabe K, Sakamoto T, Kawazoe Y, Michikawa M, Miyamoto K, Yamamura T, Saya H, Araki N. Tissue culture methods to study neurological disorders: establishment of immortalized Schwann cells from murine disease models. Neuropathology 2003; 23:68-78. [PMID: 12722929 DOI: 10.1046/j.1440-1789.2003.00478.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, the authors have established spontaneously immortalized cell lines from long-term cultures of normal adult mouse Schwann cells. Establishment of such Schwann cell lines derived from murine disease models may greatly facilitate studies of the cellular mechanisms of their peripheral nervous system lesions in the relevant diseases. Recently, the authors have established immortalized Schwann cell lines derived from Niemann-Pick disease type C mice (NPC; spm/spm) and globoid cell leukodystrophy mice (twitcher). In the present study, long-term cultures were maintained of Schwann cells derived from dorsal root ganglia and consecutive peripheral nerves of another NPC mouse (npc(nih)/npc(nih), npc(nih)/+), myelin P0 protein-deficient mice (P0-/-, P0+/-) with their wild-type littermates (P0+/+), and neurofibromatosis type 1 gene (NF1)-deficient mice (Nf1(FCr)/+) for 8-10 months, and immortalized cell lines from all these animals established spontaneously. These cell lines had spindle-shaped Schwann cell morphology and distinct Schwann cell phenotypes and retained genomic and biochemical abnormalities, sufficiently representing the in vivo pathological features of the mutant mice. These immortalized Schwann cell lines can be useful in studies of nervous system lesions in these mutant mice and relevant human disorders.
Collapse
Affiliation(s)
- Kazuhiko Watabe
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nagano S, Takeda M, Ma L, Soliven B. Cytokine-induced cell death in immortalized Schwann cells: roles of nitric oxide and cyclic AMP. J Neurochem 2001; 77:1486-95. [PMID: 11413232 DOI: 10.1046/j.1471-4159.2001.00358.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor necrosis factor-alpha and interferon-gamma are pleiotropic cytokines that regulate Schwann cell responses during injury and inflammatory demyelination. We have previously shown that cyclic AMP (cAMP)-elevating agents decrease the demyelination and Wallerian degeneration in experimental allergic neuritis. In this study, we examined the role of cAMP in cytokine-mediated signaling in a spontaneously immortal Schwann cell clone (iSC). We found that tumor necrosis factor-alpha and interferon-gamma exert synergistic inhibitory action on Schwann cell viability via the production of nitric oxide (NO) and ceramide (cer). Furthermore, we found that: (i) NO synthase inhibitors attenuate the cytokine-induced cer accumulation and cell death indicating that NO acts upstream of cer; and (ii) cytokine-induced cell death is decreased in iSCs pretreated continuously for 48-72 h with forskolin, an activator of adenylate cyclase. Although forskolin modulates the phosphorylation of ERKs and Akt, it decreases the susceptibility of iSC to cytokines via a separate mechanism operating after NO induction and before cer accumulation. We propose that the protective effect of cAMP-elevating agents in experimental allergic neuritis may be mediated in part via modulation of Schwann cell responses to cytokines.
Collapse
Affiliation(s)
- S Nagano
- Department of Neurology and Communication on Neurobiology, The Brain Research Institute, The University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
27
|
Verdú E, Rodríguez FJ, Gudiño-Cabrera G, Nieto-Sampedro M, Navarro X. Expansion of adult Schwann cells from mouse predegenerated peripheral nerves. J Neurosci Methods 2000; 99:111-7. [PMID: 10936650 DOI: 10.1016/s0165-0270(00)00221-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an effective technique for culture and expansion of Schwann cells (SC) from adult peripheral nerves. Cultures from adult mouse sciatic nerves (one to six nerves per culture) in defined medium showed markedly higher purity and density of SC when the nerve was predegenerated in vivo for 7 days than when it was harvested fresh. SC from degenerated nerves were then cultured in defined media conditioned by primary cultures of adult SC. The best results were obtained with a conditioned medium supplemented with 1% fetal calf serum. In these conditions the purity of SC was about 90% and the density about 190 cell/mm(2) by 7-10 days in vitro. These findings indicate that adult SC can be expanded from small preinjured nerve fragments in a short time period to provide a source of SC for autologous cellular transplants.
Collapse
Affiliation(s)
- E Verdú
- Department of Cell Biology, Physiology and Immunology, Neuroplasticity Group, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
28
|
Garavito ZV, Sutachán JJ, Muñetón VC, Hurtado H. Is S-100 protein a suitable marker for adult Schwann cells? In Vitro Cell Dev Biol Anim 2000; 36:281-3. [PMID: 10937828 DOI: 10.1290/1071-2690(2000)036<0281:ispasm>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Rodríguez FJ, Verdú E, Ceballos D, Navarro X. Nerve guides seeded with autologous schwann cells improve nerve regeneration. Exp Neurol 2000; 161:571-84. [PMID: 10686077 DOI: 10.1006/exnr.1999.7315] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study evaluates the ability of Schwann cells (SCs) transplanted into a nerve guide to improve regeneration and reinnervation after sciatic nerve resection and repair, leaving a 6-mm gap, in the mouse. SCs were isolated from predegenerated adult sciatic nerves and expanded in culture using a chemically defined medium. Syngeneic, isogeneic, and autologous SCs were suspended in Matrigel and seeded in resorbable, permeable poly(l-lactide-co-epsilon-caprolactone) guides at 150,000 cells/tube. Guides containing SCs were compared to guides filled with Matrigel alone and with peroneal nerve autografts. Functional reinnervation was assessed by noninvasive methods to determine recovery of sweating, nociceptive, sensory, and motor functions in the hindpaw during 4 months postoperation. Morphological analysis of the regenerated nerves was performed at the end of follow-up. The group with an autograft achieved faster and higher levels of reinnervation and higher number of regenerated myelinated fibers than groups repaired by tubulization. The immunogenicity of transplanted SCs influenced the outcome of nerve regeneration. Transplants of autologous SCs resulted in slightly lower levels of reinnervation than autografts, but higher recovery and number of regenerated fibers reaching the distal nerve than transplants of isologous and syngeneic SCs, although most of the differences were not statistically significant. Syngeneic SCs did not improve regeneration with respect to acellular guides. Prelabeled transplanted SCs were found to survive into the guide 1-3 months after implantation, to a larger number when they were autologous than syngeneic. Cellular prostheses composed of a resorbable guide seeded with autologous SCs appear as an alternative for repairing long gaps in injured nerves, approaching the success of autografts.
Collapse
Affiliation(s)
- F J Rodríguez
- Department of Cell Biology, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | | | | | | |
Collapse
|
30
|
Suzuki T, Mizuno K, Yashima S, Watanabe K, Taniko K, Suzuki T, Yabe-Nishimura C. Characterization of polyol pathway in schwann cells isolated from adult rat sciatic nerves. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990815)57:4<495::aid-jnr9>3.0.co;2-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Keilhoff G, Fansa H, Schneider W, Wolf G. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits. J Neurosci Methods 1999; 89:17-24. [PMID: 10476679 DOI: 10.1016/s0165-0270(99)00034-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In vivo predegeneration of peripheral nerves is presented as a convenient and effective method to obtain activated Schwann cells and an enhanced cell yield following in vitro cultivation. The experiments conducted in rats were aimed at clinical use in gaining Schwann cell suspensions for filling artificial conduits in order to bridge peripheral nerve gaps. The rat sciatic nerve used as a model was transected distally to the spinal ganglia. Predegeneration in vivo was allowed to take place for 1, 2, 3 and 4 days and up to 1, 2 and 3 weeks. The nerve was then resected and prepared for cell cultivation. Schwann cells cultivated from the contralateral untreated nerve served as control. Immunostaining for S100, nerve growth factor receptor and the adhesion molecules N-cadherin and L1 was used to characterize the general state of the cultures. Viability was assessed by fluorescein fluorescence staining, and the proliferation index was determined by bromodeoxyuridine-DNA incorporation. The Schwann cells from predegenerated nerves revealed an increased proliferation rate compared to the control, whereas fibroblast contamination was decreased. Best results were obtained 1 week after predegeneration.
Collapse
Affiliation(s)
- G Keilhoff
- Institute of Medical Neurobiology, University of Magdeburg, Germany.
| | | | | | | |
Collapse
|
32
|
Nagamoto-Combs K, Vaccariello SA, Zigmond RE. The levels of leukemia inhibitory factor mRNA in a Schwann cell line are regulated by multiple second messenger pathways. J Neurochem 1999; 72:1871-81. [PMID: 10217263 DOI: 10.1046/j.1471-4159.1999.0721871.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Axotomy of sympathetic and sensory neurons leads to changes in their neuropeptide phenotypes. These changes are mediated in part by the induction of leukemia inhibitory factor (LIF) by nonneuronal cells. In the present study, we identified satellite/Schwann cells as a possible source of the injury-induced LIF. Using a Schwann cell line, SC-1 cells, we examined mechanisms of LIF induction. LIF mRNA levels increased rapidly when the cells were treated with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, phorbol 12-myristate 13-acetate (PMA), or A23187. Among these reagents, PMA was the most efficacious. Inhibition of protein kinase C (PKC) by GF-1 09203X significantly reduced the PMA-induced LIF mRNA levels. As PKC is known to activate the extracellular signal-regulated kinase (ERK) signaling pathway, the involvement of this pathway in the PMA-stimulated induction of LIF mRNA was examined. Phosphorylation of ERKs was increased following PMA treatment in SC-1 cells. Moreover, inhibition of ERK kinase activity by PD98059 dramatically reduced PMA-stimulated phosphorylation of ERKs and induction of LIF mRNA. These results indicate that LIF mRNA levels can be regulated by ERK activation via stimulation of PKC in Schwann cells.
Collapse
Affiliation(s)
- K Nagamoto-Combs
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
33
|
Campana WM, Hiraiwa M, O'Brien JS. Prosaptide activates the MAPK pathway by a G-protein-dependent mechanism essential for enhanced sulfatide synthesis by Schwann cells. FASEB J 1998; 12:307-14. [PMID: 9506474 DOI: 10.1096/fasebj.12.3.307] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prosaposin, the precursor of saposins A, B, C, and D, was recently reported to be a neurotrophic factor in vivo and in vitro. The neurotrophic region of prosaposin has been localized to a 12-amino acid sequence within the saposin C domain and has been used to derive biologically active synthetic peptides (14-22 residues), called prosaptides. Treatment of primary Schwann cells and an immortalized Schwann cell line, iSC, with a 14-mer prosaptide, TX14(A) (10 nM), enhanced phosphorylation of mitogen-activated kinases ERK1 (p44 MAPK) and ERK2 (p42 MAPK) within 5 min, which was blocked by 4 h pretreatment with pertussis toxin. Furthermore, incubation of Schwann cells with the nonhydrolyzable GDP analog GDP-betaS inhibited TX14(A)-induced ERK phosphorylation. TX14(A) enhanced the sulfatide content of primary Schwann cells by 2.5-fold, which was inhibited by pretreatment with pertussis toxin or the synthetic MAP kinase kinase inhibitor PD098059. In addition, TX14(A) increased the tyrosine phosphorylation of all three isoforms of the adapter molecule, Shc, which coincided with the association of p60Src and PI(3)K. Inhibition of PI3(K) by wortmannin blocked TX14(A)-induced ERK phosphorylation. These data demonstrate that TX14(A) uses a pertussis toxin-sensitive G-protein pathway to activate ERKs, which is essential for enhanced sulfatide synthesis in Schwann cells.
Collapse
Affiliation(s)
- W M Campana
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla 92093, USA
| | | | | |
Collapse
|
34
|
Campana WM, Hiraiwa M, O'brien JS. Prosaptide activates the MAPK pathway by a G‐protein‐dependent mechanism essential for enhanced sulfatide synthesis by Schwann cells. FASEB J 1998. [DOI: 10.1096/fasebj.12.03.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- W. Marie Campana
- Department of NeurosciencesUniversity of CaliforniaSchool of Medicine San Diego La Jolla 92093 California USA
| | - Masao Hiraiwa
- Department of NeurosciencesUniversity of CaliforniaSchool of Medicine San Diego La Jolla 92093 California USA
| | - John S. O'brien
- Department of NeurosciencesUniversity of CaliforniaSchool of Medicine San Diego La Jolla 92093 California USA
| |
Collapse
|
35
|
Hiraiwa M, Taylor EM, Campana WM, Darin SJ, O'Brien JS. Cell death prevention, mitogen-activated protein kinase stimulation, and increased sulfatide concentrations in Schwann cells and oligodendrocytes by prosaposin and prosaptides. Proc Natl Acad Sci U S A 1997; 94:4778-81. [PMID: 9114068 PMCID: PMC20801 DOI: 10.1073/pnas.94.9.4778] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prosaposin, the precursor of saposins A, B, C, and D, was recently identified as a neurotrophic factor. Herein prosaposin was found to increase sulfatide concentrations in primary and transformed Schwann cells (iSC) and oligodendrocytes (differentiated CG4 cells). Of the four mature saposins, only saposin C was found to increase sulfatide concentrations in these cell types. A similar result was obtained by using peptides (prosaptides) encompassing the neurotrophic sequence located in the saposin C domain. Dose-response curves demonstrated maximal enhancement by saposin C and prosaptides at low nanomolar concentrations (5-10 nM). The increase in sulfatide concentration by a 14-mer prosaptide, TX14(A), in CG4 oligodendrocytes was about 3-fold greater than in primary Schwann cells. A mutant prosaptide with a single amino acid replacement of Asn --> Asp was inactive. Prosaptides did not induce cell proliferation of primary Schwann cells, iSC cells, or CG4 oligodendrocytes but nanomolar concentrations of prosaptides prevented cell death of iSC cells and CG4 oligodendrocytes. Immunoblot analysis demonstrated that phosphorylation of both mitogen-activated protein kinase p-42 and p-44 isoforms were enhanced 3- to 5-fold after 5 min of treatment with prosaptides at concentrations of 1-5 nM. These findings suggest that prosaposin and prosaptides bind to a receptor that initiates signal transduction to promote myelin lipid synthesis and prolong cell survival in both Schwann cells and oligodendrocytes. Prosaposin may function as a myelinotrophic factor in vivo during development and repair of myelinated nerves explaining the deficiency of myelin observed in prosaposin-deficient mice and humans.
Collapse
Affiliation(s)
- M Hiraiwa
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
36
|
Carlson CD, Bai Y, Jonakait GM, Hart RP. Interleukin-1 beta increases leukemia inhibitory factor mRNA levels through transient stimulation of transcription rate. Glia 1996; 18:141-51. [PMID: 8913777 DOI: 10.1002/(sici)1098-1136(199610)18:2<141::aid-glia6>3.0.co;2-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interleukin-1 beta (IL-1 beta) induces leukemia inhibitor factor (LIF) expression in a number of cell types including non-neuronal cells of the sympathetic superior cervical ganglion (SCG). Upregulation of LIF by inflammatory cytokines is usually associated with injury response. We characterized the molecular mechanism of LIF mRNA regulation by IL-1 beta in explanted neonatal rat SCG and a Schwann cell line. IL-1 beta increases LIF mRNA levels by interacting with IL-1 receptors in SCG, since this induction could be diminished by inclusion of either soluble IL-1 receptors or IL-1 receptor antagonist. The antiinflammatory glucocorticoid dexamethasone also inhibits LIF mRNA induction by IL-1 beta. LIF mRNA encodes a 3' AU-rich mRNA stability control sequence, but IL-1 beta does not appear to regulate the decay of LIF mRNA by this mechanism. IL-1 beta does not raise LIF gene transcription rate in cultured SCG 6 or 24 h after addition of IL-1 beta as measured by nuclear run-on assays. LIF gene transcription is induced repidly and transiently in an immortalized Schwann cell line, returning to uninduced rates by 1 h after induction. These results suggest that the IL-1 beta induction of LIF gene expression is at least partially transcriptional, but that LIF mRNA increases to a greater extent than LIF transcription, suggesting the possibility of posttranscriptional regulation as well.
Collapse
Affiliation(s)
- C D Carlson
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | |
Collapse
|
37
|
Zhang BT, Hikawa N, Horie H, Takenaka T. Mitogen induced proliferation of isolated adult mouse Schwann cells. J Neurosci Res 1995; 41:648-54. [PMID: 7563245 DOI: 10.1002/jnr.490410511] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The proliferation of neonatal Schwann cells (SCs) in response to mitogenic agents has been well analyzed in vitro, but a limited range of mitogens have been defined. We investigated whether three identified neonatal SC mitogens [glial growth factor (GGF), platelet-derived growth factor BB (PDGF-BB), and basic fibroblast growth factor (bFGF)] are required to stimulate mitosis of adult SCs. Adult SCs were isolated from mouse sciatic nerves by mechanical and chemical dissociation, following three experimental steps: 1) culturing the dissociated cells for 24 hr in 10% FCS-F12 medium, 2) culturing these cells in serum-free medium for the next 48 hr, and 3) purifying adult SCs by differential adhesion. We describe a new method for preparation of SCs from peripheral nerves of adult mouse that provides 99.5% pure SCs populations at cell yields of greater than 3 x 10(3) cells/mg of starting nerve wet weight within 5 culture days. Although mitosis of SCs in culture in response to mitogens requires the presence of serum, the complex nature of serum renders difficult a complete analysis of mitogens required for SCs DNA synthesis, so we examined the proliferating response of adult SCs to GGF, PDGF-BB, and bFGF in serum-free medium. GGF alone had mitogenicity for adult SCs in a dose-dependent manner, and synergistic activation coupling with forskolin was not observed. Neither PDGF-BB nor bFGF was mitogenic for adult SCs when used alone or with forskolin.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B T Zhang
- Department of Physiology, School of Medicine, Yokohama City University, Japan
| | | | | | | |
Collapse
|
38
|
Abstract
Transplantation of Schwann cells (SCs) in the central nervous system (CNS) for remyelination in pathological situations has been considered a promising approach. However, numerous studies have indicated that astrocytes have a restrictive effect on SC migration within the CNS. We have previously established an in vitro model which demonstrates the restrictive effect of astrocytes on SCs (Ghirnikar and Eng, Glia 4:367-377, 1994). Using this culture model, in the present study, we have characterized the molecular basis underlying astrocyte-SC interaction and demonstrated chondroitin sulfate proteoglycan (CSP) staining in the co-cultures. Following 1-2 weeks of incubation, CSP staining was specifically associated with SCs co-cultured with astrocytes. Staining with antibodies specific for the different chondroitin sulfate isomers revealed the presence of both, chondroitin-4- and 6-sulfates in SCs. In contrast, SCs when cultured alone, or in the presence of astrocytes conditioned medium did not show CSP staining. These data suggest that CSP staining is associated with SCs following co-culture with astrocytes and mediated by cell to cell contact. We hypothesize that the CSP, alone or in combination with other molecules expressed by astrocytes and/or SCs, may be involved in the restrictive effects of astrocytes on SCs. Identification of molecules involved in the unfavorable interaction between astrocytes and SCs will have an important bearing on efforts to remyelinate demyelinated axons by SC transplantation within the damaged CNS.
Collapse
Affiliation(s)
- R S Ghirnikar
- Department of Pathology, Stanford University, School of Medicine, California, USA
| | | |
Collapse
|
39
|
Watabe K, Fukuda T, Tanaka J, Honda H, Toyohara K, Sakai O. Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities. J Neurosci Res 1995; 41:279-90. [PMID: 7650763 DOI: 10.1002/jnr.490410215] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We established spontaneously immortalized Schwann cell lines from long-term cultures of adult mouse dorsal root ganglia and peripheral nerves. One of the cell lines, designated IMS32, responded to mitogenic stimuli by platelet-derived growth factor (PDGF)-BB, acidic and basic fibroblast growth factors (aFGF, bFGF), and transforming growth factors (TGF)-beta 1 and -beta 2, as determined by bromodeoxyuridine (BrdU) incorporation and double immunofluorescence for S100 and BrdU. Furthermore, conditioned media (CM) obtained from IMS32 cells showed mitogenic activity for both IMS32 cells and long-term cultured Schwann cells. Western blot analysis revealed TGF-beta-like molecule in the CM, and the activity was absorbed with anti-TGF-beta neutralizing antibody. Reverse transcription followed by polymerase chain reaction (RT-PCR) of IMS32 RNA revealed that these cells expressed TGF-beta 1, -beta 2, and -beta 3 transcripts. When rat pheochromocytoma PC12 cells were incubated with the CM, they developed neurite growth. Coculture of PC12 and IMS32 cells also showed neurite growth of PC12 cells. RNA transcripts of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), ciliary neurotrophic factor (CNTF), and glial cell line-derived neurotrophic factor (GDNF) were detected from IMS32 cells by RT-PCR. In these, we sequenced the mouse GDNF cDNA coding region and observed 97% and 90% homologies to corresponding rat and human cDNA sequences, respectively. These results indicate that the immortalized Schwann cell line mitotically responds to various growth factors and secretes autocrine and paracrine growth-promoting activities in vitro.
Collapse
Affiliation(s)
- K Watabe
- Division of Neuropathology, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Rutkowski JL, Kirk CJ, Lerner MA, Tennekoon GI. Purification and expansion of human Schwann cells in vitro. Nat Med 1995; 1:80-3. [PMID: 7584959 DOI: 10.1038/nm0195-80] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to culture cells from the human nervous system provides new insight into the pathophysiology of neurological diseases and could be crucial to the development of gene replacement therapies and neural transplantation. We report that the proliferation of human Schwann cells isolated from paediatric and adult nerves is sustained in vitro by recombinant glial growth factor. Agents that increase intracellular cyclic cAMP were also mitogenic towards Schwann cells but suppress growth of contaminating fibroblasts. As the lifespan of highly enriched cultures can be extended for up to twelve population doublings, large numbers of cells can be generated from nerve biopsies.
Collapse
Affiliation(s)
- J L Rutkowski
- Division of Pediatric Neurology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
41
|
Watabe K, Fukuda T, Tanaka J, Toyohara K, Sakai O. Mitogenic effects of platelet-derived growth factor, fibroblast growth factor, transforming growth factor-beta, and heparin-binding serum factor for adult mouse Schwann cells. J Neurosci Res 1994; 39:525-34. [PMID: 7891388 DOI: 10.1002/jnr.490390504] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitogenic effects of fetal calf serum (FCS), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor-beta (TGF-beta), and forskolin to adult mouse Schwann cells were examined by bromodeoxyuridine (BrdU) incorporation and double immunofluorescence for S100 and BrdU. PDGF-BB, basic FGF, and TGF-beta 1 and beta 2 were all mitogenic for Schwann cells in media containing FCS. Forskolin suppressed the mitogenic activity of these factors. In serum-free media, PDGF-BB and bFGF were also mitogenic, but TGF-beta 1 and beta 2 were not. Heparin-binding fractions of FCS obtained by heparin-Sepharose chromatography synergized with TGF-beta 1 and beta 2 to produce a mitogenic response. Since PDGF-BB, acidic FGF, and basic FGF were not detected in these fractions by immunoabsorption and immunoblot assays, the presence of unidentified heparin-binding molecules in FCS bioactive for adult mouse Schwann cells is suggested.
Collapse
Affiliation(s)
- K Watabe
- Division of Neuropathology, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Abstract
After injury, either as a result of trauma or degenerating/demyelinating diseases, axons of the central nervous system (CNS) normally fail to regenerate. Transplantation of glial cells, particularly Schwann cells, into areas of injury or demyelination has been considered a promising approach to promote recovery. However, the extent of Schwann cell interaction with CNS axons is greatly influenced by the presence of astrocytes which redefine the CNS-PNS (peripheral nervous system) boundary in a lesioned CNS, thereby preventing invasion of Schwann cells. The molecular basis for this restrictive effect of astrocytes on Schwann cells is not known. In the present study, we have cocultured astrocytes and Schwann cells to develop an in vitro model to characterize this interaction. Astrocytes in contact with Schwann cells appeared hypertrophied and showed increased staining for glial fibrillary acidic protein (GFAP). In cocultures maintained for 2-3 weeks, segregation of the two cell types was observed, Schwann cells appeared in groups, and each group was surrounded and separated from one another by astrocytic processes. Since the behavior of these two cell types observed in culture is very similar to their interaction seen in vivo, this coculture model may be useful in further studying the relationship between astrocytes and Schwann cells.
Collapse
Affiliation(s)
- R S Ghirnikar
- Department of Pathology, Stanford University School of Medicine, California
| | | |
Collapse
|
43
|
Haynes LW, Rushton JA, Perrins MF, Dyer JK, Jones R, Howell R. Diploid and hyperdiploid rat Schwann cell strains displaying negative autoregulation of growth in vitro and myelin sheath-formation in vivo. J Neurosci Methods 1994; 52:119-27. [PMID: 7967716 DOI: 10.1016/0165-0270(94)90120-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neonatal rat Schwann cells were cultured for several months with intermittent exposure to the mitogen, cholera toxin, and infrequent passaging to avoid premature transformation. A cell line SCL4.1/F7 was derived following the cloning of one of these long-term cultures by limiting dilution in liquid medium to select for cells capable of continuous proliferation in the absence of mitogen. F7 cells have been passaged 40 times (80-120 generations) over 14 months. Two substrains were identified at passage 20, one of which ,s diploid and the other which has trisomy 7 (t7). The cell line displays a characteristic flattened or crescent-shaped morphology, substratum adhesion which is calcium-dependent in the millimolar range, and pronounced contact-inhibition of growth. Confluent or subconfluent cultures readily cease proliferation and change to a differentiated (stellate/bipolar) morphology through the mediation of an autocrine growth-inhibitory factor. F7 cells grafted into the site of a crush injury in adult rat sciatic nerves remained viable and myelinated host axons. F7 is the first clonally derived diploid immortal Schwann cell line to have been published and should provide a suitable tool for the study of the biochemical and cellular basis of sheath cell-neuron interactions, myelin stabilization in peripheral nerve and Schwann cell growth autoregulation.
Collapse
Affiliation(s)
- L W Haynes
- School of Biological Sciences, University of Bristol, UK
| | | | | | | | | | | |
Collapse
|
44
|
Bolin LM, Shooter EM. Characterization of a Schwann cell neurite-promoting activity that directs motoneuron axon outgrowth. J Neurosci Res 1994; 37:23-35. [PMID: 8145301 DOI: 10.1002/jnr.490370105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Schwann cells support and facilitate axonal growth during development and successful regeneration in the peripheral nerve. In the regenerating rat sciatic nerve, Schwann cells provide a trophic milieu for primary sensory, sympathetic, and motoneurons. We have characterized a neurotrophic activity produced by adult rat sciatic nerve Schwann cells and a spontaneously immortal Schwann cell clone (iSC). This activity elicits neurite outgrowth from chick embryo explants of both CNS and PNS. The iSC activity has been concentrated by cation-exchange chromatography and compared to known neurotrophins in bioassay. Pooled bound fractions elicit neurite outgrowth from sympathetic, ciliary and motoneurons. In collagen matrix cocultures of iSC and E4 ventral horn (before motor axon extension to muscle targets), the iSC activity can direct the initial axonal extension from motoneurons. The data presented suggest that Schwann cell-produced activity may mediate motoneuron axonal extension before contact with their peripheral source of neurotrophin.
Collapse
Affiliation(s)
- L M Bolin
- Department of Neurobiology, Stanford University School of Medicine, CA 94305
| | | |
Collapse
|
45
|
Brook GA, Lawrence JM, Raisman G. Morphology and migration of cultured Schwann cells transplanted into the fimbria and hippocampus in adult rats. Glia 1993; 9:292-304. [PMID: 8112822 DOI: 10.1002/glia.440090407] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Schwann cells cultured from neonatal rat peripheral nerve were injected into the fimbria and hippocampus of syngeneic adult rats by a microtransplantation technique which causes minimal disturbance to the host brain structure at the site of implantation, and thus allows the grafted cells to come into immediate contact with intact host tissue. Numerous Schwann cells could be identified for up to 6 weeks (and with decreasing frequency for up to 3 months) by intense immunoreactivity for low affinity nerve growth factor receptor. The transplanted cells adopted a distinctive elongated form, with a central, ovoid nucleus flanked by processes which were up to 300 microns long, and which ranged from swollen segments with a diameter as large as 12 microns down to thread-like fibres of 1 micron or less. This morphology is different from that of any of the host cells. The transplanted Schwann cells migrated freely into the host tissue along blood vessels and according to the position of the grafts, they either entered the hippocampal neuropil, or migrated (for distances of up to 2 mm) along the longitudinal axis of the fimbria, where they were interspersed in parallel with the interfascicular glial rows and axons. The host astrocytes did not appear to impede the migration of the donor Schwann cells. Although the host astrocytic processes became hypertrophic, with increased glial fibrillary acidic protein and vimentin expression, the predominant longitudinal orientation of the astrocytic tract processes was maintained. The transplanted Schwann cells did not form peripheral myelin (as detected by P0 immunoreactivity), and it is not clear whether they survive beyond the period at which we detect them.
Collapse
Affiliation(s)
- G A Brook
- Norman and Sadie Lee Research Centre, National Institute for Medical Research, London, United Kingdom
| | | | | |
Collapse
|
46
|
Abstract
A small volume of purified Schwann cells, cultured from early postnatal rat sciatic nerve, was injected into the hippocampus or fimbria of syngeneic adult hosts. The procedure caused minimal structural disturbance at the transplantation site, with close graft-host contact and maximal opportunity for integration. The donor Schwann cells were identified by a combination of light and electron microscopic features (which include characteristic deep and complex infoldings of a well marked nuclear envelope), antigenic profile (especially low affinity nerve growth factor receptor immunoreactivity), uptake of fluorescent latex microspheres and autoradiography of [3H]thymidine-labelled dividing cells. The donor Schwann cells adopted a distinctive elongated form, with a central, ovoid nucleus flanked by processes which were up to 300 microns long, and which ranged from swollen segments with a diameter as large as 12 microns down to thread-like fibres of 1 microns or less with growth cone-like expansions. Transplanted cells migrated from the graft, particularly along blood vessels and could permeate all cytoarchitectonic regions of the adjacent host hippocampal neuropil. Donor Schwann cells also migrated along the longitudinal axis of the fimbria, where they were interspersed in parallel with the interfascicular glial rows and axons. The grafted cells induced a transient but marked host astrocytic hypertrophy, which did not appear to impede the migration of the donor Schwann cells. The transplanted Schwann cells did not form peripheral myelin (as detected by P0 immunoreactivity), and it is not clear whether they survive beyond the period at which we detect them.
Collapse
Affiliation(s)
- G Raisman
- Norman and Sadie Lee Research Centre, Laboratory of Neurobiology, National Institute for Medical Research, Mill Hill, London, U.K
| | | | | |
Collapse
|
47
|
Abstract
Successful peripheral nerve regeneration and functional recovery require the reestablishment of the neuron-Schwann cell relationship in the regenerating rat sciatic nerve, neurons differentially regulate Schwann cell genes. The message for the low-affinity NGF receptor, p75NGFR, is induced in Schwann cells distal to the injury and is repressed as regenerating axons make contact with these cells. The inverse is true for mRNA of the myelin gene P0; expression decreases distal to injury and increases as new axons contact Schwann cells and a program of myelination is initiated. Using an in vitro co-culture paradigm in which primary neurons and adult Schwann cells are separated by a microporous membrane, we show that axon contact is not an absolute requirement for neuronal regulation of Schwann cell genes. In this system neurons but not other cell types, repress the expression of Schwann cell p75NGFR while inducing the expression of the POU domain transcription factor, suppressed cAMP inducible POU, and myelin P0. These results demonstrate that regenerating axons can direct the Schwann cell genetic program from a distance through diffusible molecules.
Collapse
Affiliation(s)
- L M Bolin
- Department of Neurobiology, Stanford University School of Medicine, California 94305
| | | |
Collapse
|